
Rapid High Quality Compression of Volume Data for
Visualization

Ky Giang Nguyen and Dietmar Saupe

Universität Leipzig, Institut für Informatik
Augustusplatz 10–11, 04109 Leipzig, Germany.

Abstract
Volume data sets resulting from, e.g., computerized tomography (CT) or magnetic resonance (MR) imaging modal-
ities require enormous storage capacity even at moderate resolution levels. Such large files may require compres-
sion for processing in CPU memory which, however, comes at the cost of decoding times and some loss in recon-
struction quality with respect to the original data. For many typical volume visualization applications (rendering
of volume slices, subvolumes of interest, or isosurfaces) only a part of the volume data needs to be decoded. Thus,
efficient compression techniques are needed that provide random access and rapid decompression of arbitrary
parts the volume data. We propose a technique which is block based and operates in the wavelet transformed do-
main. We report performance results which compare favorably with previously published methods yielding large
reconstruction quality gains from about 6 to 12 dB in PSNR for a 5123-volume extracted from the Visible Human
data set. In terms of compression our algorithm compressed the data 6 times as much as the previous state-of-the-
art block based coder for a given PSNR quality.

1. Introduction

Volume visualization is one of the most actively researched
topics in scientifi visualization and motivated by the
growing need to understand and interpret large, multi-
dimensional data especially in the medical application do-
main. The methods for volume data representation and visu-
alization become more and more ubiquituous, and advances
in computer hardware are now bringing 3D technology to
nearly every computer system. However, for volume visu-
alization techniques it is typically assumed that the whole
data set is resident in memory. Since volume data can get
very large, say some hundreds of megabytes, common cur-
rent workstations and PCs may not be equipped with suffi
cient amounts of memory and therefore are unable to visu-
alize large data sets. This problem will not be overcome by
increased memory space in future computer systems since as
time progresses also the resolution of the volume data sets
will increase causing the data set size to grow as well.

A popular example of large volume data that illustrates
the associated problems comes from the Visible Human
Project.16 A few years ago, the National Library of Medicine
(NLM) acquired CT-, MR- and color cryosection images of a

representative male and female cadaver and built a very large
digital library of corresponding volumetric data. This library
found large interest and was used in a wide range of mul-
timedia applications. One part of the Visible Man data set
consists of 1871 axial scans of the entire body taken at 1 mm
intervals and amounts to 15 Gbytes. The corresponding color
cryosection images of the female data set were taken at 1/3
mm intervals and the data set is 40 Gbytes. Naturally, com-
pression of these large data was an important issue.1, 4, 6, 8, 14

For the study of the human anatomy with these or similar
data sets, the following scenario comes into question. The
complete data sets can be held on a server in compressed for-
mat. Over the network, clients may access those data and re-
quest individual subvolumes of interest for visualization; say
volumes comprizing the region of the heart, of the lungs and
the bronchial tree, or of the brain. The requested subvolume
should be extracted directly from the compressed data, trans-
mitted still in compressed form over the network and then
prepared for visualization at the client side. For example, a
subvolume of resolution 5123 of 16 bit intensity scalars may
be requested. In uncompressed format this would amount to
256 megabytes requiring a very large transmission time and
also the data set would not fi into CPU memory of most cur-

http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291467-8659
http://nbn-resolving.de/urn:nbn:de:bsz:352-223778

rent workstations and PCs. At a compression ratio of 25:1
only about 10 megabytes need to be transmitted and stored.
Then for the visualization of a slice of the volume or for
an isosurface, only a small part of the 5123 volume needs
to be available in the spatial domain in uncompressed form.
Therefore, an adaptive compression/decompression scheme
is sought allowing region-of-interest decompression without
requiring decompression of the entire data set. Overall, on
the server-side volume extraction in the compressed domain
is needed, while at the client side region-of-interest decoding
is required. We remark that the server and the client may be
processes running on the same physical machine. The com-
pressed data may be stored on disk or external memory (CD,
DVD) and the processor may select and load into memory
those parts of the compressed data that is needed due to the
user’s query.

There are two aspects of the approach that must be taken
into consideration. First, compression at the required bitrates
is lossy; only an approximation of the original data can be re-
covered at the receiver. This may be acceptable in most cases
(browsing, illustrating, education, and so on) but prohibitive
in some cases such as medical diagnosis. Second, having the
data in compressed format on the client requires decompres-
sion, a process that may take more time than that of plainly
reading in spatial data in raw uncompressed format.

Both stated requirements for such a system — extraction
in the spatial as well as in the compressed domain — can
be met by block based compression techniques in which the
volume is partitioned into blocks such as equal sized cubes
each of which is compressed (and decompressed) indepen-
dently. For any given volume query the required blocks can
be identif ed and transmitted by the server or decompressed
for visualization by the client. There is a tradeoff between
block size and achievable compression performance. Small
block sizes are preferable for extraction reducing the amount
of data that is decompressed but not used for visualization.
On the other hand, large blocks offer better reconstruction
quality because there is more context information per voxel
in large blocks which can be capitalized by the encoder
achieving better reconstruction quality at the same compres-
sion ratio.

2. Previous work

Wavelets are powerful mathematical tools for approximat-
ing signals and representing functions hierarchically. Most
of the recent best methods for image compression are based
on wavelet transforms and achieve better rate-distortion per-
formance than block based DCT methods, that are central
to the old JPEG standard. In fact, the new JPEG2000 image
compression standard relies on the wavelet transform.

Thoma and Long14 compared experimental results where
several 2D lossy compression methods were applied to the
Visible Human data. The study focused on eff cient storage

and transmission, rather than on run-time manipulation. A
method based on the wavelet transform applied to each 2D
slice of the volume data gave the best results.

While this study applied 2D compression techniques to
3D volume data there are also true 3D volume data com-
pression techniques. Muraki7 introduced the idea of using
a 3D wavelet transformation for approximation and com-
pression of 3D scalar data. Luo et al5 used a modif ed em-
bedded zerotree wavelet (EZW) algorithm10 for compres-
sion of volumetric medical images. The EZW-approach has
been improved upon by Said and Pearlman9 with the SPIHT-
algorithm for images. This approach has been extended to a
3D-SPIHT algorithm which was used for video coding and
with excellent results also for medical volumetric data17 us-
ing an integer wavelet packet transform.

While the above works aimed at compressing the entire
volume in one piece, Ihm and Park4 addressed also the adap-
tive decompression capability that is crucial for rapid visual-
ization and which is considered in this paper. In their (block
based) approach volume data was f rst divided in cubes of
size 16×16×16 called unit volumes, then 3D-transformed
using the Haar-wavelet. The transformed coeff cients of each
unit volume were then quantized and coded using so called
cell tag table and cell information, where each cell repre-
sented a 4×4×4 subregion of the unit volume. The encod-
ing resulted in two bit streams: a code stream and an index
stream, which facilitated direct access to each wavelet co-
eff cient. In a followup paper by Bajaj, Ihm, and Park1 the
method was improved and extended. The cell encoding was
made more eff cient by a better encoding scheme for the sig-
nif cance map yielding gains in compression ratio of 10 to
15 percent and, more remarkably, speeding up the decoding
by a factor of 5. Moreover, the technique was extended to
handle RGB color volume data.

Recently, Rodler8 considered the 3D volume encoding as
a special case of video coding employing bidirectional tem-
poral prediction of frames. The 2D wavelet transform using
the Haar f lter was applied for the 2D slices. After trans-
formation, coeff cients below a certain threshold were set
to zero. For fast decoding, similar to the work of Ihm and
Park4 two bit streams were created, one eff ciently indicat-
ing the signif cance map exploiting the hierarchical structure
of blocks in a transformed slice and the other encoding indi-
vidual coeff cients. This method signif cantly improved the
rate distortion performance over the results reported by Ihm
and Park.

This paper proposes a new wavelet based method for com-
pressing very large volume data, which enables good com-
pression quality and fast decoding of any desired subvolume
directly from the compressed bit stream for interactive vi-
sualization. As in the paper of Ihm and Park4 we partition
the volume data into unit volumes of size 16× 16× 16 and
apply a 3D wavelet transform. Our approach then differs in
two aspects. First, instead of employing the Haar wavelets

we apply the biorthogonal 9/7-tap Daubechies wavelet f lter,
which is well known for its superior performance in image
compression applications.15 Second, we propose a new fast
and eff cient method to encode the wavelet coeff cients of a
transformed unit volume. We can demonstrate an improve-
ment over the method of Ihm and Park4 of 11 to 12 dB in
PSNR and about 6 to 8 dB PSNR over that of Rodler8 for a
large data set from the Visible Human project.

The rest of the paper is organized as follows. In Section
3 we brief y recall notions needed for the wavelet transform.
Section 4 provides an overview of the proposed coding al-
gorithm as well as a detailed pseudo code. In Section 5 ex-
perimental results and performance analysis will be given.
Finally conclusions and future work are presented in Sec-
tion 6.

3. Wavelets

Wavelets have provided very successful mathematical ba-
sis functions for representing and approximating signals be-
cause of their excellent localization properties in both space
and frequency domain.12 In the wavelet domain a signal is
decomposed in several bands, one low resolution base band
and several bands of increasing resolution for details in the
signal. The great success of wavelet image and signal cod-
ing comes not only from the fact that the transform concen-
trates signal energy in only a few coeff cients but is based
— more importantly — on the structure of the localizations
of the coeff cients which are quantized to zero. This struc-
ture enables powerful coding schemes such as the EZW and
SPHIT approaches that are mentioned in the last section. To-
day, wavelets are used in most state-of-the-art image com-
pression algorithms. Also they have been proven useful in
many areas of computer graphics.11 An introduction to the
theory and the algorithms for wavelet decompositions is be-
yond the scope of this paper. We refer the interested reader
to the literature, e.g., the book by Strang and Nguyen.12

Sweldens13 introduced the lifting scheme, an eff cient im-
plementation of wavelet transform algorithms. All classi-
cal wavelet transforms can be implemented using the lift-
ing scheme by a factorization into so-called lifting steps.3
Since the lifting steps speed up the transform, we use lifting
to transform the unit volume. Here, the 1D lifting scheme
will be f rst applied for all rows, then for all columns and
then for the "temporal" direction (labeled "Z"), see Figure 1
for a schematic illustration. The output of the low pass f l-
ter "L" of the last part in this f gure will be subsampled and
decomposed just like the full signal in order to produce the
second stage of the decomposition. As already mentioned
we chose the biorthogonal 9/7-tap Daubechies wavelet f lter
for its known good performance.

L

H

L

H

H

H

L

H

H

H

LHH

LHL

LLH

X-Dim. Y-Dim. Z-Dim.

HLL

L

L

L

L

HHH

HHL

HLH

Figure 1: Subband transform.

4. Proposed algorithm

In this section, we describe our proposed algorithm to en-
code and decode scalar recti-linear volume data sets, i.e., we
assume that scalar values are given on a 3D grid of some
dimension Nx × Ny × Nz. At f rst, the volume data is seg-
mented in to unit volumes of dimension 16×16×16. With-
out great loss we may assume that the original dimensions
Nx,Ny and Nz are multiples of 16. Otherwise we zeropad
the volume data accordingly. Each unit volume will then be
wavelet transformed and encoded separately. The linear unit
size of 16 is suitable for the purpose of fast random access of
portions of the entire data that are needed for a particular vi-
sualization. If the dimension is larger then 16, then decoding
may produce a lot of volume data in the spatial domain that
actually may not be needed for a particular user query, thus,
wasting increased decoding time and storage space. On the
other hand, if the dimension is less than 16, the unit volumes
become so small that they cannot be encoded eff ciently, i.e.,
for any given bit rate (bits per voxel) of the coder output
the reconstruction quality will drop noticibly. Moreover, the
number 16 is a power of 2 and therefore convenient for sub-
band decomposition by the lifting scheme. The results of the
encoding are two bit streams, the f rst one is the code stream
which encodes the data and the other is an offset stream,
which provides a directory indicating the starting position
of the code bits for all unit volumes in the code stream. For
visualization of a particular subvolume, volume slice, or iso-
surface one f rst needs to determine the required unit vol-
umes, then extracts the corresponding binary code from the
code stream using the directory, and f nally decodes the data
for each required unit volume.

The selection of the required unit volumes for the render-
ing of subvolumes of interest and for volume slices can be
carried out using geometrical considerations. It is easy, e.g.,

to list all unit volumes that have a non-empty intersection
with a given slice. To support also extraction of unit vol-
umes for iso-surface visualization we append the minimum
and maximum scalar voxels value of all unit volumes to
the corresponding directory information in the offset stream.
For a given iso-value the directory can be scanned and it is
straightforward to report all those unit volumes that intersect
the corresponding iso-surface.

In the remainder of this section we address the coding of
an individual unit volume which must be designed to allow
rapid compression and decompression as well as good rate-
distortion performance. Let us f rst remark that there already
exist compression techniques which achieve very good rate-
distortion performance and are also very fast such as 3D-
SPIHT.17 But such methods should not be applied in our case
for the following reason. The unit volume has a dimension
of only 16. So the maximal eff cient decomposition level is
two. In this case, the zero trees of wavelet coeff cients are
not deep enough and the compression scheme does not work
well. The zero tree method works well and achieves good
results only when three or more decomposition levels are
available.

Our proposed algorithm for encoding the small unit vol-
umes of size 16× 16× 16 is based on the following obser-
vation of transformed wavelet coeff cients. There exist not
only zero trees, i.e., context between wavelet coeff cients of
the same spatial location in different subbands, but also there
is context between coeff cients in the neighborhood within a
subband. Within a subband the intensity of wavelet coeff -
cients typically does not change abruptly. There often exist
large regions in a subband, where the intensities of all coef-
f cients are below a some small value and, thus, only a few
bits per coeff cient need to be encoded, uniformly in such a
region. This leads to an approach that is not following the
usual bit plane coding strategy, but all relevant bits for a sig-
nif cant coeff cient are coded consecutively. It also provides
improved decoding speed.

The unit volume is wavelet transformed using the lifting
scheme with two decomposition levels. After the transform
we have 15 volume subbands as shown in Figure 2. The band
with the bold outline (band 0) contains 43 coeff cients for the
low frequency content of the volume block. Bands 1 through
7 each contain 43 detail coeff cients, while bands 8 to 14
each contain 83 coeff cients for detail at highest resolution.

The wavelet coeff cients for the 3D block are represented
by f oating point numbers which f rst need to be quantized
and binary coded for compression. We adopt uniform scalar
quantization of coeff cientsC using a f xed quantization step
size ∆ > 0 with a dead zone of 2∆ around zero. More pre-
cisely, the quantization is given by

C �→ sign(C)
(⌊

|C|
∆

⌋
+
1
2

)
∆.

The quantization step size is included as side information

8

9

10

11

13

14
2

7

63

1

4

Figure 2: The wavelet-transformed unit volume comprizes
15 bands.

in the offset stream of the output code so that the decoder
can retrieve the appropriate values for the dequantized coef-
f cients. Thus, we replace each f oating point coeff cient C
by the integer c given by

c = sign(C)
⌊
|C|
∆

⌋
.

For convenience we call these integer values c wavelet coef-
f cients again. The decoder then dequantizes an integer coef-
f cient c to the value Ĉ = sign(c)(|c|+ 1

2)∆. The choice of the
quantization step size allows for coding at different bit rates,
respectively compression ratios. Enlarging the step size ∆
will achieve higher compression at reduced reconstruction
quality. The quantization step size is the same for all unit
volumes.

Next we organize the (integer) wavelet coeff cients into
subbands and subsets of subbands as follows. For each of the
15 subbands we create a list of subsets. The lowest subband
(subband 0) contains 43 coeff cients and is partitioned into
8 subsets each with 23 neighboring coeff cients from one of
the 2× 2× 2 cubes in the subband. Each of the remaining
14 lists initially contains only one entry, namely the entire
set of 43 or 83 coeff cients from the corresponding subband.
Later on, these sets may be subdivided into several subsets
which will be appended to the appropriate lists. For the sets
included in the 15 lists we use the notation V n

k where n de-
notes the subband n = 0, . . . ,14 and k = 1,2, . . . runs as far
as needed.

For the binary representations of the absolute coeff cient
values bit planes 0 (least signif cant), 1, 2, and so on up to a
maximum bit plane M are needed. The maximum M is given
by M = �log2(max(|ci, j,k|))� where the maximum is taken
over all coeff cients |ci, j,k| of the transformed unit volume.

Input
• A unit volume of size 16×16×16 wavelet transformed with two stages (15 subbands, see Figure 2).
Coeff cients areCi, j,k, i, j,k = 0, . . . ,15.

• A quantization step size ∆ > 0.
Initialization
1. Output ∆.
2. Quantization and mapping: replace each coeff cientCi, j,k by integer ci, j,k = sign(Ci, j,k)

⌊
|Ci, j,k|/∆

⌋
.

3. Output maximal bit plane M = �log2(max(|ci, j,k|))�.
4. For each subband n = 1, . . . ,15 create the list V n of subsets (V n

1 ,V n
2 , . . .), see text for details.

Coding pass
• For all bit planes m = M,M−1, . . . ,0 do

– For all subset lists V n,n = 0, . . . ,14, do

◦ For all subsets V n
k ,k = 1,2, . . . of list V n do

1. Signif cance: Output b = Sm(V n
k) (1 bit).

2. Process signif cant subset: If b = 1 then

a. If |V n
k | = 23 then
Encode(V n

k ,m)
else

Partition V n
k : Divide V n

k into 8 subsets and append these to the current list V n.
b. Remove V n

k from the list V n.

Encoding routine Encode(V,m)
• Input: An integer m ≥ 0 and a set V of 8 integer coeff cients c ∈V , |c| < 2m+1

• For all c ∈V do

1. Let (−1)bs bmbm−1 . . .b0 denote the binary representation of c where (−1)bs = sign(c).
2. Output bm,bm−1 . . . ,b0 (m+1 bits)
3. If |c| > 0 then output bs (1 bit)

Table 1: Algorithm for encoding a wavelet transformed unit volume.

The coding scheme operates by sequentially analyzing the
coeff cient bit planes m = M,M−1, . . . ,0 beginning with the
most signif cant one. At each bit plane m we sequentially
scan each of the 15 lists of coeff cient subsets. A subset V n

k
is called signif cant w.r.t. bit plane m if it contains coeff -
cients larger than or equal to 2m in absolute value. Formally,
Sm(V n

k) = 1, where Sm(·) denotes signif cance to bit plane m,

Sm(V) =
{

1 if max{|c| | c ∈V} ≥ 2m

0 otherwise

for any set V of integers.

In the pass for each bit plane m only those subsets V n
k are

processed that are signif cant w.r.t. bit plane m, the others
are ignored. Assume that V n

k is a signif cant subset. If V n
k

contains 43 or 83 coeff cients thenV n
k is partitioned into eight

subsets of size 23 or 43, respectively. These new subsets are
appended to the list of subsets for the current subband n and
will be processed again near the end of the current bit plane
pass m. In the other case the subset contains precisely 23 = 8
coeff cients c, which then will be encoded. First the absolute
value |c| is encoded using m+1 bits. If the coeff cient is not

equal to zero then also the sign bit is included in the output.
After processing a signif cant subset V n

k we remove it from
the list for subband n.

In the pseudo code we present the encoding algorithm for
a unit volume in its entirety and more precisely. In partic-
ular additional bits must enter the code stream to indicate
the location of the coeff cients in the output. The decoding
is straightforward. Note that after receiving the bits for a co-
eff cient the decoder also knows which coeff cient these bits
refer to.

5. Results

We have implemented our algorithm and report on experi-
ments using a large volume data set that was originally ex-
tracted from the CT slices of "Visible Man" from the Visible
Human Project. The resolution is 512×512×512 with each
voxel carrying a 12-bit gray scale value, stored in 2 bytes
each and resulting in a total volume size of 256 Mbytes. The
same data set was used for compression and visualization in
the recent papers of Ihm and Park4 and Rodler8 so that we

40

44

48

52

56

60

64

0 20 40 60 80 100 120 140

P
S

N
R

Compression ratio

our method
method of Rodler

method of Ihm/Park

Figure 3: Rate-distortion curves for the data in Table 2.

method in 4 method in 8 our method

ratio PSNR ratio PSNR ratio PSNR

121.7 48.14
60.2 43.00 72.3 51.79
42.6 46.00 43.1 55.36

27.4 44.49 32.4 48.30
18.8 47.79 22.2 51.60 25.8 58.64
14.7 50.41 14.5 55.50 15.9 61.34

Table 2: Compression ratios and qualities in PSNR for three
methods. The measurements for the three methods were in-
dependent, and we arranged the results such that each row
of the table contains comparable compression ratios.

can provide an objective comparison of the performance of
the various algorithms.

Using different quantization step sizes ∆ we encode the
data set at several compression ratios. The quality of the en-
coding is measured as usual in terms of the peak-signal-to-
noise ratio (PSNR), expressed in decibel (dB),

PSNR = 10log10
(212−1)2

1
5123 ∑511

i, j,k=0(vi, j,k − v̂i, j,k)2
.

Here vi, j,k and v̂i, j,k denote the original and reconstructed
voxel intensities respectively.

The results are given in Table 2 and compared with re-
sults published in the other papers4, 8. Figure 3 displays the
corresponding rate distortion curves. Our method is similar
to that of Ihm and Park4 in that it is based on encoding a to-
tal of 32768 wavelet transformed unit volumes of the same
size 163. Our encoding algorithm is more eff cient yielding
signif cant gains from 11 to 12 dB in PSNR. Compared to
the approach of Rodler8 which is based on encoding "mo-
tion compensated" wavelet transformed frame differences

quantization compression time per unit
step size ∆ ratio volume (msec)

128 121.7 1.70
96 72.3 1.95
64 43.1 2.05
32 25.8 2.25
16 15.9 2.60

Table 3: Decoding times per unit volume in milliseconds.
The results were attained using different quantization step
sizes ∆, which are listed in the first column.

we still achieve large gains from 6 up to about 8 dB in PSNR.
Therefore our encoding scheme is very successful in terms
of data reconstruction quality. For a comparison of original
and reconstruction Figures 4 and 5 show an original slice
and the decoded slice of the volume compressed at a ratio of
43.1. Some small blocking artifacts may be seen due to the
independent coding of unit volumes. compare the difference
image in Figure 6.

Besides image quality the aspect of rapid compres-
sion/decompression is of importance for visualization appli-
cations. Here we report our timing results both for encod-
ing the entire volume and for decoding a single unit volume.
These measurements were carried out on a computer with
a 600 MHz Pentium III processor and 196 Mbytes of CPU
memory.

For the encoding process 16 slices of the volume are read
into memory at a time after which the corresponding 1024
unit volumes can be extracted and encoded. The time to read
in the entire data set of 256 Mbytes in this way is about 80
seconds. The time to encode the data depends on the choice
of the quantization step size respectively the desired com-
pression ratio The entire compression time is about 100 sec-
onds, which amounts to a compression throughput of about
330 unit volumes per second or 1.35 million voxels per sec-
ond.

While the compression is already fast, the decoding is yet
faster. This is due to reduced complexity in that the decoder
does not need to check any sets of coeff cients for signif-
icance. Essentially, it just unpacks the bits from the code
stream and sorts them into a 3D array. Overall, the decod-
ing throughput is about 500 unit volumes or 2 million voxels
per second. The measured times per unit volume are given
in Table 3.

For visualization of a complete volume slice that is paral-
lel to one of the three coordinate hyperplanes in 3-space one
needs to decode a total of 1024 unit volumes. Thus, the de-
coding as a preprocess for the visualization processes 1024
unit volumes at about 2 milliseconds per unit volume taking
in total only about 2 seconds. For slices that are not paral-

Figure 4: An original volume slice.

Figure 5: The slice from Figure 4 reconstructed from the
compressed volume data at compression ratio 43.1.

Figure 6: Difference image between original in Figure 4 and
reconctruction in Figure 5. The grey levels are 128+ δg/2
where δg is the grey level difference.

lel to a coordinate hyperplane a slightly increased amount of
decompression time is necessitated.

It is diff cult to compare our decoding time complexity
to those of the methods presented in the other papers. Nei-
ther paper4, 8 presents compression times, and only the paper
of Rodler8 lists decoding times, however, only for the entire
volume. When comparing these numbers with ours we f nd
that the decoding times are similar, around one minute for
the whole volume. However, this comparison is of limited
value, since the machines that were used for the measure-
ments were not the same and the programs used may have
been optimized with different efforts.

In the paper of Bajaj et al1 utmost emphasis was put on de-
coding speed. Their data sets and computer (SGI 195 MHz
MIPS R10000 CPU) differ from ours so that the speed is
hard to compare. Moreover, the data set differs in type since
it includes color information which was also encoded. When
decoding entire cells of dimension 4× 4× 4 a rate of about
10 million voxels per second was reported, which is about
5 times as much as in our implementation. For random ac-
cess of individual voxels the difference in speed should be
even larger. However, for extraction of slice, iso-surface, or
subvolume data, there is a strong coherence in the voxel lo-
cations and such extreme random access performance is not
necessarily required. When comparing our algorithm with
that of Bajaj et al, we also take into account the achievable
compression ratios, which in Bajaj et al’s paper is 10 to 15
percent above that what was obtained using the algorithm
of the paper of Ihm and Park. Out method, however, outper-
forms that one by about 500 percent, see Figure 3, producing
a six-fold compression ratio at 50.41 dB PSNR.

6. Conclusion and future work

We have proposed a new method for compression of very
large volume data sets with scalar data on a rectilinear grid.
The method is simple yet eff cient both in terms of the rate-
distortion performance and with respect to time complexity.
A comparison with recently published results for the same
test data set reveals superior reconstruction quality up to
more than 8 dB in PSNR at the same compression ratios. We
anticipate to extend our work in the following directions:

• As with any block based coder there are small blocking
artifacts in the resulting decompressed volume data. We
will introduce suitable post f ltering techniques that will
further improve the measurable performance in PSNR as
well as in terms of psychovisual quality.

• We intend to implement the 3D-SPIHT method to encode
the entire volume in one piece. This is not useful for the
visualization purposes addressed here. However, the re-
sulting compression performance can be regarded as an
upper limit of what one possibly can achieve by more sim-
ple and fast block based encoding schemes that one needs
for the volume visualization tasks on hand.

• In order to further improve the decoding speed of out
method we consider implementing the encoder using
shorter wavelet f lters including the Haar wavelet.

• We plan to build a prototype volume visualizer for large
scale volume data based on the compression principles
presented in this paper.

• Extensions of these methods to multi-valued or vector
f elds over three- and higher-dimensional domains will be
pursued.

All in all it would be desirable to have a scalable method
that can be adapted to the user’s priorities which may be
emphasizing decompression speed, compression ratio, or re-
construction quality.

7. Acknowledgments

We thank Insung Ihm, Sogang University, Korea, for pro-
viding the specially prepared Visible Human data set, which
allowed us to compare our results to those reported in other
papers.

References

1. C. Bajaj, I. Ihm, S. Park. "3D RGB compression for
interactive applications". Accepted for publication in
ACM Transactions on Graphics, 2001.

2. B. Belzer.

3. I. Daubechies, W. Sweldens. "Factoring wavelet trans-
forms into lifting steps". Technical report, Bell Labora-
tories, Lucent Technologies, 1996.

4. I. Ihm, S. Park. "Wavelet-based 3D compression
scheme of interactive visualization of very large vol-
ume data". Computer Graphics Forum 18,1 (1999) 3–
15.

5. J. Luo, X. Wang, C. W. Chen, K. J. Parker. "Volumet-
ric medical image compression with three-dimensional
wavelet transform and octave zerotree coding". In: Vi-
sual Communication and Image Processing’96, Proc.
SPIE 2727, pages 579–590, March 1996.

6. S. Mitra, S. Yang, V. Kustov. "Wavelet-based adaptive
vector quantization for high-f delity compression and
fast transmission of medical images". J. Digit Imaging
11,4 (Suppl 2) (1998) 24–30.

7. S. Muraki. "Volume data and wavelet transform". IEEE
Computer Graphics and Application 13,4 (1993) 50–
56.

8. F. Rodler. "Wavelet based 3D compression with fast
random access for very large volume data." Proceed-
ings, Pacific Graphics’99 , pp. 108–117, IEEE Press,
1999.

9. A. Said, W. A. Pearlman. "A new, fast and eff cient

image codec based on set partitioning in hierarchical
trees". IEEE Trans. Circuit and Sys. For Video Techno.,
6,3 (1996) 243–250.

10. J.M. Shapiro. "Embedded image coding using zerotrees
of wavelet coeff cients". IEEE Trans. on Signal Pro-
cessing 41 (1993) 3445–3462.

11. E. Stollnitz, T. DeRose, D. Salesin. "Wavelets for
Computer Graphics: Theory and Application". Morgan
Kaufmann Publisher (1996).

12. G. Strang, T. Nguyen. "Wavelets and Filter Banks".
Wellesley-Cambridge Press (1997).

13. W. Sweldens, "The lifting scheme: A custom-design
construction of biorthogonal wavelets". Journal of App.
and Computer Harmonic Analysis, 3 (1996) 186–200.

14. G.R. Thoma, L.R. Long. "Compressing and trans-
mitting visible human images". IEEE Multimedia 4,2
(1997) 36–45.

15. J.D. Villasenor, B. Belzer, J. Liao. "Wavelet f lter eval-
uation for image compression". IEEE Transactions on
Image Processing 4 (1995) 1053–1060.

16. "The Visible Human Project". The National Library
of Medicine, Bethesda. www.nlm.nih.gov/research/
visible/visible_human.html.

17. Z. Xiong, X. Wu, D. Y. Yun, W. Pearlman. "Progres-
sive coding of medical volumetric data using three-
dimensional integer wavelet packet transform". Visual
Communications and Image Processing’99, pp. 327–
335, (1999).

	Text1: Zuerst ersch. in: Computer Graphics Forum ; 20 (2001), 3. - S. 49-57
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-223778

