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Abstract
Image synthesis often requires the Monte Carlo estimation of integrals. Based on a generalized con-
cept of stratification we present an efficient sampling scheme that consistently outperforms previous
techniques. This is achieved by assembling sampling patterns that are stratified in the sense of jittered
sampling and N-rooks sampling at the same time. The faster convergence and improved anti-aliasing
are demonstrated by numerical experiments.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Prob-
abilistic Algorithms (including Monte Carlo); I.3.2 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism.

1. Introduction

Many rendering tasks are given in integral form and
usually the integrands are discontinuous and of high
dimension, too. Since the Monte Carlo method22 is in-
dependent of dimension and applicable to all square-
integrable functions, it has proven to be a practical
tool for numerical integration. It relies on the point
sampling paradigm and such on sample placement. In-
creasing the uniformity of the samples is crucial for
the efficiency of the stochastic method and the level
of noise contained in the rendered images.

The most popular uniform sampling schemes in
graphics are jittered and Latin hypercube sampling.
Jittered sampling2 profoundly has been analyzed by
Mitchell13 and in fact can only improve efficiency.
Chiu et al.1 joined the concepts of jittered and Latin
hypercube sampling obtaining an increased uniformity
of the samples, but no minimum distance property
can be guaranteed that has been proved to be useful
in graphics2. In consequence care of the choice of the
strata has to be taken manually, since warping19 these
point sets in order to e.g. sample long thin light sources
can dramatically reduce the benefits of stratification.

We present an unbiased Monte Carlo integration
scheme that consistently outperforms the previous ap-
proaches, is trivial to implement, and robust to use
even with warping. This is obtained by an even more

general concept of stratification than just joining jit-
tered and Latin hypercube sampling. Since our sam-
ples are highly correlated and satisfy a minimum dis-
tance property, noise artifacts are attenuated much
more efficiently and anti-aliasing is improved.

2. Monte Carlo Integration

The Monte Carlo method of integration estimates the
integral of a square-integrable function f over the s-
dimensional unit cube by∫

[0,1)s

f(x)dx ≈ 1

N

N−1∑
i=0

f(ξi) , (1)

where the ξi ∈ [0, 1)s are independent uniform ran-
dom samples. The efficiency of the stochastic method
is inversely proportional to the variance σ2

MC of
the estimator (1). Among many variance reduction
techniques22, 23, 11, increasing the uniformity of the
samples by stratification has been proven to be bene-
ficial in graphics13, 2. We briefly review the facts rele-
vant to this paper; for a more complete survey we re-
fer to e.g. Glassner’s book6 or the notes9 of the course
’Beyond Monte Carlo’.

2.1. Jittered Sampling

For jittered sampling2 the unit cube is subdivided into
N cubes of equal measure 1

N
, where in each cube one
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Figure 1: All elementary intervals in base b = 2 and
dimension s = 2 with volume λ2(E) = 1

16
.

random sample is taken (see figure 2 (a)). It is simple
to show7 that the variance of the resulting estimator
never can be higher than σ2

MC.

2.2. Latin Hypercube Sampling

The idea of Latin hypercube sampling (N -rooks sam-
pling) is to subdivide the unit cube into N intervals
along each coordinate. Then the samples are chosen
randomly such that each interval contains exactly one
point (see figure 2 (c)). Since there are more restric-
tions in the placement of Latin hypercube samples in
comparison to jittered sampling, the variance

σ2
LHS ≤

(
N

N − 1

)min{s−1,1}

· σ2
MC

can slightly increase. Nevertheless it never can be
much higher and often is reduced in practical applica-
tion.

3. Uniform Samples from (t, m, s)-Nets

Chiu et al.1 combined jittered and Latin hypercube
sampling in order to achieve more uniformity. An even
more general concept of stratification has been de-
veloped by Sobol’21 that finally yielded the so-called
(t, m, s)-nets and (t, s)-sequences14.

In order to explain the concept, the notion of the
elementary interval

E :=

s∏
j=1

[
aj

blj
,
aj + 1

blj

)
⊆ [0, 1)s

is required, where 0 ≤ aj < blj and 0 ≤ lj are integers.
Consequently the volume of E is

λs(E) =

s∏
j=1

1

blj
= b−

∑s
j=1 lj .

As an example figure 1 shows the structure of all ele-
mentary intervals with the volume λ2(E) = 1

16
in base

b = 2 for dimension s = 2.

Given two integers 0 ≤ t ≤ m a set of N = bm s-
dimensional points xi is called a (t, m, s)-net in base
b if every elementary interval with volume λs(E) =
bt−m contains exactly bt points.

t can be considered as a quality parameter that is
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Figure 2: Realization of (a) jittered and (c) Latin hy-
percube sampling. The realization of a (0, 4, 2)-net in
base 2 in (b) not only combines both sampling tech-
niques, but imposes even more stratification as can be
seen from the corresponding dyadic elementary inter-
vals in figure 1.

best if chosen small. For t = 0 each elementary inter-
val contains exactly b0 = 1 point. Consequently the
bks points of a (0, ks, s)-net in base b with k ∈ N are
stratified like both jittered and Latin hypercube sam-
pling points at the same time as can be seen in figure 2
(b). In addition the structure of the elementary inter-
vals imposes even more stratification resulting in an
increased uniformity of the samples.

In the sequel we explain how to efficiently construct
such point sets suited for unbiased Monte Carlo inte-
gration.

3.1. Deterministic Generation

(t, m, s)-nets are much more uniformly distributed
than random samples can be. This is exploited by
quasi-Monte Carlo integration15, where deterministic
(t, m, s)-nets are used for the estimator (1): For cer-
tain, very restricted function classes a quadratically
faster convergence can be guaranteed as compared to
random sampling.

Most deterministic constructions of (t, m, s)-nets
are based on (t, s)-sequences: For an integer t ≥ 0
an infinite point sequence (yi)

∞
i=0 is called a (t, s)-

sequence in base b, if for all k ≥ 0 and m > t the
point set {ykbm , . . . , y(k+1)bm−1} is a (t, m, s)-net.

Consequently the first bm points of a (t, s)-sequence
form a (t, m, s)-net. A second approach is to add
the component i

bm to the first bm points of a (t, s)-
sequence always yielding a (t, m, s + 1)-net.

Since explaining explicit constructions is beyond the
scope of this paper, we refer to Niederreiter’s book15

and provide the compact implementation (section 7)
of three (0, 1)-sequences that can be used to generate
a (0, 2)-sequence and (0, m, 2)-nets.

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 5: Owen scrambling (top row) and random digit scrambling (bottom row) in base 2. A difference is hardly
perceivable. First intervals are swapped horizontally; the final image then includes the permutations along the
vertical direction, too.
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Figure 3: The effect of a Cranley-Patterson rotation
by the random vector ξ.
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Figure 4: Randomizing the (0, 4, 2)-net in base 2 in
a) by a Cranley-Patterson rotation can degrade the
uniformity as shown in b), whereas c) random digit
scrambling preserves the properties of the net.

3.2. Randomized Generation

The quasi-Monte Carlo method yields consistent but
biased estimators. However, it is possible to randomize
a (t, m, s)-net P := {a0, a1, . . . , aN−1} in such a way
that

a) the randomized point set X := {x0, x1, . . . , xN−1}
remains a (t, m, s)-net (with probability 1) and

b) xi is uniformly distributed in [0, 1)s for i =
0, 1, . . . , N − 1.

Condition b) is sufficient to make (1) an unbiased esti-
mator for all square-integrable functions16, 8. Preserv-
ing the uniformity properties of the samples by condi-
tion a) allows one to benefit from the improved conver-
gence of the quasi-Monte Carlo method. The resulting

variance reduction technique belongs to the domain of
randomized quasi-Monte Carlo integration18, 10.

3.2.1. Cranley-Patterson Rotations

Cranley and Patterson3 randomized a point set P by
just adding the same random shift ξ to each point
ai ∈ P modulo 1 as illustrated in figure 3. Originally
developed for point sets that tile periodically, applying
a so-called Cranley-Patterson rotation to a (t, m, s)-
net can destroy its stratification structure (see figure
4) thus violating condition a).

3.2.2. Owen Scrambling

Owen’s randomization scheme preserves the structure
of (t, m, s)-nets in base b (with probability 1). For the
(involved) formulas we refer to the original work16.
The actual algorithm, however, is simple to explain.
Starting with H = [0, 1)s the following steps are ap-
plied to each coordinate (see figure 5):

1. Slice H into b equal volumes H1, H2, . . . , Hb along
the coordinate.

2. Randomly permute these volumes in an indepen-
dent way.

3. For each volume Hh recursively repeat the proce-
dure starting out with H = Hh.

Owen17 proved that using an Owen-scrambled
(0, m, s)-net in (1) yields the upper bound

σ2
OS ≤

(
b

b− 1

)min{s−1,m}

· σ2
MC

for the variance σ2
OS of the resulting estimator. For

b = N this (0, m, s)-net sampling degenerates to Latin
hypercube sampling. Decreasing the base b implies
more restrictions to the sample placement resulting in
an increased variance bound. Although this variance
bound is strict17, for most functions to be integrated
the variance is reduced.

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 6: Multidimensional sampling. The highlighted
sample (a1, b1, c0, d0, e3, f3) is padded from the strati-
fied patterns (ai, bi),(ci, di), and (ei, fi) using random
permutations.

Due to the finite precision of computer arithmetic
the infinite scheme in fact becomes a finite algorithm.
Nevertheless the number of required random permuta-
tions behaves exponentially in the precision so that an
efficient implementation remains quite challenging5.

3.2.3. Random Digit Scrambling

Instead of using independent random permutations in
each level of the recursion of Owen scrambling, only
one random permutation can be used (see the bottom
row of figure 5). This subset of the original method
obviously still fulfills the conditions of section 3.2, but
requires only a number of permutations linear in the
precision. Opposite to Owen’s scrambling method, us-
ing random digit scrambling preserves minimum dis-
tance properties contained in the net to be scrambled.

A highly efficient implementation becomes available
for (t, m, s)-nets in base b = 2, where a permutation
simply can be realized by the XOR operation4, 5: Each
coordinate of the point set is randomized by just per-
forming a bitwise XOR of one random bit vector (i.e. a
random integer) and the components of the point set
(for the trivial realization see section 7).

4. Multidimensional Sampling

Typically the integrands in image synthesis ex-
pose high correlation with respect to certain low-
dimensional projections, e.g. the pixel area, lens
area, or area light sources. Therefore high-dimensional
samples are padded using low-dimensional strati-
fied patterns20. Correlation artifacts are avoided by
randomly permuting the sample order of the low-
dimensional patterns (see figure 6). Additionally the
number of samples becomes independent of dimen-
sion making this approach more practical than jittered
sampling.

Although constructions of (t, m, s)-nets exist for any
dimension, choosing the optimal quality parameter
t = 0 requires b ≥ s − 1 for m ≥ 2. For s > 3 this
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Figure 7: Trajectory splitting, see the explanation in
section 4.1.

prohibits to use the extraordinarily efficient vector-
ized implementations in base b = 2. However, using
the simple algorithms from section 7, it is possible to
pad high-dimensional samples in an even simpler way:
Instead of using random permutations we just pad
independent realizations10 of randomly digit scram-
bled nets (or Owen-scrambled nets). Since condition
(2) (section 3.2) holds for the low-dimensional real-
izations, each resulting high-dimensional sample xi is
uniformly distributed in [0, 1)s for i = 0, 1, . . . , N − 1,
too, guaranteeing an unbiased estimate (1).

4.1. Trajectory Splitting

Considering the example of distribution ray tracing2

splitting trajectories8, e.g. tracing multiple shadow
rays for one eye ray, can increase efficiency depend-
ing on the correlation coefficient with respect to the
split dimensions22.

From the definition in section 3.1 it follows that the
first bl points of a (t, s)-sequence (yj)

∞
j=0 are a (t, l, s)-

net. In addition each point set {yibm , . . . , y(i+1)bm−1}
is a (t, m, s)-net for 0 ≤ i < bl−m. This observation can
be used to realize trajectory splitting by extending the
scheme from the previous section:

For the example of pixel anti-aliasing and illumi-
nation by an area light source two independent re-
alizations are required: An instance of a random-
ized (0, l − m, 2)-net of bl−m samples xi in the pixel
and the first bl = bl−m · bm samples yj of an in-
stance of a randomized (0, 2)-sequence on the area
light source. For the i-th sample in the pixel then bm

shadow rays have to be traced towards the samples

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 8: Comparison of pure random (MC), jittered (JS), and Latin hypercube (LHS) sampling with our approach
using random digit scrambling (RDS).

{yibm , . . . , y(i+1)bm−1} on the light source (see figure
7) yielding the estimator∫

[0,1)2

∫
[0,1)2

f(x, y)dydx

≈ 1

bl−m

bl−m−1∑
i=0

1

bm

(i+1)bm−1∑
j=ibm

f(xi, yj) . (2)

By using the subsequent (0, m, 2)-nets of a (0, 2)-
sequence to realize trajectory splitting, the samples
on the light source itself form a (0, l, 2)-net obtaining
superior stratification properties in a fully automatic
way. This would be rather costly to achieve by jittered
or Latin hypercube sampling.

5. Numerical Results

For the application examples two representative set-
tings were selected: An overcast sky model daylight
simulation and an indoor scene with very long and thin
light sources. The resulting four-dimensional integrals
compute pixel anti-aliasing with direct illumination.

The new scheme (2) with xi and yi from the al-
gorithms in section 7 is compared to pure random,

jittered, and Latin hypercube sampling. In the exper-
iments a splitting rate of 4 was used, i.e. for each eye
ray 4 shadow rays were traced. For each pixel an inde-
pendent realization of the sampling scheme was used.

Trajectory splitting for jittered and Latin hyper-
cube sampling was realized by generalizing the mul-
tidimensional sampling scheme20 in a straightforward
way: N samples and 4N samples were generated on the
pixel and the light source, respectively. Then the set
of 4N points randomly is split into N sets of 4 points
and each set is assigned a pixel sample in canonical
order.

The error graphs in figure 8 are determined by com-
puting the L2-norm of a measurement to a converged
master image. For the case of the hemispherical over-
cast sky integral our scheme slightly outperforms jit-
tered and Latin hypercube sampling, is much simpler
to implement, and saves about 10–15% of the total
number of rays to be traced in order to obtain the
same quality. Due to the complex shadowing the over-
all gain by stratification is small.

Warping the samples onto the long thin light sources
in the conferences room scene exposes the projection
regularity of the samples. Therefore Latin hypercube

c© The Eurographics Association and Blackwell Publishers 2002.
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Figure 9: Improved anti-aliasing and noise reduction
for the conference room scene with long light sources.
Latin hypercube sampling in the left image and our
new sampling scheme on the right.

sampling significantly outperforms jittered sampling.
The samples from the new scheme, however, are strati-
fied in a more general way and satisfy a minimum dis-
tance property reducing the error by approximately
15% as compared to Latin hypercube sampling.

Comparing the zoomed images in figure 9 shows
that the high correlation of the samples from the new
scheme results in superior anti-aliasing and noise re-
duction as compared to Latin hypercube sampling.
This becomes even more apparent in animations,
where uncorrelated noise causes distracting flicker.

6. Conclusion

We presented new algorithms for efficiently generating
high-dimensional uniform samples yielding unbiased
Monte Carlo estimators. The implementation of the
highly correlated sampling scheme is extremely simple
and due to the generalized concept of stratification
previous patterns are outperformed consistently.

7. Appendix: Algorithms

Using the following code fragments it is possible to
verify the results of the paper with any ray tracer in
a very short amount of time. The routines RI vdC,
RI S, and RI LP implement the radical inverse func-
tions by van der Corput15, Sobol’21, and Larcher
and Pillichshammer12, respectively, which are (0, 1)-
sequences in base b = 2 (see section 3.1). Random-
ized digit scrambling (section 3.2.3) is realized by
just calling the routines with a random integer in-
stead of the default parameter uint r = 0. Complet-
ing RI vdC with the component i

2m yields the famous
Hammersley point set, which in fact is a (0, m, 2)-net.
Using xi =

(
i

2m , RI LP(i)
)

instead, however, results
in a (0, m, 2)-net of much higher quality. Combining
yi = (RI vdC(i), RI S(i)) results in the first two com-

ponents of the Sobol’ sequence, which form a (0, 2)-
sequence as used in section 4.1.

typedef unsigned int uint;

double RI_vdC(uint bits, uint r = 0)

{

bits = ( bits << 16)

| ( bits >> 16);

bits = ((bits & 0x00ff00ff) << 8)

| ((bits & 0xff00ff00) >> 8);

bits = ((bits & 0x0f0f0f0f) << 4)

| ((bits & 0xf0f0f0f0) >> 4);

bits = ((bits & 0x33333333) << 2)

| ((bits & 0xcccccccc) >> 2);

bits = ((bits & 0x55555555) << 1)

| ((bits & 0xaaaaaaaa) >> 1);

bits ^= r;

return (double) bits / (double) 0x100000000LL;

}

double RI_S(uint i, uint r = 0)

{

for(uint v = 1<<31; i; i >>= 1, v ^= v>>1)

if(i & 1)

r ^= v;

return (double) r / (double) 0x100000000LL;

}

double RI_LP(uint i, uint r = 0)

{

for(uint v = 1<<31; i; i >>= 1, v |= v>>1)

if(i & 1)

r ^= v;

return (double) r / (double) 0x100000000LL;

}
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