
Fast and Controllable Simulation of the Shattering of Brittle Objects

Jeffrey Smith
Robotics Institute

Carnegie Mellon University

Andrew Witkin
Pixar Animation Studios

David Baraff
Pixar Animation Studios

Abstract
We present a method for the rapid and controllable simu-
lation of the shattering of brittle objects under impact. An
object to be broken is represented as a set of point masses
connected by distance-preserving linear constraints. This
use of constraints, rather than stiff springs, gains us a sig-
nificant advantage in speed while still retaining fine con-
trol over the fracturing behavior. The forces exerted by
these constraints during impact are computed using La-
grange multipliers. These constraint forces are then used
to determine when and where the object will break, and
to calculate the velocities of the newly created fragments.
We present the details of our technique together with ex-
amples illustrating its use.

Key words: Physically-based modeling, computer anima-
tion, impact, brittle materials.

1 Introduction

Realistic animation of breaking objects is difficult to do
well using the traditional computer animation techniques
of hand modeling and key-framing. This difficulty aris-
es from the fact that the breaking of an object typically
creates many small, interlocking pieces. The complexity
and number of these fragments makes modeling them by
hand all but impossible, but the distinctive look of a shat-
tered object prevents the use of simple short-cuts, such
as slicing the surface of an object into faces or the use of
RenderMan shaders.

Consequently, the simulation of breaking and shatter-
ing has received some attention within the graphics com-
munity. An early attempt at modeling fracture is given
in Terzopoulus and Fleischer[12], where they presented
a technique for modeling viscoelastic and plastic defor-
mations. While not specifically intended to model the
breaking of brittle objects, their work allowed the simula-
tion of tearing cloth and paper with techniques that could
conceivably have be applied to this task. In 1991, Norton
et. al. [7] described a technique specifically for model-
ing the breaking of three-dimensional objects wherein the
object to be broken was subdivided into a set of equally-
sized cubes attached to one another with springs. Unfor-
tunately, their use of an elastic network invited massive

Figure 1: A bowling ball is dropped onto a ceramic bowl
that is sitting on a thick glass table. Images are roughly
0.33 seconds apart



computational expense for large objects. Most recent-
ly, O’Brien and Hodgins[8] used continuum mechanics
techniques developed in mechanical and civil engineering
to model flexible objects, which included crack initiation
and propagation. This method was rather slow, however,
due to a combination of high physical realism and a com-
plex system for dynamically re-meshing the solid during
simulation.

Unsurprisingly, the fields of condensed-matter physic-
s and materials science have examined this topic more
thoroughly. Within the past decade many papers have
been published on the subject of the simulation of brit-
tle1 fracture. A commonly used approach in these pa-
pers is the lattice model (Arabi[1], Chung[3], Donze[4]).
This method models objects as a lattice of points or point-
masses connected by stiff springs. During simulation, the
extension of each spring, or some other potential function
of the particle displacements, is computed. Depending on
the model, either every element exceeding its extension
or potential limit, or only the most egregious violator, is
removed. The state of the system is cleared and the pro-
cess repeated until the object falls apart, or until no new
elements are being broken.

Although simple and general, the simulation methods
outlined in the materials science literature are inappropri-
ate for graphics applications. In general, materials sci-
entists are interested in predicting with great accuracy
how and when an object will shatter, whereas a comput-
er animator is more concerned with generating realistic-
looking behavior in a reasonable amount of time. Con-
sequently, the level of physical detail used in materials
science simulations is much higher, and often of a differ-
ent nature, than we require.

A significant disadvantage of material science lat-
tice solutions is that they almost universally use three-
dimensional systems of stiff springs combined with ex-
plicit numerical integration methods The step sizes for
this type of simulation must be on the order of the inverse
of the speed of sound in the material being simulated, and
thus the computational expense can be high. (Even with
the use of implicit integration methods, the simulation of
a lattice of stiff springs entails a computational cost as
least equal to that of Lagrange multipliers.) For exam-
ple, in Chung[3], the simulation of an object with 2701
lattice-links is done in 137 time-steps, each taking 86 sec-
onds on a 75MHz MIPS R8000, for a total of three and
a half hours. A comparable simulation with our method
on the same hardware would take roughly five and a half

1The term “brittle,” as used in materials science literature (and in
this paper) means that the substance does not undergo significant plastic
(reversible) deformation before breaking[2]. That is, a brittle object will
not bend much under stress, but either will resist almost completely or
break catastrophically.

minutes.

The continuum mechanics approach used by O’Brien
and Hodgins[8] does not explicitly use a lattice of springs
attached to point masses, but their method suffers from
some of the same computational slow-downs. Specifical-
ly, their use of Euler and second-order Taylor integrators
restricts the time step of simulation to extremely small
values. Due to their re-meshing technique, the timing of
the examples presented in their paper is difficult to direct-
ly compare with our own. As a rough comparison, their
“wall #2” mesh, with a final total of 8275 elements, took
an average of 1098 seconds of computation per simula-
tion second on an 195 MHz R10000 processor. Running
a similarly sized model with the same impact and frag-
mentation characteristics took roughly 90 seconds for a
complete simulation with our technique.

In this paper, we present a fast and controllable method
for simulating the fracture of brittle objects for anima-
tion. This method differs from the majority of the re-
viewed literature in that we use a system of point-masses
connected by workless, distance-preserving constraints to
represent the object, rather than a lattice of stiff springs.
Our use of rigid constraints follows from an abstraction
of brittle material properties and allows us to solve for
the forces exerted by these elements during impact much
more quickly than using explicit methods and an elastic
mesh. We compute our solution by constructing a large,
sparse, linear system which we solve using conjugate gra-
dient methods. The constraint forces, once calculated, in-
dicate when and where the object will break. This infor-
mation is then used to construct the fragments of the bro-
ken object from the original geometry and to solve for the
final linear and angular velocities of these bodies. In ad-
dition to advantages of speed, our system retains a great
deal of user controllability while still yielding realistic-
looking output, making it well-suited for use in anima-
tion.

2 Modelling

As mentioned above, our lattice method is roughly based
on the elastic networks common in material science lit-
erature. However, instead of a three-dimensional mesh
of springs we use a lattice of rigid constraints to connec-
t point-masses. We are motivated in this choice by both
speed considerations and the nature of ideal brittle mate-
rials.

Consider the naive system of points and springs. S-
ince we are simulating brittle objects, these springs must
be very stiff: stiff enough that no visible flexing (plastic
deformation) takes place during high-momentum impact.
As the brittleness of an object increases, the stiffness of
these springs increase, and the displacements they under-



Figure 2: Two tetrahedra and their point/constraint com-
plement

go during impact decrease. In the limit, then, for an ide-
ally brittle material we would be forced to model springs
which are infinitely stiff and undergo infinitesimal dis-
placements.

Instead, we idealize these stiff springs as distance-
preserving constraints and, rather than calculating dis-
placements, calculate the forces that these constraints ex-
ert in response to an applied impulse. As mentioned
earlier, a significant problem with simulating large sys-
tems of springs is the computational expense of explic-
it numerical integration. Our use of distance-preserving
constraints allows a faster method of solution (discussed
in section 3) while retaining both realism and a large
amount of user-controllability.

2.1 Constructing the Model
The first step in our simulation is the construction of a
solid model — consisting of a collection of simple poly-
hedra — from the initial description of the object to be
shattered. Since this initial description is usually a set
of points and faces describing only the surface, we first
add a large number of well-distributed points inside this
surface.

The addition of internal points is followed by a con-
strained Delaunay tetrahedralization. This operation
yields our solid model, which consists of a set of con-
nected tetrahedra. We then transform this solid model
into a lattice representation — our final model. This lat-
tice representation is simply the Voronoi complement (or
“dual”) of the solid object, which represents the tetrahe-
dra as point-masses and their connections (shared faces)
as rigid constraints (figure 2). Each point-mass is placed
where the center of the tetrahedra it represents was lo-
cated and the mass of each point is determined by the
volume of the tetrahedra and the density of the object in
that volume.

The rigid constraints connecting these point-masses

have an associated ultimate strength which correspond-
s physically to the strength of the bond between two
“micro-fragments” of the original object. If the tensile
or compressive forces across a constraint exceeds this
strength then the bond will be broken.

The breaking strength of a constraint is determined
though a combination of user-specified functions and a
pair of simple heuristics based upon the the geometry of
the two tetrahedra the constraint is “gluing” together. In
our model, the strength of a constraint scales with the vol-
ume of the connected tetrahedra and with the area of their
shared face. By relating the strength of a constraint to the
size and shape of the tetrahedra it connects, the breaking
behavior will be influenced by the geometry of the object,
which is necessary for physically realistic results.

In addition to these simple geometry-based heuristic-
s, the user may add a procedural variation to the con-
straint strengths. For example, simple cleaving planes
may be added by systematically reducing the constraint
strength along a cross-section of the object, or nodes of
great strength may be created which will result in intact
nodules remaining after the rest of the object is shattered.
We have also achieved good results using noise and tur-
bulence functions, as described in Perlin[9]. Much of the
flexibility of our model comes from an appropriate choice
of the function that determines the constraint strengths.

3 Simulation

Our approach to the simulation of fracture is a simple
one, intended to avoid the computational expense and
complexity of a full dynamic simulation while preserv-
ing physical realism. Although the time course of impacts
can be as little as 100 microseconds, the speed of sound is
brittle materials is typically several thousand meters per
second2. Given that the objects we wish to shatter are of
moderate size (usually on the order of 10 cm on a side),
the time to equilibrate internal forces (transmitted at the
speed of sound) is on the order of one microsecond. Be-
cause the duration of a typical impact is so much longer
than the time it takes the internal stresses to reach equi-
librium, we make a quasi-static loading approximation,
and can safely use global solution methods to calculate
the forces between elements of the solid.

3.1 Fundamentals of the Simulation

We formulate the problem of calculating the forces being
exerted by the rigid constraints as one of solving for La-
grange multipliers in the following simplification of the
constraint force equation (For a derivation of this equa-
tion, see Witkin and Baraff[13] or Witkin, Gleicher and

25100 meters/second in common glass and between 3500 and 7000
meters/second in hard stone.



Welch[14]):

JWJT~λ = −JWQT (1)

whereW is the inverse mass matrix andQ is the global
force vector, containing information on what forces are
being exerted on which particles by the impact.

The matrixJ is defined as

J =
∂C

∂p

whereC is the “constraint vector”: a vector of functions
— one for each constraint in the system — whose values
are zero if the constraint is being satisfied and non-zero
otherwise. If we wish to introduce prior material stresses,
the initial constraint vector may be given non-zero entries
and equation 1 must then be changed to

JWJT~λ = −JWQT − kC

wherek is some unit-normalizing factor.
Each constraint function is of the form

Ci(pa, pb) = ‖pa − pb‖ − di

wherepa and pb are the locations of the two particles
connected to constrainti, anddi is the length of the con-
straint.

After solving equation 1 for~λ, we can calculatêQ

Q̂ = JT~λ

which is the vector containing the forces being exerted
by each constraint in reaction (and opposition) to the ap-
plied forces,Q. These values of̂Q are then used to deter-
mine which constraints should be broken. Specifically, if
a constraint is found to be exerting a force greater than its
strength, it is removed. It should be noted that intergran-
ular bonds in brittle materials are eight times stronger un-
der compression than during extension [5], and this must
be accounted for in our breaking decision-rule.

3.2 Physically Realizable Solutions
The system which we are solving:

JWJTλ = b (2)

is underconstrained in the sense that for a givenb, there
are any number of~λ’s which satisfy the equation. Howev-
er, an arbitrary vector~λ does not necessarily correspond
to a physically realizable set of constraint forces between
connected particles. Given this fact, how can we be cer-
tain that our solution to equation 1 is the physically real-
izable one?

First we note that those solutions which are physical-
ly meaningful have a particular structure. Consider again

the connections between particles to be stiff springs. In
this case, the only internal forces that can arise are those
that have been generated due to some displacementδp
of the particles. These displacements in turn correspond
to a vector of spring tensions~λ = Jδp. We can there-
fore see that all physically realizable~λ’s can be written
as~λ = Jδp for some displacementδp. (We could param-
eterize byδp, but our solution would still have to satisfy
equation 2 and our system would be more complex.) S-
tated a different way, any physically realizable~λ must lie
within the column-space ofJ and thus also in the column
space ofJWJT (regardless ofJ ’s rank; see Strang[11]
for details).

Note, though, that any solution~λ of equation 2 that lies
in the column space ofJWJT is a minimum-norm solu-
tion. Thus, physically realizable solutions are equivalen-
t to minimum-norm solutions, and since the minimum-
norm solution to a linear equation is unique (Strang[11]),
so is the physically realizable solution. Therefore, a so-
lution method which finds a minimum-norm solution of
equation 2 is guaranteed to give us the unique physically
realizable solution~λ.

We use the conjugate gradient method to solve for the
minimum-norm solution of our system. Not only will it
give us the correct solution, as shown above, but it ex-
ploits the sparsity of theJWJT matrix to give us fast
solution times[10].

3.3 Multiple-Step Solutions
It would appear that the simulation of an impact could
be done with a single-step solution for̂Q. However, our
use of a global solution method would permit constraints
to “transmit” forces of arbitrary strength before being re-
moved, whereas we desire the constraints to be able to
transmit no more force than their breaking strength would
allow. Visually, a single-iteration solution results in the
pulverization of a large volume surrounding the impact
without the distinctive shards and fragments we desire.

Instead of a single iteration, however, we can solve for
Q̂ in multiple steps, increasing the impact force with each
iteration. In this way we can slowly ramp up the magni-
tude of the impact so that we are certain that no constraint
transmits a force greater, to within someε, than its break-
ing strength. By gradually increasing the magnitude of
the impact force, we are impressing a pseudo time-course
upon our simulation. That is, rather than simulating an
impact as a single, zero-time impulse, we are creating a
more realistic impact history. For all examples given in
this paper, we used the simple piecewise linear function
shown in figure 3 as our impact schedule.

Since, as mentioned before, the time to equilibrate the
forces within a brittle object is much less than the dura-
tion of the impact we can safely chop this duration into



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Im
pa

ct
 m

ag
ni

tu
de

�

Time (seconds)

Figure 3: Impact magnitude versus time

smaller segments without losing the ability to solve with a
global method. In practice, we have found that around 50
iterations of this loop generally yields acceptable result-
s. Increasing the number of iterations beyond this brings
little or no change in the fracturing behavior.

3.4 Crack Growth
Another important feature of brittle fracture that we
would like to capture in our simulation is the growth of
cracks. In brittle materials, the energy required to start a
new crack of lengthl is significantly higher than the en-
ergy required to lengthen an existing crack by the same
distance[6]. This behavior is the major reason why glass
— despite its material homogeneity — breaks into large,
polygonal shards under impact rather than turning into a
cloud of tiny fragments.

In order to encourage the growth of pre-existing crack-
s, we modify our multi-step algorithm. When we remove
a newly-broken constraint, we weaken the constraints
around it that correspond to faces which adjoin the just-
broken constraint. Thus, in the next iteration it is more
likely that these constraints will break than constraints
with an equal initial breaking-strength that are not con-
nected to a pre-existing crack. By specifying what form
this function takes the desirability of creating new cracks
versus spreading existing flaws can be easily controlled.

To illustrate this effect, three examples were generat-
ed using the same model — a simple rectangular plank
— the only difference between the simulations being
the crack growth function used. The model used con-
tained 3962 tetrahedra with 7096 shared faces. Con-
straint strengths varied between 90.2 and 541.0, having
been generated with a combination of a turbulence func-
tion and the geometric heuristics described in section 2.1
Although these objects all have the same initial geometry
and constraint values and are broken with the same im-
pact, significantly different results were produced. Fig-
ure 5 shows (from the top) the aftermath of this test sol-
id being fractured with no crack growth function. Here,
dark lines show the edges of the top-facing tetrahedral
faces and white lines indicate crack boundaries. We can

Figure 4: Glazed ceramic bowl, before (top) and after
being broken with two different constraint-strength dis-
tributions



Figure 5: Top view of broken plank, showing cracks be-
tween tetrahedra

Figure 6: Top view of broken plank, showing moderate
crack growth

see from this picture that the cracks which resulted in the
fragmentation of this object have not spread far beyond
the immediate impact location (the tip of the triangle).

Figure 6 shows the results of the same object being bro-
ken, but with a crack growth function that reduces con-
straint strengths by up to a factor of two. Specifically, the
function

sinew = siold(1.0−
1
2

sin(2θ +
π

2
))

whereθ is the angle between some constraint broken in
the previous time-step and the neighboring constrainti
(between−π2 and π2 ). siold andsinew are the old and new
constraint strengths respectively. This crack growth func-
tion has encouraged the creation of more fragments, and
has permitted parts of the object further from the impact
site to break.

Finally, figure 7 shows the results our test object be-
ing broken again, but with a more extreme crack growth
function. This function reduces constraint strengths by
up to a factor of 1000:

sinew = siold(0.5005− 0.4995 sin(4θ +
π

2
)) (3)

Not surprisingly, cracks have propagated deeply into the
solid and have caused it to break into many more pieces.

Figure 7: Top view of broken block, showing dramatic
crack growth

As can be seen from the three examples, even simple
changes in the crack growth function can significantly al-
ter our results, allowing the user further control over the
material properties of the object.

3.5 Using the Results
Our algorithm produces as its output a large set of solids,
each of which corresponds to a fragment of the original
object. From the force of the impact and the individual
masses of these fragments, we can easily compute their
resulting angular and linear velocities.

Given a pointi, we know that

ṗi = vi + ωi × pi
whereṗi is the velocity of the point,vi is the strictly lin-
ear velocity,ωi is the angular velocity andpi is its posi-
tion. Thus, if we have a solid with three distinct points on
its surface,p0, p1 andp2, (trivial, since our most prim-
itive solid is a tetrahedra), we can separatevsolid from
ωsolid by solving the following simultaneous equation:I −p∗0

I −p∗1
I −p∗2

[vsolid
ωsolid

]
=

ṗ0

ṗ1

ṗ2


whereI is the 3 by 3 identity matrix andp∗ is the dual

matrix:  0 −pz py
pz 0 −px
−py px 0


With these velocities in hand, we can perform a dy-

namic physical simulation to produce an animation of the
aftermath of shattering.

4 Results and Discussion

We have described a simple, physically-motivated model
for the rapid simulation of brittle fracture. The following
examples illustrate the output of our work and demon-
strate some of the different fracturing behaviors and ma-
terial properties that can be simulated.



4.1 Wine glass
The examples shown in figure 8 were generated from the
same geometric data: a wine glass modeled as 3422 tetra-
hedra with 6447 shared faces. Differences in fracturing
behavior were produced by changing the function that
determined the strengths of the constraints. More specifi-
cally, the constraint strengths were determined by a com-
bination of a thresholded turbulence function and the ge-
ometric heuristics outlines in section 2.1. Each glass was
broken with a single impact at the point where it struck
the floor after falling.

4.2 Clay pot
Figure 4 shows before and after images of a pot, made
from glazed earthenware. This model was construct-
ed from 6902 tetrahedra, with 13150 shared faces. In
the middle image, the initially homogeneous constraints
were alternately strengthened and weakened along the
vertical axis. This variation yields the the characteristic
breaking behavior of pottery created without a wheel, out
of a single coil of clay. The lower image shows the same
geometric model, but with constraints modified only by
geometric factors and a mild turbulence function, which
yields a very different set of fragments.

4.3 Glass table
Figure 1 shows a sequence of six images of a ceramic
bowl, sitting on a thick glass table, broken by the impact
of a falling bowling ball. For this example, the strength
of the constraints in both broken objects (the bowl and
the table-top) were homogeneous; modified only by the
standard geometric factors. The crack growth function
used in the table was that described in equation 3 which
contributed to the formation of the long, narrow glass-like
fragments.

4.4 Timing
Two major steps are involved in the destruction and sub-
sequent animation of a shattered object: the impact calcu-
lation, and the reconstruction of the new fragments’ sur-
faces afterwards. The left graph in figure 9 shows the
amount of time required for each impact step calculation
as a function of the the number of constraints (shared
faces) in the lattice model. (All timing was done on a
195 MHz R10000 SGI Octane.)

As can be seen, even for relatively large objects the
impact simulation is computationally inexpensive. Since
we are repeatedly solving a sparse linear system with the
conjugate gradient method, our computational cost varies
betweenO(mn log n) andO(mn

√
n) depending on the

structure ofJWJT .
Reconstruction of the fragments after impact requires

similarly few resources. The right-hand graph in figure 9
shows the time required to construct the surfaces and ve-

Figure 8: Three broken wine glasses, demonstrating dif-
ferent fracture behavior

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22

T
im

e 
(s

ec
on

ds
)

�

Number of constraints (x1000)

0
20
40
60
80

100
120
140
160
180
200

0 2 4 6 8 10 12 14 16 18 20 22

T
im

e 
(s

ec
on

ds
)

�

Number of constraints (x1000)

Figure 9: Time per impact step versus total number of
constraints (left) and time required to construct fragments
versus total number of constraints (right)



locities of the new fragments after impact. We find, then,
that the total the time required to break and reconstruct
models of moderate size (several thousand constraints) is
only a few minutes.

5 Conclusion

We have presented a fast and controllable method for the
simulation of the shattering of brittle objects. By framing
the problem in terms of distance-preserving constraints
rather than stiff springs, we have avoided expensive ex-
plicit solution methods while retaining physical accuracy.
Furthermore, our method allows simple control over the
ultimate number, size and shape of the fragments by ad-
justing the strength of the constraints throughout the body
or by changing the nature of crack growth within the ma-
terial. Combined with speed and accuracy, this controlla-
bility makes our method useful for the otherwise difficult
task of animating complex, realistic shattering.

A significant limitation of our method, however, is the
fact that, before fracturing behavior can be simulated, we
must have a fully tetrahedralized model of the object to
be broken. This requirement entails several disadvan-
tages. First, the files describing the geometry of the ob-
ject to be broken can become quite large, although com-
pression of the text files, or storage in a compact binary
form will offset this to a large degree. More significantly,
a complete prior meshing means that fractures will on-
ly occur along mesh boundaries. Thus, if we wish to
avoid meshing artifacts and “jaggy” fracture boundaries,
the tetrahedralization must be done at a high resolution,
which increases the computational expense (see figure
9). A solution to this shortcoming which we plan to pur-
sue is to use a hierarchical approach along with fracture-
boundary re-meshing such as that described in O’Brien
and Hodgins[8]. This planned improvement, combined
with more realistic crack-propagation functions, should
substantially increase the realism of our method, which
still allowing a great deal of user control over the fracture
process.

References

[1] S. Arbabi and M. Sahimi. Elastic properties
of three-dimensional percolation networks with
stretching and bond-bending forces.Physical Re-
view B, 38(10):7173–7176, 1988.

[2] G.P. Cherepanov.Mechanics of Brittle Fracture.
McGraw-Hill, 1979.

[3] J.W. Chung, A. Roos, and J. Th. M. De Hos-
son. Fracture of disordered three-dimensional
spring networks: A computer simulation method-
ology. Physical Review B, 54:15094–15100, 21.

[4] F. Donze and S.-A. Magnier. Formulation of a 3-d
numerical model of brittle behavior.Geophysical
Journal International, 122(3):709–802, 1995.

[5] A.A. Griffith. The theory of rupture.The Proceed-
ings of The First International Congress of Applied
Mechanics, 1924.

[6] B. Lawn. Fracture of Brittle Solids, chapter one:
“The Griffith concept”. Cambridge University
Press, 1993.

[7] A. Norton, G. Turk, B. Bacon, J. Gerth, and
P. Sweeney. Animation of fracture by physical mod-
eling. Visual Computing, 7(4):210–219, 1991.

[8] J. O’Brien and J. Hodgins. Graphical modeling and
animation of brittle fracture.SIGGRAPH 99 Con-
ference Proceedings, 33:287–296, 1999.

[9] K. Perlin. An image synthesizer.SIGGRAPH 85
Conference Proceedings, 19(3):287–296, 1985.

[10] Jonathan R. Shewchuk. An introduction to the con-
jugate gradient method without the agonizing pain.
Technical Report CMU-CS-94-125, Aug. 1994.

[11] G. Strang. Linear Algebra and its Applications.
Harcourt Brace Jovanovich, 1988.

[12] D. Terzopoulos and K. Fleischer. Modeling inelas-
tic deformation: Viscoelasticity, plasticity, fracture.
SIGGRAPH 88 Conference Proceedings, 22:287–
296, 1988.

[13] A. Witkin and D. Baraff. Physically Based Mod-
eling: Principles and Practice, chapter Physically
Based Modeling. SIGGRAPH Course Notes, ACM
SIGGRAPH, 1997.

[14] A. Witkin, M. Gleicher, and W Welch. Interactive
dynamics. InProceedings of the 1990 Symposium
on Interactive 3D Graphics, volume 24, pages 11–
21, March 1990.


	Introduction
	Modelling
	Constructing the Model

	Simulation
	Fundamentals of the Simulation
	Physically Realizable Solutions
	Multiple-Step Solutions
	Crack Growth
	Using the Results

	Results and Discussion
	Wine glass
	Clay pot
	Glass table
	Timing

	Conclusion

