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Abstract

We present an algorithm for simulating diffuse interreflection in scenes composed of highly
tessellated objects. The method is a higher order extension of the face cluster radiosity tech-
nique. It combines face clustering, multiresolution visibility, vector radiosity, and higher
order bases with a modified progressive shooting iteration to rapidly produce visually con-
tinuous solutions with limited memory requirements. The output of the method is a vector
irradiance map that partitions input models into areas where global illumination is well ap-
proximated using the selected basis. The OpenGL register combiners extension can be used
to render illuminated models directly from the vector irradiance map, exploiting hardware
acceleration for computing vertex radiosity on commodity graphics boards.



Chapter 1

Introduction

Complex synthetic scenes composed of millions of graphics primitives are rapidly becom-
ing commonplace in many application domains. Representative examples are the large
triangle meshes that are currently produced by scanning Cultural Heritage artifacts and
the large triangulated models generated by tessellating non-planar objects in architectural
scenes. Handling such objects in the context of finite element global illumination simula-
tions is a challenging task.

The most advanced finite element methods for computing global illumination solutions,
currently variations of the hierarchical radiosity technique with volume clustering [CLSS97,
GH96, Sil95, SAG94], permit scenes of only moderate complexity (tens of thousands of
graphics primitives) to be simulated in times compatible with the constraints of a design
tool (seconds or minutes for a good quality draft to ensure rapid design cycles) [Che90,
WH97, DB00]. Unfortunately, the method is not well suited to scenes containing highly
tessellated objects, because both of memory and time complexity constraints [WH97]. This
fact has forced current radiosity systems to limit themselves to simple (or simplified) graph-
ics scenes. In most cases, this limitation forces application users to manually remove de-
tails (e.g. by specifying fixed low polygon count tessellations of curved surfaces) from
the designed scenes. The goal of this work is to contribute to removing this limitation, by
employing multiresolution modeling techniques.

In this report, we present a higher order extension of the face cluster radiosity technique.
It combines face clustering, multiresolution visibility, vector radiosity, and higher order
bases with a modified progressive shooting iteration to rapidly produce visually continuous
solutions with limited memory requirements. In particular, since the method focuses on
smoothly representing vector irradiance rather than radiosity, its memory and time com-
plexity are practically independent from the input model size. The output of the method is
a vector irradiance map that partitions input models into areas where global illumination is
well approximated using the selected basis. The OpenGL register combiners extension can
be used to render illuminated models directly from the vector irradiance map, exploiting
hardware acceleration for computing vertex radiosity on the fly on commodity graphics
boards.

The rest of the report is organized as follows. An overview of the related work is
presented in section 2. Then, hierarchical higher order face cluster radiosity is introduced
in section 3. Section 4 discusses our prototype implementation and the preliminary results
obtained. The report concludes with a summary and a view of current and future work.

1



Chapter 2

Related work

2.1 Partitioning methods for radiosity

Radiosity simulation for complex building interiors cope with memory and computational
problems by employing partitioning strategies [Air90, FTSK96, MBMD98, TFFH94]. These
solutions rely on a preprocessing step, which consists in partitioning the model in 3D cells
and computing a graph that expresses visibility relationships among these cells. Once this
preprocessing is done, ordering strategies are used to optimize radiosity computations[TFFH94].
These strategies are particularly adapted to scenes with large convex occluders (e.g. flat
walls), but do not address the problems caused by large tessellated objects. In this case,
hierarchical techniques based on clustering approaches have to be employed to reduce the
initial linking complexity. Partitioning methods are orthogonal to the clustering methods
discussed in this report and may coexist in a single system.

2.2 Volume clustering for hierarchical radiosity

The most successful radiosity technique for dealing with complex scenes is currently hier-
archical radiosity [SDS95]. The algorithm constructs a hierarchical representation of the
form factor matrix by adaptively subdividing planar patches into sub-patches according to
a user-supplied error bound. By treating interactions between distant patches at a coarser
level than those between nearby patches, the algorithms reduces the cost from quadratic to
linear in the number of sub-patches used. However, since an initial transport link has to be
computed from each of the original patches to all others, the cost is also quadratic in the
number of input polygons, which is the major bottleneck for highly tessellated scenes. Vol-
ume clustering methods [SAG94, SDS95, GH96] combat this problem by grouping input
patches into volume clusters. While volume clustering avoids the initial quadratic transport
link step, handling the light incident on a cluster is a difficult problem and all presented
solutions are more suitable to handling unorganized sets of polygons rather than highly tes-
sellated models [WHG99, HDSD99, MSF00]. It is difficult to obtain continuously shaded
surfaces, since interpolating scalar irradiances across volumes does not lead to good results
because of the varying orientations of surfaces within the cluster [HDSD99]. At the same
time, pushing irradiances to leaves on-the-fly [Sil95, SAG94, CLSS97], makes it difficult
to construct higher order representations of polygon irradiances, makes the method com-
plexity dependent on input model size, and drastically reduces the memory locality of the
solution phase.
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2.3 Hierarchical radiosity on simplified and multiresolu-
tion models

Mesh simplification techniques can be adopted to structure the data at different levels of
detail [GSHG98]. These techniques have been used especially in the field of adaptive
rendering, where the perceptual impact of a given object or component is used to select
dynamically the appropriate level of representation. Different approaches for creating mul-
tiresolution models have been proposed, based either on the explicit representation of the
graph of inferences of the atomic simplification steps, or on implicit regular decomposition
rules which adapt well to regular meshes (e.g. gridded terrain models and tessellations of
parametric patches). A number of authors have recognized the potential of these techniques
for handling large tessellated surfaces in radiosity. Rushmeier et al. [RPV93] demonstrated
the use of simplified models in radiosity. Greger et al. [GSHG98], showed how to apply the
results of a simulation on a simplified scene to a more detailed version of the same scene
through the use of irradiance volumes. Both methods force the user to select the complexity
of the model before the simulation. Dumont and Bouatouch [DB00] recently improved this
result, presenting a hierarchical radiosity algorithm that works on multiresolution meshes,
picking the level of simplification appropriate to each transfer of radiosity between solution
elements through the use of macrofacets. However, their technique requires touching all
the input polygons at the, which is prohibitively memory and time expensive for models
where the geometric detail is much finer than the illumination complexity. Willmott and
Heckbert [WHG99] presented a hierarchical radiosity algorithm that focuses on vector irra-
diance rather than radiosity. Since vector irradiance conserves directional information, the
push-to-leaves phase is avoided, and the method memory and time complexity are made
independent from the input mesh complexity. The method is currently limited to handling
a single irradiance vector per cluster, which leads to “blocky” solutions or fine subdivi-
sions. As for volume clusters, the classic smoothing post-pass is difficult to apply, and
re-evaluating visibility at the input polygon level is prohibitively expensive for highly tes-
sellated scenes. For this reason, Willmott [Wil00] proposes a final post-processing stage
in which irradiance vectors are recomputed at the corners of each node throughout the
hierarchy and interpolated at each input model vertex for computing radiosity. Our work
improves over this method by using higher order bases during the solution, leading to better
error control and reduced refinement.

2.4 Linkless hierarchical radiosity

A major problem with classic hierarchical radiosity methods is the necessity to store all
links because all of them are reused in each gathering iteration, which imposes a consid-
erable overhead that limits the size of scenes that can be handled by the method. This is a
particularly severe problem with higher order techniques, since the number of coefficients
per link growths with the square of the number of element basis functions. For this reason,
a number of authors have proposed a shooting iteration scheme together with hierarchical
radiosity with clustering [SSSS98, DBG99, GD99, CAH00, ACP+01]. Since the number
of shooting links for every iteration decreases exponentially, the penalty for not storing,
but recomputing some of the links is much smaller than it is in the case of gathering. We
also adopt this approach, and propose a modified shooting scheme that also reduces storage
requirements at the level of elements.

3



Chapter 3

Hierarchical Higher Order Face
Cluster Radiosity

3.1 Hierarchical Data Structure

As in the original face cluster radiosity algorithm[WHG99], highly tessellated geometric
models are represented with a face cluster hierarchy that has the original model polygons
as leaves. Each cluster in the hierarchy groups a set of connected faces and behaves like
a geometric object on its own, answering queries regarding its geometry (e.g. bounding
volume, normal, total area, projected area) and attributes (e.g. reflectance, emission). Cur-
rently, each face cluster is represented by an oriented bounding box (see figure 3.1) with the
local z axis aligned with the area averaged normal of the contained surface and the x and
y axis assigned by a rotating caliper algorithm that minimizes the box volume. Hierarchy
construction is done in a preprocessing step on an object by object basis using a greedy
algorithm based on the method of Garland et al. [GWH01] that we have extended to handle
vertex attributes as in our earlier simplification tool [BG01].

Since face clusters do not in general not represent planar surfaces with constant ma-
terial attributes, all queries return average, minimum, and maximum expected values. In
particular, we employ the following expressions, due to Willmott [Wil00]:

• Normal-projected area of clusteri:

A
(n)
i =

∥∥∥∥∥∑
k

Aknk

∥∥∥∥∥ (3.1)

whereAk is surface area of facek andnk is the normal of facek;

• Minimum projected area of clusteri in directionr:⌊
A

(vis)
i (r)

⌋
= A

(n)
i (ni · r)+ (3.2)

whereAi is the total surface area of the cluster andni is the area averaged normal of
the surface;

• Maximum projected area of clusteri in directionr:⌈
A

(vis)
i (r)

⌉
=

3∑
j=0

(uj · r)+ D+
j +

3∑
j=0

(−uj · r)+ D−
j (3.3)

whereuj is the j-th local axis of the oriented box,D+
j =

∑
k Ak (nk · uj)+and

D−
j =

∑
k Ak (−nk · uj)+ are samples of the projected area of the cluster in the
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Figure 3.1: Face cluster

six principal direction of the oriented box, computed by traversing all cluster faces
during hierarchy construction.

3.2 Higher-Order Vector Radiosity Approximation

The radiosity distributionb(x) in an environment composed only of Lambertian diffuse
reflectors and emitters is described by the following integral equation:

b(x) = e(x) + ρ(x)
∫

A

E(x,y)dAy (3.4)

wheree(x)is the diffuse emittance at pointx, ρ(x)is the diffuse reflectance at pointx,
E(x,y) is the irradiance at pointx due to the light emitted at pointy, and the integral
is over the surfaceA of all objects of the environment. The irradianceE(x,y) can be
expressed in terms of two vector quantities:

E(x,y) = (nx ·E(x,y))+

wherenx is the unit normal at pointx andE(x,y) is the irradiance vector at pointx on
the receiver due to pointy on the emitter. The irradiance vector is parallel to the vectorrxy

connectingx to y and is related to the radiosity of pointy by

E(x, y) = m(x,y)b(y)

where the transport vectorm(x,y) expresses the geometric relationship betweenx andy:

m(x,y) = vis(x,y)
(−rxy · ny)+

π ‖rxy‖4
rxy

The face cluster radiosity method approximates equation 3.4 by discretizing the environ-
ment into face clustersAj and by assuming, when computing energy transfer, that all points
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j within an emitting cluster are close together and far from the receiver [WHG99]. The ir-
radiance vector at a pointx can thus be approximated by

Ex =
∑

j

∫
Aj

m(x,y)b(y)dAy (3.5)

and equation 3.4 thus becomes:

b(x) = e(x) + ρ(x)nx ·Ex (3.6)

The derivation of a higher-order finite element method for solving this equation follows
closely that of the standard scalar radiosity[Zat93, BW96b]. This equation can be solved
approximately by assuming that the radiosityb(x) on patchi can be well approximated
by a linear combinationb(x) =

∑
i,α bi,αΦi,α(x) of a set of non-overlapping orthogonal

basis functionsΦi,α defined on patchi. With this approximation, equation 3.6 becomes:

Ex ≈
∑
j,β

bj,β

(∫
Aj

m(x,y)Φj,β(y)dAy

)
(3.7)

∑
i,α

bi,αΦi,α(x) ≈
∑
i,α

ei,αΦi,α(x) + ρ(x)nx ·Ex (3.8)

Following the Galerkin approach, we take the inner product of the left and right side of this
equation with each basis functionΦi,α′ , obtaining a set of linear equations from which to
compute the unknown irradiances and radiosities:

Ki,α;j,β =

∫
Ai

Φi,α(x)
∫

Aj
m(x,y)Φj,β(y)dAydAx∫

Ai
Φi,α(x)2dAx

(3.9)

Ei,α =
∑
j,β

Ki,α;j,βbj,β (3.10)

bi,α = ei,α + ρini ·Ei,α (3.11)

whereρi is the average reflectance of patchi andni is the average normal of patchi.
These equations revert to the scalar Galerkin radiosity equations in case of perfectly planar
elements, and revert to the Willmott’s face cluster radiosity equations when using constant
bases for both irradiance and radiosity.

3.3 Integration and hierarchical refinement

3.3.1 Integration and visibility estimation

As for most current radiosity systems we compute the coupling coefficients of equation
3.9 by numerical integration, using ray tracing to compute the visibility part of the kernel.
The visibility queries involved in this process are often the most time consuming part of a
radiosity simulation; at the same time, spatial subdivision methods for accelerating those
queries are often requiring large amounts of memory. In this work, the multiresolution face
cluster structure is used to speed-up visibility queries, using a multiresolution visibility
method similar to the one used for volume clustering[SD95, GH96]. The visibility query
routine starts at the top face cluster of each potential occluder and descends into the face
cluster hierarchy until the query ray is proven outside the current oriented box or the es-
timated projected shadow size of the current face cluster on the receiver is smaller than a
given threshold. At this point we estimate the opacity of the occluder and stop the recur-
sion. Since we are dealing with large thin clusters containing connected components, we
do not use equivalent extinction coefficients, but, rather, estimate the opacity by the ratio
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receiver

emitter

Figure 3.2: Multiresolution visibility geometry. The size threshold used for stopping the
recursion is a function of the size of the emitter and the distance between sample points on
the receiver.

of the visible projected area of the cluster in the direction of the ray and the projected area
of the box. The size threshold used for stopping the recursion is choosen as a function of
the distance between cubature nodes on the receiving cluster (see figure 3.2). This adaptive
multiresolution visibility approach has the advantage of contributing to limiting core mem-
ory used, since face clusters will be accessed during visibility testing only when their size is
comparable to that of the solution elements. By limiting the precision of the computation,
we also reduce memory needs.

3.3.2 Transfer error estimation

Instead of estimating the errors on the propagation coefficients, we base refinement on a
direct estimation of the error on the energy reflected by the receiver, using a BFA-weighted
approach. The rationale for using a radiosity based refiner, even though the algorithm
focuses on vector irradiance, is that it is radiosity that is finally displayed and percieved by
the user. As proposed by other authors (see, eg. Bekaert and Willems [BW96b, BW96a]
and Cuny et al. [CAH00]), we use a number of control points on the receiver and compare
at each of those points the difference between the expected bounds on the radiosity at the
control point computed by direct integration and the value interpolated using the element
basis and assume that the radiosity is well approximated on the emitter by the constant term
bj,0. After computing the transfer coefficients using equation 3.9, bounds on the FA factors
are estimated at each control pointx using the bounds on the projected areas:

dFAi(x)e = maxy∈Aj

{
vis(x,y)

⌈
A

(vis)
i

(rxy)
⌉⌈

A
(vis)
j

(−rxy)
⌉

π‖rxy‖2

}
bFAi(x)c = miny∈Aj

{
vis(x,y)

⌊
A

(vis)
i

(rxy)
⌋⌊

A
(vis)
j

(−rxy)
⌋

π‖rxy‖2

}
These bounds are compared with the value obtained by direct integration:

FA′
i(x) = Aini ·

∑
α j,β

Ki,α;j,0Φi,α(x)


7



to estimate the maximum transfer error factor:

∆FAi,j = max
x∈Ai

{|FA′
i(x)− dFAi(x)e| , |FA′

i(x)− bFAi(x)c|}

The transfer error used for refinement is then obtained by:

δi,j = bj,0 dρie∆FAi,j

3.3.3 Self transfer error estimation

Since face clusters are not perfectly planar, surfaces cannot be assumed to be perfectly
convex and it is therefore necessary to handle self interaction. Following Willmott [Wil00],
an upper bound on the self form factor of a face cluster may be estimated by comparing the

total visible external area to the surface area of the cluster, i.e.dFi,ie = 1− A
(n)
i

Ai
bFi,ic =

1−
∑3

k=0
D+

k
+D−

k

Ai
. We thus estimate the error on self transfer by

δi,i = bi,0 dρie (dFi,ie − bFi,ic) Ai

3.3.4 Push-Pull

A key step in every hierarchical radiosity algorithm is the push-pull phase, in which the
information gathered at the different level of detail is combined in a single multiresolution
representation. For higher-order basis functions the coefficients for the push-pull operation,
that depend purely on the relative geometry of the element and its children, are computed
by taking the product of the basis functions. In the face cluster radiosity method, the rela-
tive geometry is not constant, and the push-pull coefficient matrix has to be recomputed at
each level of the hierarchy from the parent-child transform. While in our method irradiance
vectors and radiosity could be (and in general will be) represented using different bases,
we assume that the set of basis functions used for radiosity is a subset of the set of basis
functions used for irradiance vector. We thus have to compute and store a single coeffi-
cient matrix of sizeN2, whereN is the number of irradiance vector coefficients, since the
coefficient matrix for radiosity is a submatrix of the ceefficient matrix for irradiance. The
computation is done at the sub-element creation time.

Pushing vector irradiance coefficients requires particular care, since vector irradiance
is valid only in a single half-space. The approach we are currently taking is to push vector
irradiance only when its first coefficient (relative to the constant basis) is in the positive
half-space of the sub-element.

3.4 A Practical Solution Method

The techniques described above make it possible to extend face cluster radiosity with higher
order bases. Our algorithm aims at rapidly producing decent quality illuminated models
with limited memory footprint. Our main design decisions and their rationale are the fol-
lowing:

• when using highly tessellated objects, the geometric detail is finer the the irradiance
detail. Vector radiosity is beneficial in this case because it can work on a sepa-
rate element hierarchy, avoiding pushing irradiances to the leafs of the geometric
model during the solution phase; by using higher order elements we aim at produc-
ing smooth solutions while keeping the subdivision level of the solution hierarchy
low;
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• radiosity and irradiance vectors may be represented with different bases. Since ra-
diosity coefficients are used by the method only when elements act as emitters, while
irrradiance vectors are also used to produce local illumination detail when displaying
the result, it makes sense to use a lower order basis for radiosity than for irradiance
vectors. This would contribute to reduce memory usage with little degradation of
visual results; a minimum storage solution for producing smooth results is therefore
to use a constant basis for radiosity (one coefficient) and a non-product linear basis
(three coefficients) for irradiance vectors;

• storing the coupling coefficients between two patches is typically extremely memory
intensive for wavelet radiosity. This is particularly true for vector radiosity, since
each coupling coefficient is a transport vector (and not a scalar). For this reason, we
have decided to avoid storing links, and therefore to use a shooting technique;

• vector irradiances are heavier than radiosities and are only used for accumulating
contributions from other elements and at the leaves of the solution hierarchy to store
the illumination result. By carefully ordering energy exchanges, we can accumulate
irradiance into a temporary vector, which would thus be stored only at the leafs of
the solution hierarchy. This would save 50% of the memory required for irradiance
vectors.

The algorithm that we have derived from these design decisions is described in the
following section.

3.4.1 A hierarchical vector radiosity shooting algorithm

Each solution elementi stores the current unshot radiosity∆Bi,α, the next iteration’s un-
shot radiosity∆B′

i,α, and a list of potential shooters, i.e., the elements that are candidates
for transfering light to the element during the current iteration. The algorithm is structured
in a way that the vector irradianceEi,α needs only be stored at the leafs of the solution
hierarchy (see figure 3.3).

At the beginning of the algorithm, a top level solution element is created for each of
the top-level face clusters of the scene, with unshot radiosity initialized to the emittance,
next iteration unshot radiosity initialized to zero, and an empty list of potential shooters.
Multiple instances of the same model are possible. In that case, multiple top-level solution
elements would reference the same face-cluster.

At each iteration step, the algorithm starts by initializing each of the top level elements’s
list of potential shooters with the other top-level elements that have a positive unshot ra-
diosity and are facing towards the potential receiver. The list of potential shooters is then
used in the multiresolution light transport phase. In this phase, the hierarchy of each of
the top-level solution elements is traversed top-down to transport light from the potential
shooters to the receivers. At each elementi in the hierarchy, the unshot vector irradiance
∆Ei is computed by summing the unshot vector irradiance of the parent with the unshot
vector irradiance coming from the potential shooters list. The algorithm cyclically extracts
a potential shooterj from the list until the list becomes empty. The coupling coefficients
Ki,α j,β and the errorδi,,j are computed. If the accuracy of the light transport is consid-
ered acceptable, the unshot vector irradiance∆Ei is incremented by

∑
j,β Ki,α;j,β∆Bj,β .

Otherwise, the algorithm decides to compute the transport at a finer resolution. If the emit-
ter is selected for refinement, the sub-elements of the emitter that are facing towards the
receiver are inserted into the receiver’s potential shooter list and will be treated later during
the same iteration. Otherwise, the emitter is inserted into the list of potential shooters of the
receiver’s sub-elements that are facing towards it and will be treated later during the top-
down element traversal. Self-link refinement is handled similarly by updating the potential
shooters lists of the sub-elements in case of subdivision. When the potential shooters list is
exhausted,∆Ei contains the unshot vector irradiance of the enviroment that is transfered
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Figure 3.3: Element hierarchy and original face cluster hierarchy. The solver operates only
on the element hierarchy and on the clusters directly referenced by them.

directly to elementi or at coerser level in the solution hierarchy. If elementi is a leaf,
the vector irradianceEi,α is incremented by∆Ei and the next iteration’s unshot radiosity
∆B′

i,α is set to(1− Fi,i)ρini ·∆Ei,α. Otherwise, light transport is recursively applied to
the sub-elements, and the next iteration’s unshot radiosity∆B′

i,α is computed by pulling
the unshot radiosity of the sub-elements.

At the end of each iteration, the current∆B values are set to those collected into∆B′,
and∆B′ is cleared. The algorithm terminates when the (infinite) norm of∆B falls below
a user-defined threshold.

The major components of the method are summarized in algorithm 1.

3.5 Hardware Accelerated Solution Display

The output of the method is a vector irradiance map that partitions input models in areas
where global illumination has a good approximation using the selected irradiance basis. In
the case of constant, linear, and bilinear bases, the OpenGL register combiners extension
can be used to render illuminated models directly from the vector irradiance map, exploit-
ing hardware acceleration for computing vertex radiosity on commodity graphics boards.
Higher-order bases can be rendered using this method by using subdivision to convert them
to a linear representation.

In our approach, the irradiance maps are simulated by three 2x2 textures (GLTEXTURE0 ARB,
GL TEXTURE1 ARB, GL TEXTURE2 ARB) associated to the leaf solution element bound-
ing rectangle. Each texture contains the four corner vector irradiance associated to a single
primary color. The texture matrix is used to define the transformation from model coordi-
nates to irradiance map coordinates. The normal vector is mapped to GLPRIMARY COLOR NV
(using glColor3fv to communicate it to the graphics pipe) and RGB diffuse reflectances are
mapped to GLCONSTANT COLOR02NV, GL CONSTANT COLOR12NV and GL CONSTANT COLOR1NV
respectively (alphas are all set to one). Normals and textures are linearly interpolated by the
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Algorithm 1 Hierarchical Higher Order Face Cluster Radiosity
SOLVE():

for each top-level face clusteri

create a top-level elementi
∆Bi,α ← (ei, 0, 0, .., 0) ∆B′

i,α ← 0 Ei,α ← 0
repeat

for each top level elementi
for each top level elementj 6= i

ASSIGN-SHOOTER(i,j)
TRANSPORT-LIGHT(i,0)

for each top level elementi
∆Bi,α ← ∆B′

i α ∆B′
i,α ← 0

until convergence

ASSIGN-SHOOTER(i,j):

if ∆Bi 6= 0 and elementi is facing elementj

pushj into shootersi

TRANSPORT-L IGHT(i,∆Eup):

∆Etmp ← pushcoefficients(∆Eup)
while shootersi not empty

popj from shootersi

compute coupling coefficientsKi,α j,β and errorδi,j

switch ORACLE(i,j,δi,k)
casesubdividei: for eachchild k of i:
ASSIGN-SHOOTER(k,j)
casesubdividej: for eachchild k of j:
ASSIGN-SHOOTER(i,k)
case else: ∆Etmp,α ← ∆Etmp,α +

∑
j,β Ki,α;j,β∆Bj,β

if SELF-ORACLE(i)

for eachchild j of i

for eachchild k of i, k 6= j

ASSIGN-SHOOTER(j,k)

if i is a leaf

∆B′
i,α ← (1− Fi,i)ρini ·∆Etmp,α Ei,α ← Ei,α + ∆Etmp,α

else
∆B′

i,α ← 0
for eachchild j of i

TRANSPORT-L IGHT(j,∆Etmp)
∆B′

i,α ← ∆B′
i,α + pullcoefficients(∆B′

j,α)
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(a) General combiners setup (b) Final combiner setup

Figure 3.4: OpenGL register combiners setup for computing vertex radiosity from a linear
vector irradiance map

hardware by selecting glShadeModel(GLSMOOTH) and glTexParameteri(GLTEXTURE MAG FILTER,
GL LINEAR). Figure 3.4 illustrates the OpenGL register combiners setup for computing
vertex radiosity from a linear vector irradiance map.
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Chapter 4

Implementation and Results

An experimental software library and a radiosity renderer application supporting the hi-
erarchical higher order face cluster radiosity algorithm described in this report has been
implemented and tested on Linux, Silicon Graphics IRIX and Windows NT machines. The
software supports combinations of constant, linear, bilinear, quadratic, and cubic bases for
representing radiosity and vector irradiance functions. We have implemented both a gath-
ering solver based on the Jacobi iteration and the linkless shooting solver discussed in this
report.

The preliminary results presented here were obtained on a Dell Inspiron 8100 laptop
with a Pentium III 1.13GHz and 512 MB RAM running Linux (kernel 2.4). We plan to
expand this section in the updated version of this report.

As in Willmott [Wil00], a multiresolution model is stored using a face cluster table,
a triangle table (with tree vertex indices per triangle), and a vertex table with three coor-
dinates per entry. Materials are stored at the level of clusters in the form of minimum,
maximum, and area averaged emittance and reflectance. Face clusters and triangles are
sorted to permit direct sequential access.

Using our current implementation, that does not employ particular compression schemes,
the memory required for a face cluster node is 110 bytes, while a triangle and a vertex re-
quire 12 bytes each using 32 bits integer and floating point values. The memory required
for a clustered geometric model ofN faces is thus, assuming2N clusters andN/2 vertices,
of about238N bytes. Only the parts of the model that participate to the solution will need
to be swapped into core memory.

Using our shooting algorithm, a solution element has to store a push-pull matrix, two
unshot radiosities and the references to the two subelements and to the associated face
cluster. Vector irradiances are stored only at the leaf elements. The size of a solution
element is thus12+24Nb+4N2

e bytes for an internal element and12+24Nb+4N2
e +36Ne

for a leaf element, whereNb is the number of radiosity coefficients per element andNe is
the number of irradiance coefficients per element. The typical combinations we select are:

• a constant basis for radiosity and a linear basis for vector irradiance (3 coefficients);
this combination requires 60 bytes for an internal node and 168 bytes for a leaf node;

• a linear basis for radiosity and a quadratic basis for for vector irradiance (6 coeffi-
cients); this combination requires 168 bytes for an internal node and 384 bytes for a
leaf node.

In the example presented here, global illumination is computed for a scene containing a
highly tessellated object (the Cyberware Venus head, 100K triangles), positioned near three
flat colored walls and illuminated by an area light source (see figure 4.1). Preprocessing
time takes 23 s, and the memory required for the geometric model is about 24MB. The
preprocessing time can be amortized over multiple renderings. Moreover, since the solution
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Figure 4.1: Test scene setup, rendered in wireframe to show initial model tessellation.

hierarchy is separate from the model hierarchy, multiple instances of the same model may
be referenced in the same scene.

Figure 4.2 presents two solutions computed using constant bases for both irradiance
vectors and radiosity, which corresponds to the original face cluster radiosity algorithm.
Both images where produced with four shooting iterations. The left image has a link error
theshold of0.001 times the power of the emitter, while the left image has a link error
threshold ten times smaller. The rendering time for the left image was 8 s, and the number
of leaf elements in the solution is 2403. The higher quality rendering took 120 s and
produced 16676 leaf elements. Storage costs for the solution hierarchy range from 165KB
to 1.54Mb. While the number of elements is sensibly smaller than the the number of input
polygons, fine illumination effects are clearly visible. Blocking effects are however clearly
visible even in the higher quality image.

Figure 4.3 presents a solution computed using constant bases for the radiosity, but linear

Figure 4.2: Renderings of the venus with constant radiosity basis and constant irradiance
basis, using two different link errors.
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Figure 4.3: Rendering of the venus with constant radiosity basis and linear irradiance basis,
using two different link errors.

bases for irradiance vectors, using similar renderer settings. The left rendering took 8 s and
produced 2370 leaf elements, while the right rendering took 122 s and produced 16654 leaf
elements. Storage costs for the solution hierarchy range from 545KB to 3.8Mb. Rendering
times are similar to the previous ones, since they are dominated by visibility computations,
that use the same cubature rules. However, both solutions are clearly smoother than the
higher quality solution using constant bases.
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Chapter 5

Conclusions and Future Work

We have presented an algorithm for simulating diffuse interreflection in scenes composed
of highly tessellated objects. The method is a higher order extension of the face cluster
radiosity technique. It combines face clustering, multiresolution visibility, vector radiosity,
and higher order bases with a modified progressive shooting iteration to rapidly produce
visually continuous solutions with limited memory requirements. The output of the method
is a vector irradiance map that partitions input models in areas where global illumination
has a good approximation using the selected irradiance basis. The OpenGL register com-
biners extension can be used to render illuminated models directly from the vector irradi-
ance map, exploiting hardware acceleration for computing vertex radiosity on commodity
graphics boards.

Our current work is concentrating on improving the implementation of the prototype
renderer and on evaluating the effect of the various accuracy parameters on rendering qual-
ity and speed. We are also planning to incorporate normal bounds information to speed-up
visibility testing and improve the quality of the projected areas estimation. As for the
original face cluster radiosity method, a detailed analysis of the error introduced by face
clustering, and in particular by the clipping of vector irradiance during the push phase, is
not available. This is an important area for future work.

We are also planning to to improve the rendering of the illuminated geometry by adding
specular reflections as a visual effecty at rendering time. Since a smooth irradiance map is
available, we expect that a good range of specular BRDFs would be rendered with accept-
able visual results.
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