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Abstract
This paper describes how technical illustrations containing opaque and non-opaque objects can be automatically
generated. Traditional methods to show transparency in manual drawings are evaluated to extract a small and
effective set of rules for computer-based rendering of technical illustrations, leading to a novel view-dependent
transparency model. We propose a hardware-accelerated depth sorting algorithm in image-space which specif-
ically meets the requirements of our transparency model. In this way, real-time rendering of semi-transparent
technical illustrations is achieved. Finally, it is described how our approach can be combined with other methods
in the field of non-photorealistic rendering in order to enhance the visual perception of technical illustrations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadowing
and texture

1. Introduction

Although a lot of research in computer graphics has been
conducted on photorealistic rendering, manuals, advertise-
ments, text and science books still make great use of non-
photorealistic illustrations. A major advantage of technical
illustrations is that they provide a selective view on im-
portant details while extraneous details can be omitted6.
Technical illustration are better suited to communicate the
shape and structure of complex objects and they pro-
vide an improved feeling for depth, occlusion, and spatial
relationships2 � 3 � 4.

This paper is focused on one specific problem in color-
shaded technical illustrations: transparency. Neither has
transparency yet been addressed in automatic technical il-
lustrations, nor has it been addressed extensively in other
fields of non-photorealistic rendering (NPR). To the authors’
knowledge, the paper by Hamel et al.13 is the only work
specifically dealing with transparency in NPR. They concen-
trate on transparency in line drawings, whereas this paper is
focused on illustrations consisting of smoothly shaded, col-
ored surfaces.

It is quite remarkable that transparency is widely ne-
glected in computer-based illustrations because books on
traditional manual illustrations do provide effective tech-
niques and rules for handling transparency14 � 29 in order
to communicate the location of occluding and occluded

Figure 1: An example of traditional technical drawing,
showing transparency effects according to Hodges’ rules14.
(taken from Maier21).

objects. In this paper, some of these rules are presented
and adapted to allow for computer-generated images. Here,
we introduce the concept of view-dependent transparency,
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which is widely used in traditional technical illustrations,
into the field of computer graphics. Furthermore, we pro-
pose two different hardware-accelerated depth sorting algo-
rithms in image-space which meet the requirements of our
transparency model. This model can be applied to existing
approaches for non-transparent technical illustrations in or-
der to further enhance the visual perception.

The paper is organized as follows. The subsequent sec-
tion focuses on related and previous work. Section 3 dis-
cusses traditional techniques for color-shaded technical il-
lustrations. In the following section, a short overview of our
rendering approach is presented. Section 5 describes the con-
cept of view-dependent transparency and how it can be im-
plemented. In Section 6, hardware-accelerated depth sorting
algorithms in image-space are presented. Section 7 shows re-
sults and performance measurements. The paper closes with
a brief conclusion and an outlook on possible future work.

2. Related and Previous Work

Although transparency in NPR has not been considered very
widely yet, there are still some papers related to our work.
Hamel et al.13 describe how transparency can be handled in
line drawings and they present a semi-automatic system to
do this. Also in the context of NPR, Meier25 employs sev-
eral blended layers of differently shaped and oriented strokes
to achieve diffuse object boundaries. This painterly render-
ing approach generates stroke-based transparent appearance
between the boundary of foreground objects and the back-
ground. In an early fundamental work, Kay and Greenberg19

introduce transparency into computer graphics both in its
popular linear form and in a more complex non-linear ap-
proach to simulate the falling off of transparency at the edges
of thin curved surfaces.

Interrante and co-workers16 � 17 � 18 render several semi-
transparent depth layers with a stroke-based approach. They
visualize the 3D shape of smoothly curving transparent sur-
faces by utilizing the principal curvature directions of sur-
faces. In a subsequent work15, they extend this approach
to 3D line integral convolution in order to illustrate surface
shape in volume data.

Gooch and co-workers11 � 12 introduce the concept of tone-
based cool/warm shading combined with silhouette ren-
dering for interactive technical illustrations. Their shading
model is the basis for shading in our implementation. Selig-
man and Feiner27 describe a rule-based illustration system
(Intent-Based Illustration System IBIS) for rendering pho-
torealistic illustrations and Markosian et al. 23 introduce a
real-time non-photorealistic rendering system.

Another field of research related to this paper deals with
issues of spatial sorting and visibility, which are crucial for
correctly rendering transparent surfaces. For a survey on this
well-established topic we refer, for example, to Foley et al.9

Figure 2: Phantom lines showing transparent objects.

or Durand7. Ghali10 especially deals with object-space vis-
ibility. Recently, Snyder and Lengyel28 proposed visibility
sorting for image layer decomposition which could be used
for transparent rendering. One of the depth-sorting algo-
rithms of this paper is related to the depth-peeling approach
by Everitt8, facilitating the ideas of virtual pixel maps by
Mammen22 and of dual depth buffers by Diefenbach5 .

3. Traditional Visualization of Transparency in
Technical Illustrations

Books describing techniques for technical and scientific
illustrations14 � 24 � 29 provide various rules for how to visualize
transparency artistically. A simple method is to draw only
the outlines of transparent objects. These outlines are ren-
dered in a linestyle different to the other outlines to make
them distinct from the opaque objects. This linestyle is of-
ten described as phantom lines29 and is demonstrated in Fig-
ure 2. Although this technique can be applied to a wide va-
riety of drawing styles, ranging from color illustrations to
simple line or sketch drawings, there are certain drawbacks:

� Details of the transparent objects are lost as only their out-
lines are drawn.

� Material and surface information of transparent objects is
ignored.

� There are only two transparency states: fully opaque or
fully non-opaque; semi-transparency cannot be visual-
ized.

A different approach can be found in “The Guild Hand-
book of Scientific Illustration” by Hodges14. For color illus-
trations, Hodges recommends to lighten the color of object
regions which are occluded by transparent objects. Figure 1
demonstrates this approach. Hodges proposes the following
basic rules:
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(a) (b)

Figure 3: Difference between standard transparency blending in (a) and view-dependent transparency blending in (b).

� Strengthen the shade where an opaque object enters a non-
opaque object.

� Set the intensity of the opaque object to zero at the edge
of the surrounding object and slowly increase its intensity
with increasing distance from the edge.

To put it another way, transparency falls off close to the
edges of transparent objects and increases with the distance
to edges. Besides these fundamental rules in visualizing
transparent objects, there are others which are not directly
described by Hodges and which focus on the correlation be-
tween objects. These precepts often are obvious for an illus-
trator, but cannot directly be transformed into rules that are
appropriate for a computer-based implementation. However,
by analyzing real color-shaded technical drawings, such as
Figure 1, the following simplified rules can be identified:

� Back faces or front faces from the same non-opaque ob-
ject never shine through.

� Opaque objects which are occluded by two transparent
objects do not shine through to the closer transparent ob-
ject.

� Two transparent objects are only blended with each other
if they do not distract the viewer or if they are very close
to each other and belong to the same semantic group.

This set of rules is based on the fact that in technical draw-
ings transparency is used to look into objects and to show
objects which lie inside or go through non-opaque ones. Of-
ten these object are opaque in reality.

As semantic grouping is something which can not be
achieved without additional user interaction in pre or post
processing steps, we propose to change the last rule to:

� Two transparent objects never shine through each other.

4. Basic Rendering Approach

From the above traditional methods to show transparency in
manual drawings, we extract the following small and effec-
tive set of rules for computer-based rendering:

� Faces of transparent objects never shine through.
� Opaque objects which are occluded by two transparent

objects do not shine through.
� Transparency falls off close to the edges of transparent

objects and increases with the distance to edges.

Based on these rules, our rendering approach is as follows.
First, the objects which are blended have to be determined,
following the guidelines of the first two rules. This task es-
sentially corresponds to a view-dependent spatial sorting. An
efficient and adapted solution to this problem is described in
Section 6.

Secondly, transparency values have to be computed for
a correct blending between transparent and opaque objects
according to the third rule. In the subsequent section, a cor-
responding algorithm is proposed. In what follows, we fre-
quently use an α value instead of a transparency value. Note
that transparency is 1 � α.

5. View-Dependent Transparency

To simulate our third rule, we introduce the concept of view-
dependent transparency: The α value for blending between
transparent and opaque objects depends on the distance to
the outline of the transparent object; the outlines of an object
projected onto a 2D screen consist of silhouettes lines and
thus depend on the position of the viewer.

Silhouette edges can either be determined in 2D image-
space or in 3D world/object-space. Hamel et al.13 recom-
mend to use an image-space method by establishing an ob-
ject ID buffer and an edge extraction filter. However, this
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method is very time-consuming as you first have to ren-
der the objects with an ID tag, find the edges, vectorize
these edges to 2D lines, and—with the help of these lines—
calculate the distance of each pixel to the outline.

In this paper, we rather pursue a 3D object/world-space
approach. Here, all silhouettes are determined before the ras-
terization stage. With this approach most of the previously
mentioned steps can be avoided. In 3D space, a silhouette is
an edge connecting two faces, where one face of the edge is
back facing and the other one is front facing. This classifica-
tion can be formulated as���

n1 � ���p �

�
o ��� ���n2 � ���p �

�
o ����� 0 	 (1)

where
�
p is an arbitary, yet fixed point on the edge,

�
ni are the

outward facing surface normal vectors of the two faces shar-
ing the edge, and

�
o is the position of the camera. In our im-

plementation, all edges are checked for the above criterion
and the detected silhouette edges are stored in a list. This
is based on Appel’s original algorithm1. The performance
of silhouette detection could be improved by more sophis-
ticated techniques, such as fast back face culling described
by Zhang et al.30, the Gauss map method12, or by exploiting
frame–to–frame coherence.

Then, the distance of each vertex to the closest silhouette
edge is computed. First, the distances d of the vertex to all
silhouette edges is determined according to

d 
 ���� �v �

� �
p 
 ���

v �

�
p � � �e���

e
� �

e � ���� 	
where

�
v is the position of the vertex,

�
p is an arbitrary, yet

fixed point on the silhouette edge, and
�
e is the silhouette

edge. The minimum distance of a vertex to the silhouettes,
dmin, is used to calculate the α value for the respective vertex
of the transparent object. In our implementation the follow-
ing approach is used:

α 
 1 �

�
dmin

dobject,max
� k 	 (2)

where dobject,max denotes the maximum distance between the
center of the object and all surface points; k ��� 0 	 1 � is a user-
specified falling off term.

As weights for blending between transparent and opaque
objects, we use the above α value for the transparent surface
and another, fixed value for the opaque object. Therefore, the
α value of the opaque object determines this object’s weight
in the final image. Note that the background color itself may
be blended with transparent surfaces as well. In our imple-
mentation, different α values for opaque objects and for the
background can be specified by the user.

Figure 3 (a) and 3 (b) compare view-dependent trans-
parency to standard view-independent transparency.

camera camera

semi−transparent

opaque

(b)(a)

blocking back face

Figure 4: Scenario with opaque objects embedded into the
volume of a transparent object. The left image shows a con-
vex transparent object, the right image shows a concave
transparent object.

6. Depth Sorting

Now that we know how to blend transparent and opaque ob-
jects, we need to determine which objects have to be blended
and which objects are hidden and do not contribute to the
final image. In full generality, rendering semi-transparent
scenes would require view-dependent depth sorting. A large
body of research has been conducted on these issues of spa-
tial sorting and visibility7 � 9. The two main approaches to
depth sorting are either based on screen-space or on object-
space.

In this section, we focus on screen-space algorithms. A
major advantage of this approach is that we can exploit dedi-
cated graphics hardware to efficiently solve this problem and
can thus avoid operations on the slower CPU. Screen-space
algorithms also benefit from the fact that our specific ap-
plication does not require complete depth sorting—we only
need to determine the closest transparent objects and the
opaque objects directly behind these transparent surfaces. In
all of our depth-sorting approaches, we assume that volumet-
ric objects are defined by boundary surface representations.

6.1. Implicit Interior Boundaries

Let us start with a first, quite common scenario. Here,
opaque objects may be contained inside the volume of a
transparent object. These opaque objects should be visual-
ized by transparent rendering. Figure 4 illustrates this sce-
nario. Here, the interior boundary of the transparent volume
is given implicitly by the surface of the surrounded opaque
object.

First, let us consider only convex transparent objects as
shown in Figure 4 (a). Opaque objects, however, may be
of arbitrary shape. Following our rules from section 4, the
front-facing surface of the transparent object closest to the
camera has to be blended with opaque objects contained
within the volume of this transparent object. All objects—
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of opaque objects to

depth buffer

render front faces/silhouettes

depth/frame buffer

clear depth/frame buffer

render back faces of
transparent objects to

blend front faces/silhouettes

depth/frame buffer
of transparent objects to

Figure 5: Rendering pipeline for opaque objects embedded
into the volumes of transparent objects.

both opaque and transparent—which are located further
away should be hidden by this nearest transparent object.
Note that these invisible objects are not included in Fig-
ure 4 (a). Finally, opaque objects in the foreground are drawn
on top of all other objects further behind.

In a slightly more complicated scenario, concave transpar-
ent objects are permitted, as illustrated in Figure 4 (b). Sur-
rounded opaque objects should be visible only up to the first
back-facing part of the transparent object in order to blend
out unnecessary and distracting visual information. To put it
another way, only those opaque objects are visible which are
closer than the nearest back face of the surrounding transpar-
ent object. In the example of Figure 4 (b), the opaque circular
object is visible, whereas the squared object is hidden by a
back-facing surface of the surrounding object.

Figure 5 shows the rendering pipeline for this first sce-
nario. The depth buffer is used to select the correct objects
for blending and to hide the unwanted objects. In the first
part, back faces of all transparent objects are rendered into
the depth buffer only. In this way, the depth buffer contains
the distance of the closest back-facing transparent surfaces.
In the second part, the front faces and the silhouettes of all
opaque objects are rendered to both frame and depth buffers.
The depth test rejects all opaque objects lying behind any
“transparent” back-facing surface. Finally, the front faces
and silhouettes of the transparent objects are rendered and
blended into the depth and frame buffers, respectively. Here,
the depth test rejects all parts of the transparent objects hid-
den by an opaque foreground object. Blending is applied
only at those parts of the frame buffer where a transparent
surface is directly visible to the user.

The algorithm can be implemented by only using stan-
dard OpenGL 1.226. Writing to the depth or frame buffers
can be enabled and disabled by glDepthMask or glCol-
orMask, respectively. This rendering approach comprises
only “one and a half rendering passes” because front faces

(b)(a)

plane
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interior boundary

exterior boundary

Figure 6: Scenario with an opaque parallelepiped inside a
transparent mug-like object, whose interior boundary is ex-
plicitly modeled. The left image shows a side view with a
horizontal cutting plane, the right image shows a top view
onto the cutting plane.

of the opaque objects and both front and back faces of the
transparent objects have to be rendered.

6.2. Explicit Interior Boundaries

Now let us consider a more complex scenario. Volumetric
objects are still represented by boundary surfaces. However,
objects may no longer be contained inside the volume of an-
other object. In fact, surrounding transparent objects have to
be modeled with respect to both the outside and the inside
boundary. Figure 6 illustrates this scenario for the example
of an opaque parallelepiped inside a transparent cylindri-
cal, mug-shaped object; see color section(a) shows a color-
shaded rendering of a similar scene. This scenario better re-
flects the properties of many technical 3D data sets, which
explicitly represent all boundaries—both inside and outside.

The algorithm from Section 6.1 fails for this scenario, as
all surrounded opaque objects are hidden by a back-facing
transparent surface. To overcome this problem, another clas-
sification of the visibility of opaque objects is necessary:
Only those opaque objects located between the closest and
second-closest front-facing transparent surfaces are visible.
Objects (transparent or opaque) further behind are hidden.

Two depth buffers are necessary to perform this depth se-
lection. However, only one depth buffer is directly supported
on available graphics hardware. Fortunately, the required be-
havior can be emulated by means of texture mapping and
per-fragment depth operations on modern hardware, such as
NVidia’s GeForce3.

The basic algorithm is as follows. In the first step, all
front-facing transparent surfaces are rendered to the depth
buffer; afterwards, the depth buffer contains the depth val-
ues of the closest transparent surfaces. As second step, the
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depth buffer is stored in a high-resolution texture and then
the depth buffer is cleared. In the third step, the front-facing
transparent surfaces are rendered to the depth buffer except
the foremost ones, virtually peeling off the closest surfaces.
After this step, the second-closest transparent front faces are
stored in the depth buffer. In the fourth step, opaque objects
are rendered. The depth test rejects all surfaces, but those
lying in front of the second-closest transparent front faces.
Finally, just the foremost transparent surfaces are blended
into the frame buffer.

The principal idea behind step three is related to Everitt’s
depth-peeling approach8 , making use of dual depth buffers5

and virtual pixel maps22. Everitt’s and our implementa-
tions, however, differ significantly, which will be explained
shortly.

Figure 7 shows the details of the actual rendering pipeline.
The left part contains the rendering steps, the right part
conveys the intended behavior. For the following descrip-
tion, terminology from standard OpenGL specifications26

and NVidia-specific extensions20 is employed. Only front-
facing polygons are drawn in all rendering steps.

The first four boxes implement parts one and two of the
basic algorithm. The depth buffer is read to main memory,
after having rendered the transparent objects to the depth
buffer. The depth values are transferred as 32 bit unsigned
integers. Subsequently, a so-called HILO texture object con-
taining these depth values is defined. A HILO texture is a
high-resolution 2D texture, consisting of two 16 bit unsigned
integers per texel. The original 32 bit depth component can
be regarded as a HILO pair of two 16 bit short integers. In
this way, a time-consuming remapping of depth values can
be avoided—the content of the depth buffer is transferred
from main memory to texture memory as is.

The next two boxes realize part three of the basic algo-
rithm. A texture shader program is enabled to virtually clip
away all surfaces that have equal or smaller depth values
than those given by the above HILO texture. Essentially, this
texture shader program replaces the z value of a fragment
by z � zshift, where zshift represents the z value stored in the
HILO texture. The gray boxes in Figure 7 indicate the scope
of the depth transformation. The details of the texture shader
program will be explained shortly. By shifting z values by

� zshift, only the fragments with z � zshift stay in a valid range
of depth values—all other fragments are clipped away. As a
consequence, the foremost transparent surfaces are “peeled
off” and only the depth values of the second-closest surfaces
are rendered into the depth buffer.

The last two gray boxes implement part four of the ba-
sic algorithm. With the texture shader program still being
enabled, the opaque surfaces and corresponding silhouette
lines are rendered into both frame and depth buffer. Only
the fragments lying in front of the second-closest transpar-
ent surfaces pass the depth test, i.e., only those parts that are
supposed to be blended with the transparent surrounding.

generate HILO texture

containing depth values

of nearest transparent

objects

render opaque objects

which will be blended

with transparent objects

blend nearest surfaces

of transparent objects

enable transformation of

depth values

clear depth/frame buffer

to depth buffer

read depth buffer

define HILO texture

render transparent objects

render transparent objects

to depth buffer

render opaque objects to

frame/depth buffer

disable transformation of

depth values

clear depth buffer

render transparent objects

to depth buffer

into frame buffer

blend transparent objects

render opaque objects to
frame/depth buffer

render opaque

foreground objects

clear depth buffer

Figure 7: Rendering pipeline for explicitly modeled inside
boundaries of surrounding objects.

Finally, the last four boxes realize part five of the basic
algorithm. The first two steps once again initialize the depth
buffer with the original z values of the closest transparent
surfaces. Based on a depth test for equal z values, just these
closest surfaces and silhouettes are blended into the frame
buffer. Ultimately, the missing opaque foreground objects
are rendered.

The texture shader program is based on NVidia’s Dot-
ProductDepthReplace. Figure 8 illustrates the struc-
ture of the depth replace program, which always comprises
three texture stages. Stage zero performs a standard 2D tex-
ture lookup in a HILO texture. Stage one and two com-
pute two dot products, Z and W , between the respective tex-
ture coordinates and the previously fetched values from the
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0

1

2
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W = (H, L, 1)(s , t , r )
2 2 2

HILO tex

Z
W

replaces current fragment’s depth

Figure 8: Texture shader for dot product depth replace.

HILO texture. Still in stage two, the current fragment’s depth
is replaced by Z � W .

The texture coordinates for each texture stage have to be
set properly in order to achieve the required shift of depth
values by � zshift. In our implementation, texture coordinates
are issued on a per-vertex basis within a vertex program.
For the following discussion, three different coordinate sys-
tems have to be considered: homogeneous clip coordinates�
xc 	 yc 	 zc 	 wc � , normalized device coordinates

�
xn 	 yn 	 zn � 
�

xc � wc 	 yc � wc 	 zc � wc � , and window coordinates
�
xw 	 yw 	 zw � .

Valid normalized device coordinates are from � � 1 	 1 � 3 and,
here, valid window coordinates are assumed to be from� 0 	 1 � 3.

The standard transform and lighting part of the vertex pro-
gram computes homogeneous clip coordinates from the orig-
inal object coordinates (i.e., after modeling, viewing, and
perspective transformations). Clip coordinates are linearly
interpolated between vertices during the scan-conversion of
triangles, yielding a hyperbolic interpolation in normalized
device coordinates and in window coordinates. The division
by wc is performed on a per-fragment basis. For perspec-
tively correct texture mapping, texture coordinates analo-
gous to the above clip coordinates have to be used. Conse-
quently, the vertex program may only assign clip coordinates
per vertex, but not device or window coordinates.

The texture coordinates for stage zero are set to

s0 
 xc 
 wc

2
	

t0 
 yc 
 wc

2
	

q0 
 wc �
In this way, the 2D lookup in the HILO texture is based on
the coordinates,�

s0

q0
	 t0
q0

� 
 �
xn 
 1

2
	 yn 
 1

2
� 
 �

xw 	 yw � 	
allowing for a mapping to the range of texture coordinates,� 0 	 1 � 2, after the division by q0. Therefore, a one-to-one cor-
respondence between xy coordinates in the frame buffer and
texels in the HILO texture is established.

The texture coordinates for stage one and two are set to�
s1 	 t1 	 r1 	 q1 � 
�� � wc

216 	 � wc 	 zc 
 wc

2 � 	�
s2 	 t2 	 r2 	 q2 � 
 �

0 	 0 	 wc � 	
yielding the intermediate homogeneous coordinate Z from
the dot product in texture stage one,

Z 
�� � wc

216 	 � wc 	 zc 
 wc

2 � � � H 	 L 	 1 �

 wc � � zw � shift 
 zn 
 1

2 �
 wc � � zw � shift 
 zw 	 	
where 2 
 16H 
 L is the high-resolution depth zw� shift because
the pairs of unsigned short integers in the HILO texture are
arranged in low–high order. Similarly, the intermediate ho-
mogeneous coordinate W is computed by texture stage two
as

W 
 �
0 	 0 	 wc � � � H 	 L 	 1 � 
 wc �

Finally, the depth value of the fragment in window coordi-
nates is set by the texture shader to the value

zw � final 
 Z
W


 zw � zw � shift 	
still in texture stage two. In this way, the required shift of
depth values by � zw � shift is achieved at a very high resolu-
tion. Depth tests and clipping are sensitive with respect to
the provided accuracy and otherwise could not be realized,
for example, by using low resolution standard textures with
only eight or twelves bits per channel.

Although the basic ideas of Everitt’s depth-peeling8 and
our approach are closely related, the two implementations
differ significantly. In addition to the three stages for dot
product depth replace, Everitt needs another texture stage for
a lookup in a depth texture (SGIX_depth_texture and
SGIX_shadow), i.e., his implementation requires four tex-
ture stages instead of only three in ours and does not allow
any other further texture fetch, e.g., for standard texturing.
(Note that the maximum number of texture stages is four.)

7. Results

Our implementation of transparency for technical illus-
trations is based on OpenGL26 and on NVidia-specific
extensions20. User-interaction and the management of ren-
dering contexts in our C++ application are handled by
GLUT.

Cool/warm tone-based shading11 is implemented as a ver-
tex program. Tone-based shading is combined with black
line silhouettes to facilitate the recognition of the outlines
of both transparent and opaque objects. The silhouettes are
rendered using a hardware approach, as described by Gooch
and Gooch12.
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Table 1: Performance measurements.

scene # polygons lines? FPS

total non-opaque I II

Fig. 9(f) 25,192 192 no 21.4 9.0
Fig. 9(f) 25,192 192 yes 13.7 5.7
Fig. 9(d) 40,000 835 no 11.4 5.6
Fig. 2 70,955 3,112 no — 1.2

Additionally, silhouette edges of transparent objects are
computed in 3D object/world space according to Section 5
to determine the α values. These values are calculated per
vertex according to Eq. (2). As blending function we use
GL_SRC_ALPHA for source and GL_DST_ALPHA for des-
tination. The source α is set to the above value, the desti-
nation α is the fixed value for the opaque object. Note that
the background color itself may be blended with transpar-
ent surfaces as well. In our implementation, different α val-
ues for opaque objects and for the background can be spec-
ified by the user. A value α 
 0 � 5 for the background is a
good choice, making sure that the background color does
not shine completely through non-opaque objects. The ren-
dering pipelines for both implicitly modeled interior bound-
aries (Section 6.1) and explicitly modeled interior bound-
aries (Section 6.2) have been implemented. For the imple-
mentation of the latter, both vertex programs and texture
shaders are used, as described in Section 6.2.

The figures in the color section show results generated by
our implementation. (a) displays a transparent mug with two
boundaries surrounding an opaque box, similarly to the sce-
nario described in Section 6.2. (b) and (c) show a similar
scene, including multiple transparent mugs which are ren-
dered according to the rules in Section 4. (d) and (e) show
different parts of a Lancia engine block as a typical example
of a technical illustration. Finally, (f) displays a crank within
a transparent cylinder.

Table 1 shows performance measurements for both depth-
sorting approaches. The method for implicitly modeled in-
terior boundaries is denoted “I”, the method for explic-
itly modeled interior boundaries is denoted “II”. All tests
were carried out on a Windows2000 PC with AMD Athlon
900MHz CPU and GeForce3 Ti200. Window size was 5122 .
The first column refers to the figure in which is respective
scene is depicted. The second and third columns contain
the number of either all polygons or transparent polygons.
The fourth column indicates whether silhouette lines are ren-
dered. The fifth and sixth columns reflect the frame rates
for methods “I” and “II”, respectively. Note that method “I”
does not render the scene in row four correctly and thus the
corresponding frame rate is omitted.

These performance figures indicate that most of the ren-
dering time is spent in the computation of silhouettes, as

frame rate drops rapidly with the complexity of the scene.
We expect that speedup techniques previously described in
Section 5 will lead to improved frame rates. Although the
complex rendering pipeline for method “II” needs a lot more
passes than the pipeline for method “I”, the overall perfor-
mance difference is only an approximate factor of two. This
shows that although the number of passes is twice than in
Method “I”, a readback of the Z-Buffer is necessary and we
have three texture shader stages, the performance is not as
worse for these kind of application as one would probably
think.

8. Conclusions

We have shown how transparency is employed in tradi-
tional renderings of color-shaded technical illustrations to
greatly improve the perception of spatial structures. We have
proposed an approach to simulate the same effect using
computer graphics techniques. In particular, a transparency
model which depends on viewing direction has been intro-
duced. Furthermore, two screen-space methods have been
proposed to allow for adapted and efficient depth-sorting. By
exploiting modern consumer graphics hardware, we achieve
transparent rendering of technical illustrations in real time.
Our transparency model can readily be combined with other
techniques for technical illustration, such as cool/warm tone
shading or silhouette rendering, in order to enhance the vi-
sual perception and understanding.

In future work, we will apply better silhouette detection
routines to improve rendering speed. The mach-banding ef-
fects caused by linearly interpolating α values between ver-
tices could be avoided by either per-pixel calculation of α
values or by adaptive surface subdivision. In addition, the
benefits of appropriate user control could be exploited in or-
der to include semantic classifications. Furthermore, a user-
specified blending color which may differ from the back-
ground color could be introduced to completely avoid shin-
ing through of the background.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: these pictures show different results from our implementation. Image (a) shows a transparent mug with two boundaries
surrounding an opaque box, similarly to the scenario described in Section 6.2. Images (b) and (c) show a similar scene,
including multiple transparent mugs which are rendered according to the rules in Section 3. Pictures (d) and (e) show different
parts of a Lancia engine block as a typical example of a technical illustration. Image (f) displays a crank within a transparent
cylinder.
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Figure 10: these picture show more results from our rendering approach. The left image shows the same scenario as in Figure
2 of our paper, rendered using Method II. The right picture shows a simplified wheel axis
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