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Figure 1: Local modifications of a constrained mesh. In this example a glass structure composed of planar quads is locally
deformed by exploring a subspace encoding local planar modifications of its central zone.

Abstract
Mesh editing under constraints is a challenging task with numerous applications in geometric modeling, industrial
design, and architectural form finding. Recent methods support constraint-based exploration of meshes with fixed
connectivity, but commonly lack local control. Because constraints are often globally coupled, a local modification
by the user can have global effects on the surface, making iterative design exploration and refinement difficult.
Simply fixing a local region of interest a priori is problematic, as it is not clear in advance which parts of the mesh
need to be modified to obtain an aesthetically pleasing solution that satisfies all constraints.
We propose a novel framework for exploring local modifications of constrained meshes. Our solution consists of
three steps. First, a user specifies target positions for one or more vertices. Our algorithm computes a sparse set
of displacement vectors that satisfies the constraints and yields a smooth deformation. Then we build a linear
subspace to allow realtime exploration of local variations that satisfy the constraints approximately. Finally, after
interactive exploration, the result is optimized to fully satisfy the set of constraints. We evaluate our framework on
meshes where each face is constrained to be planar.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

In geometric modeling, constraints are often used to con-
trol important properties of designs that relate to fabrication,
structural stability, or aesthetics of a surface, among numer-
ous other objectives. Effective algorithms for constrained
deformation that can handle the complex and often global

coupling of constraints are therefore of central importance.
Local control is an important feature of a constraint-based
modeling system, as it allows the user to change a design
without influencing regions that are already satisfactory. In
current tools, local modifications are typically achieved by
manually selecting editable vertices. However, global inter-
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dependencies of constraints make it difficult to determine in
advance which vertices need to be modified. In this paper
we address the question of how to automatically determine
a local deformation that satisfies all the constraints, while
maintaining the quality of the shape.

1.1. Overview

Given an input mesh and a set of geometric constraints, e.g.
planarity of polygonal faces, our goal is to explore local
modifications of the mesh that respect all the prescribed con-
straints. To facilitate effective editing, we separate our solu-
tion into three main steps: Given the target positions of one
or more vertices specified by the user, we first compute a
smooth local modification of the mesh that satisfies the con-
straints. This allows the user to interactively explore local
modifications using vertex handles. In the second step, we
construct a subspace of high quality local deformations that
satisfies the constraints approximately. This enriches the so-
lutions of the first step with correlated local variations, which
the user can explore in realtime. In the final step, we op-
timize the deformed meshes generated in the second step
to fully satisfy the constraints. The details of each step are
presented in Section 2. In each step of our framework, the
results should satisfy the following conditions:

1. The deformation is local (confined to a small region of the
mesh close to the user input).

2. The modified mesh has a nice shape, i.e. its fairness en-
ergy should be small.

3. The modified mesh satisfies all constraints (at least ap-
proximately).

In our approach, the desired deformation is achieved by en-
forcing sparsity and smoothness over the deformation vec-
tors. Sparsity is necessary as we want to displace a minimal
set of vertices, while smoothness helps us to obtain nice de-
formed shapes. We apply our framework on meshes where
each face is constrained to be planar. Planar meshes are of
great interest in architectural geometry due to their advan-
tages for fabrication.

Contribution. During the first step of handle-based edit-
ing, contrary to previous work, our approach computes lo-
cal modifications satisfying the constraints, without manu-
ally selecting the deformable region. We instead provide a
single scalar value for the user to control the level of local-
ity, by formulating an optimization problem with a sparsity-
inducing penalty. In the second step, we build a linear sub-
space characterizing high-quality local variations, by intro-
ducing a function that measures correlation between local
displacements. Finally, we demonstrate how these problems
can be split into a set of simple and tractable subproblems
that can be solved efficiently. This is achieved by combining
variable splitting and the augmented Lagrangian method.

1.2. Related Work

Decomposing freeform surfaces into a set of shapes with
constraints is a subject of numerous publications in geome-
try processing [ACSD∗03, BZK09, LXW∗11]. Recent work
on surface rationalization allows computing panel layouts of
architectural freeform surfaces [EKS∗10, FLHCO10]. Opti-
mization of panel shapes can lead to interesting structural
properties. Circular and conical meshes have been shown
to be of great interest for offset surfaces [LPW∗06]. Planar
quad (PQ) meshes are easy to fabricate, and various meth-
ods have been developed for their optimization [LPW∗06,
ZSW10]. Surfaces can also be decomposed into other types
of components that are efficient to manufacture, such as pla-
nar, circular, or geodesic curves [DPW11].

One drawback of decoupling design and rationalization
is that post-optimizing the shape of surface elements may
lead to large deviation from the original design. Shape space
exploration methods [HSTP11, YYPM11, Vax12, BDS∗12,
ZTY∗12] address this issue by allowing a user to explore a
space of surfaces that nearly satisfy the constraints. How-
ever, these approaches lack locality and thus potentially lead
to global modifications during exploration, which can make
form-finding difficult to control. We propose a shape space
exploration method that keeps the modifications local, thus
allowing finer control over the deformation.

Recently, [Hof10] provided a solution to local modifica-
tion of PQ meshes with a given displacement for one ver-
tex. His solution modifies only the one-ring neighborhood
of this vertex. However, the aesthetics of the mesh are usu-
ally destroyed by such overly local edits. [HK12] presented
a method that enables local and intuitive control over the de-
formation. In this approach, the constraints are linearized to
allow interactive editing. In contrast to the greedy method
proposed by [HK12], we present in Section 2.1 a solution
that directly solves the non-linear constrained problem. This
works well for larger displacements and does not need to
reproject onto the constrained mesh manifold.

[BDS∗12] presents a general framework to enforce shape
constraints on discrete mesh elements. Their optimization al-
gorithm is closely related to recent proximal optimization
methods [CP11] from which we also draw some inspira-
tion. However, contrary to [BDS∗12], our framework han-
dles hard constraints, which is an important feature of a
constraint-based modeling system.

Our work is based on recent advances in sparsity-inducing
penalties [BJMO12] that have been successfully applied
in compressive sensing [CW08]. We apply a mixed `2/`1
penalty [EM09] over the deformation vectors to find a mini-
mal set of vertices that need to be moved to satisfy the user
requirement. It has been shown that minimization of mixed
`2/`1 norms leads to block-sparse solutions, i.e., the non-
zero entries of the solution vectors appear in a small number
of blocks [EKB10]. In our case, the blocks are triplets of
coordinates for each vertex displacement vector.

c© 2013 The Author(s)
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In geometry processing, sparsity-inducing penalties were
used for surface reconstruction [DGP09, ASGCO10], con-
struction of splines [Lav02], construction of multiscale ker-
nels [Rus11] and deformation [GZL12]. In [GZL12], the
sparsity-inducing penalty is applied on the error function it-
self, while in our approach it is applied on the displacement
vectors. The sparsity-inducing penalty we use is most related
to [ASGCO10] that uses a mixed `2/`1 norm regularizer in
the context of surface reconstruction.

Previous work on sparsity-enhancing optimization usu-
ally considers convex formulations [BJMO12]. However, in
our case we need to deal with non-convex constraints which
are common in geometry processing. We propose an effi-
cient algorithm based on the augmented Lagrangian method
[Ber96, NW06] and variable splitting [Eck89]. The splitting
scheme allows us to decompose our complex problem into a
set of subproblems that can be solved easily and efficiently.

2. Formulation

In this section, we introduce our framework for explor-
ing local deformations of a constrained mesh. Each step of
our framework involves a constrained optimization problem.
Numerical solutions to these problems are then discussed
in Section 3. For a mesh with n vertices and fixed connec-
tivity, we represent it as a vector p = [pT

1 , . . . ,p
T
n ]

T ∈ R3n,
where pi is the position for vertex vi (i = 1, . . . ,n). We con-
sider meshes that satisfy a set of constraints E j(p) = 0 ( j =
1, . . . ,m) about the vertex positions.

2.1. Handle-based exploration

Starting from a given mesh p0 with all constraints satisfied,
we use a small set of mesh vertices {vi | i ∈ Γ} as handles
to deform the mesh. Based on the target positions of these
handles, we compute a new shape p0 +d of the mesh, where
d = [dT

1 , . . . ,d
T
n ]

T ∈ R3n is a mesh displacement with dk ∈
R3 being the displacement for vertex vk. d is determined by
solving a constrained optimization problem:

min
d

ωh
2

Fhandle(d)+
ωs

2
Fsparse(d)+

ωf
2

Ffair(d)

s.t. E j(p0 +d) = 0, for j = 1, . . . ,m. (1)

Here Fhandle penalizes deviation between handle vertices and
their target positions, Fsparse measures sparsity of the dis-
placement, Ffair is a fairness energy, and the ω are nonnega-
tive weights. Each function is formulated as follows.

Handle positions. The target position of a handle vertex vi
gives a target displacement vector d̃i, hence

Fhandle(d) = ∑
i∈Γ

‖di− d̃i‖2
2.

original `2/`1

`2 fixed vertices

Figure 2: Comparison of our sparsity regularization with
classical local editing approaches. With equal fairness en-
ergy, our `2/`1 regularizer provides a more local edit than
an `2-norm closeness term and exhibits less distortion than
fixing vertices manually. The color-coding shows the lengths
of verticex displacements, normalized by the input displace-
ment length for the handle vertex.

Sparsity. For local deformations, we require d to be sparse,
i.e., there are many vertices with zero displacement. If we
collect the vertex displacement norms into a vector δ =
[ ‖d1‖2, . . . ,‖dn‖2 ], then sparsity of d means a small num-
ber of nonzero coefficients in δ. Such a property can be
achieved by minimizing the `1 norm of δ [CRT06], giving
a sparsity-inducing penalty for d

‖d‖2,1 = ‖δ‖1 =
n

∑
i=1
‖di‖2.

‖d‖2,1 is called the mixed `2/`1 norm of d [EM09]. We de-
fine Fsparse based on ‖d‖2,1:

Fsparse(d) = ∑
i /∈Γ

‖di‖2.

Here we ignore handle vertices as they are already con-
strained by Fhandle. As shown in Figure 2, using the mixed
`2/`1 norm provides a high-quality local deformation that is
advantageous over manually fixing vertices or using an `2-
norm closeness energy term.

Fairness energy. Assuming that the original mesh already
has a nice shape, we only require that d defines a smooth
vertex displacement field. We choose a positive semidefinite
quadratic form of d which measures its smoothness

Ffair(d) = ‖Ed‖2
2. (2)

We can use Laplacian-based energies, or the second/third or-
der difference energies in [YYPM11].

Using the above formulations, Problem (1) reads

min
d

ωh
2 ∑

i∈Γ

‖di− d̃i‖2
2 +

ωs

2 ∑
i /∈Γ

‖di‖2 +
ωf
2
‖Ed‖2

2

s.t. E j(p0 +d) = 0, j = 1, . . . ,m. (3)
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Figure 3: Handle-based local modifications of a PQ mesh, showing the tradeoff between fairness and sparsity. Left: the input
displacement for the original mesh. Right: results with increasing fairness weight from left to right. The color-coding shows the
lengths of vertex displacements, clamped and normalized by the input displacement length for the handle vertex.

Figure 3 shows the effect of varying the fairness weight ωf
when deforming a PQ mesh. When ωf = 0, only the one ring
neighborhood of the handle vertex is modified, which re-
covers the solution given in [Hof10]. With increasing values
of ωf, the modification becomes more global with smoother
shape. This shows the tradeoff between sparsity and smooth-
ness of the deformation. Local edits for general polygonal
meshes with planar faces are shown in Figures 8 and 9.

Counting degrees of freedom. To gain an overview of the
level of locality that can be achieved by smooth deforma-
tions, we can count the degrees of freedom for constrained
meshes. The numbers of faces and vertices in a mesh are re-
lated by ∑i i ·Fi = ∑ j j ·V j, where Fi is the number of faces
with i vertices, and V j is the number of vertices with j in-
cident faces. Each vertex provides three degrees of freedom,
while the planarity condition of a face with i vertices induces
i− 3 constraints. Therefore, for a mesh where all faces are
planar, the expected number for degrees of freedom is

d = 3NV −∑
i
(i−3)Fi,

where NV is the number of vertices. On a regular PQ mesh,
the number of faces is approximately the same as the number
of vertices, and d ≈ 2NV . For a regular planar tri-hex mesh,
the number of triangles is approximately two times the num-
ber of hexagons, and d ≈ 2NV . An example can be seen in
Figure 8. For a regular planar hexagonal mesh, d ≈ 3

2 NV .
This is an example of a constrained mesh with fewer degrees
of freedom. In these meshes, smooth deformations tend to be
more global (see Figure 9).

2.2. Subspace exploration

The optimization approach in the previous section com-
putes a single solution dω from given weight parameters
ω = (ωh,ωs,ωf). This solution, however, may not be the
modification the user intended. In many cases, the user may
want to explore different shapes that satisfy the constraints.
One possibility to do so is to run the optimization with dif-
ferent weight parameters, which can be a time-consuming
and tedious task. Furthermore, such an approach is not able

to expose interesting shapes that are suboptimal with respect
to the optimization objective function.

In this section, we present a different approach to ex-
plore viable shapes. For a local modification d on the orig-
inal mesh p0, we denote the modified mesh p0 + d as p+.
We compute a space Sp+ of meshes with nice shapes that
are local modifications of p0. The meshes in Sp+ satisfy the
constraints approximately. By computing such a space for
each optimization solution dω, our approach provides con-
siderably more choices of shapes for the user to explore than
changing ω only.

Given a fixed connectivity, the constrained mesh manifold
M = {p ∈ R3n | E j(p) = 0, j = 1, . . . ,m} is the manifold of
meshes that satisfy the constraints, embedded in the space of
meshes with the given connectivity. For a mesh p ∈M, the
space Tp of tangent vectors of M at p is Tp = {t | ∇E j(p) ·
t = 0, j = 1, . . . ,m}. Tp represents displacements from p that
satisfy the constraints up to first order [YYPM11]. For our
problem, we assume that p+ ∈M (which is the case if d is
computed using the algorithm in Section 2.1). We compute
the target space as Sp+ = {p+ + t | t ∈ Sp+}, where Sp+ is

Sp+

Tp+

p+

M

a linear subspace of Tp+ (see
inset). Meshes in Sp+ satisfy
the constraints approximately.
We search for the subspace Sp+

based on the following set of
requirements.

Shape quality and vertex positions. The first requirement
for Sp+ is that every displacement t ∈ Sp+ leads to a mesh
p+ + t with nice shape. Assuming a nice shape of mesh p+,
we apply the fairness energy (2) to t for measuring the shape
quality of p+ + t. Optionally, the user may want some ver-
tices to stay close to their current positions during explo-
ration (for example the handle vertices in Section 2.1). This
requirement is enforced with a function ∑i∈Ψ ‖ti‖2

2, where
ti ∈R3 is the component of t for vertex vi, and Ψ is the index
set of vertices subject to the closeness condition. Combining

c© 2013 The Author(s)
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these two functions, we derive a quality measure for t

Q(t) = βf
2
‖Et‖2

2 +
βh
2 ∑

i∈Ψ

‖ti‖2
2, (4)

where βf, βh are nonnegative weights.

Sparsity. Another requirement is that Sp+ represents sparse
displacements w.r.t. p0, meaning that the mixed `2/`1 norm
‖d+ t‖2,1 should be small for all t∈ Sp+ . Suppose that Sp+ is
spanned by an orthonormal basis t1, . . . , ts, then t = ∑

s
i=1 xiti

with xi ∈ R. Note that ‖ ·‖2,1 satisfies the triangle inequality

‖d+ t‖2,1 ≤ ‖d‖2,1 +
s

∑
i=1
|xi|‖ti‖2,1.

In order to have a small ‖d+ t‖2,1, it is necessary that ‖ti‖2,1

is small for all i, namely ti represents a sparse displacement.

However, sparsity for all ti does not guarantee sparsity of
d+ t. For example, if the influence regions of d, t1, . . ., ts

are disjoint, d+ t may modify all of these regions, result-
ing in a non-sparse displacement. We must therefore make
sure that the influence regions of d, t1, . . ., ts have a large
common overlap. For this we define a correlation function:
For two unit vectors u,v ∈ R3n representing mesh displace-
ments, their correlation is defined as

ξ(u,v) =
n

∑
i=1
‖ui‖2‖vi‖2, (5)

where ui,vi ∈ R3 are components of u, v for vertex vi.
ξ(u,v) attains maximum value 1 when ‖ui‖2 = ‖vi‖2 for all
i (the influence regions of u, v overlap completely, with iden-
tical displacement length for each vertex). And it reaches
minimum value 0 when ‖ui‖2‖vi‖2 = 0 for all i (the influ-
ence regions of u, v are disjoint). Furthermore, there is a nice
interpretation of ξ(u,v) regarding the triangle inequality

‖xu+ yv‖2,1 ≤ |x|‖u‖2,1 + |y|‖v‖2,1 (6)

with x,y ∈ R:

Proposition 1 For unit vectors u, v, function

D(u,v) =
∮

x2+y2=1
(|x|‖u‖2,1 + |y|‖v‖2,1−‖xu+yv‖2,1) ds

has the following properties

(a) D(u,v) = 0⇔ ξ(u,v) = 0;
(b) D(u,v)≥ c ·ξ(u,v), where

c =
4

max
i

max
x2+y2=1

(‖xui‖2 +‖yvi‖2 +‖xui + yvi‖2)
.

For a proof, see Appendix A. Here D(u,v) is an integral of
the difference function between the two sides of (6). If u
and v are orthogonal, then D(u,v) is integrated over all unit
vectors in span(u,v). For ‖ · ‖2,1 to be small over the space
span(u,v), we need a large integral D(u,v) together with

Basis ResultsOriginal

Modification

0

0

Figure 4: Subspace of local modifications for the mesh in
Figure 3, using four basis vectors. Left: original mesh with
initial local modification. Middle: the basis vectors, illus-
trated by adding each vector to the initial modification.
Right: two local modifications in the subspace, computed
by adding linear combinations of basis vectors to the initial
modification (shown with bar charts).

small ‖u‖2,1 and ‖v‖2,1. Proposition 1 shows that correla-
tion function ξ(u,v) is related to a lower bound for D(u,v),
and they reach minimum values at the same time.

Optimization problem. Based on the above observation,
we compute Sp+ as follows. First the user chooses the di-
mension s of Sp+ . We then construct an orthonormal basis
B = [t1, . . . , ts] of Sp+ incrementally in s steps. B is initially
empty. At step k (k = 1, . . . ,s), a unit vector tk ∈ Tp+ is added
to B. tk is computed by searching in the orthogonal comple-
ment of span(t1, . . . , tk−1) for a vector which

1. is of high quality according to the measure in (4);
2. represents sparse displacements;
3. has large correlations with d and t1, . . ., tk−1.

We find this vector by optimizing

min
t

Q(t)+ βs

2
‖t‖2,1−

βc

2
C(t)

s.t. ‖t‖2 = 1, Jt = 0, BT t = 0. (7)

Here C(t) = ξ(d, t)+∑1≤i<k ξ(ti, t) with d = d/‖d‖2, J =

[∇E1(p+), . . . ,∇Em(p+)]T , and βs, βc are weights. The con-
straint Jt = 0 means t ∈ Tp+ , and the term −C(t) penalizes
small correlations between t and d, t1, . . ., tk−1.

After computing the basis B, the user can explore mod-
ifications in Sp+ in realtime by specifying linear combina-
tion coefficients for the basis vectors. Additionally, to find
a subspace of the highest quality w.r.t. Q(t), we can per-
form eigen-decomposition on the reduced Hessian of Q(t)
over Sp+ [YYPM11], and use eigenvectors of the smallest
eigenvalues as the exploration basis. In our experiments, the
number of basis vectors is no more than 1% of the tangent
space dimension. Figure 4 shows the exploration basis for
a PQ mesh, and two linear combinations of them. In Fig-
ure 5, we show two sets of local modifications of a PQ mesh,
each starting from a local deformation computed according
to Section 2.1. A realtime exploration of this space can be
seen in the accompanying video.

c© 2013 The Author(s)
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Figure 5: Subspace exploration of local modifications for a PQ mesh. Left: input displacements with the corresponding handle-
based local deformations. Right: local modifications using different linear combinations of the subspace basis vectors.

2.3. Projection onto constrained mesh manifold

Since the tangent space is only a linear approximation to the
constrained mesh manifold M, large displacements in sub-
space Sp+ may lead to a mesh that is no longer close to M. To
obtain a mesh that fully satisfies the constraints, we project
the modified mesh after Section 2.2, which we denote as p̃,
onto M. This is done by computing a displacement t̃ from p̃
to M with an optimization

min
t̃

αfFfair(t̃)+αdFdist(t̃)

s.t. E j(p̃+ t̃) = 0, for j = 1, . . . ,m, (8)

where αf, αd are weights, and function Fdist penalizes the
distance between p̃ and its projection on M. A natural choice
for such a function is Fdist = ‖t̃‖2

2. Alternatively, we can use a
weighted distance function Fdist = ∑

n
i wi‖t̃i‖2 to put higher

penalty for vertices with small displacements between the
original mesh p0 and the current mesh p̃, in order to pre-
vent global displacement from the original mesh p0 to the
final projected mesh p̃+ t̃. In Figure 6, we project two quad
meshes obtained from subspace exploration onto the PQ
mesh manifold, so that they are well within the fabrication
limit. Figure 1 shows several architectural designs produced
by our framework.

3. Numerical Solutions

In this section, we present a common strategy to solve the
optimization problems in Section 2. We use problem (3) as
an example, but a similar formulation also applies to prob-
lems (7) and (8) as discussed in Section 3.4. We introduce
an efficient algorithm based on the augmented Lagrangian
method (ALM) [Ber96] and variable splitting [Eck89]. Us-
ing auxiliary variables, we convert the minimization into a
constrained optimization problem with separable objective
function and linear constraints, which is then solved using
ALM. Due to the structure of the converted problem, each
iteration of ALM is decomposed into subproblems that can
be solved efficiently.

3.1. Converted problem for ALM

To present the solution for (3), we use local modification of
PQ meshes as an example. All faces of a PQ mesh need to
be kept planar after modification. For solving (3), we convert
it into a problem with separable objective function and lin-
ear constraints. First, the constraints are converted into linear
constraints involving auxiliary variables. For a quad mesh
p ∈ R3n, the planarity of a face f j with vertices v j1 , v j2 , v j3 ,
v j4 is equivalent to the existence of three linearly dependent
vectors z j,1,z j,2,z j,3 ∈ R3 such that

p j1−p j4 = z j,1, p j2−p j4 = z j,2, p j3−p j4 = z j,3. (9)

Collecting this condition for all faces, we obtain an equiva-
lent condition for the constraints

z = Mp. (10)

Here matrix M ∈ R9m×3n maps vertex coordinates p to the
left hand side vectors in (9) for all faces. z = [zT

1,1, zT
1,2, zT

1,3,
. . ., zT

m,1, zT
m,2, zT

m,3]
T ∈ R9m is an auxiliary variable subject

to the linear dependence constraint of z j,1, z j,2, z j,3 for all
j. Furthermore, in Fhandle and Fsparse, we replace variable d
with an auxiliary variable y ∈ R3n under a constraint y = d.
Then (3) is converted to an equivalent problem

min
d,y,z

ωh
2 ∑

i∈Γ

‖yi− d̃i‖2
2 +

ωs

2 ∑
i /∈Γ

‖yi‖2 +
ωf
2
‖Ed‖2

2 +σ(z)

s.t. y = d, z = M(p0 +d). (11)

where σ(z) is an indicator function

σ(z)=
{

0 if ∀ j, z j,1,z j,2,z j,3 are linear dependent,
+∞ otherwise.

In (11), the objective function is separable in d, y, z, and the
constraints can be written in linear form x = Ad+b, where

x =

[
y
z

]
, A =

[
I

M

]
, b =

[
0

Mp0

]
,

with identity matrix I ∈ R3n×3n. Now (11) has a form

min
d,x

F(d,x) s.t. h(d,x) = 0, (12)

c© 2013 The Author(s)
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Figure 6: Projection onto the PQ mesh manifold of two quad
meshes designed with the subspace exploration approach.
The color-coding shows the distance between the diagonals
of each quad, normalized by the maximum edge length of the
quad (with 10mm/m being the fabrication limit).

where h(d,x) = x−Ad−b ∈ R3n+9m. The augmented La-
grangian function for (12) is

L(d,x,λλλ;µ) = F(d,x)+λλλ
T h(d,x)+ µ

2
‖h(d,x)‖2

2,

where λλλ ∈ R3n+9m is the multiplier vector, and µ > 0 is the
penalty parameter. ALM searches for a local saddle point
of L by iteratively updating the primal variables d,x and
the dual variable λλλ until convergence. In each iteration, new
values (d̂, x̂, λ̂λλ, µ̂) are computed from the current values
(d,x,λλλ,µ) using the following steps:

1. Primal update: (d̂, x̂) = argmind,x L(d,x,λλλ;µ).

2. Dual update: λ̂λλ = λλλ+µ h(d̂, x̂).
3. Penalty update: choose µ̂≥ µ.

In primal update, L is minimized over the primal variables
only. In dual update, λλλ is updated according to current
penalty parameter and the new value of constraint func-
tion h. We design a primal update and penalty update suit-
able for our problem as explained below.

3.2. Primal update

For the primal update, the objective function L̂(d,x) =

L(d,x,λλλ;µ) is nonconvex and nonsmooth. We perform al-
ternating minimization to compute a stationary point of L̂.
Starting from values d(0) = d, x(0) = x, we iteratively per-
form the following updates until convergence:

1. Fix d, update x: x(l+1) = argminx L̂(d(l),x).
2. Fix x, update d: d(l+1) = argmind L̂(d,x(l+1)).

Updating x. This problem is separable in y and z, so we
can solve for them separately. The subproblem for y is

min
y

ωh ∑
i∈Γ

‖yi− d̃i‖2
2 +ωs ∑

i /∈Γ

‖yi‖2 +µ‖y−a‖2
2,

with a = d(l)− λλλy/µ where λλλy ∈ R3n is the part of λλλ that
corresponds to constraints involving y. This is separable in

each vertex component yi, with closed-form solution

i ∈ Γ : yi =
ωh

ωh +µ
d̃i +

µ
ωh +µ

ai, (13)

i /∈ Γ : yi =

{
0 if ‖ai‖ ≤ ωs

2µ
(1− ωs

2µ‖ai‖2
)ai otherwise , (14)

where yi, ai ∈ R3 are components of y, a on the same posi-
tion as di in d. The subproblem for z is

min
z

σ(z)+ µ
2
‖z− c‖2

2, (15)

where c = M(p0 + d̃(l))−λλλz/µ and λλλz ∈ R9m is the part of
λλλ that corresponds to z. This means finding the closest pro-
jection from c to the set {z∈R9m | σ(z) = 0}. It is separable
into subproblems each involving components z j,1,z j,2,z j,3
of one face f j , with solution

z j,k = c j,k−N j(N j · c j,k), for j = 1, . . . ,m and k = 1,2,3,
(16)

where c j,k ∈R3 is the component of c with the same position
as z j,k in z, and N j is the right singular vector of matrix
[c j,1,c j,2,c j,3]

T for the smallest singular value.

Updating d. We update d by solving

min
d

ωf‖Ed‖2
2 +µ(‖Ad+b−x−λλλ/µ‖2

2).

This reduces to a symmetric positive definite linear system

[µAT A+ωfE
T E]d = µAT (x−b+λλλ/µ). (17)

Termination criteria for primal update. The deviation of
(d(l),x(l)) from a stationary point of L̂ can be measured with
the norm of the dual residual r(l) = µA(d(l)− d(l−1)). We
use (d(l),x(l)) as the solution (d̂, x̂) for the primal update,
when ‖r(l)‖2 is smaller than a given threshold, or l reaches
the maximum number of iterations lmax. In the following
sections, we denote by r̂ the dual residual associated with
the solution (d̂, x̂).

3.3. Penalty update and convergence of ALM

For an updated primal variable value (d̂, x̂) to be close to a
solution of (12), it is necessary that ‖h(d̂, x̂)‖2 and ‖r̂‖2 are
both small. We accept (d̂, x̂) as a solution when ‖h(d̂, x̂)‖2≤
εp and ‖r̂‖2 ≤ εd, where εp and εd are tolerance values.

The penalty parameter µ has an influence on the primal
update: on one hand, a larger penalty parameter µ tends to
produce updates with smaller norms of h; on the other hand,
if µ is too large, the primal update problem may become ill-
conditioned. We start with a relatively small µ, and increase
it by a fixed ratio each time. µ is increased only when the de-
crease of ‖h(d̂, x̂)‖2 is too small compared with the decrease
of ‖r̂‖2 and the new value of µ does not exceed a given upper
bound. Using this strategy, every limit point is a KKT point
of the original problem [Tse01, ABMS07].
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Primal update Dual update

Penalty update

Figure 7: An overview of the numerical solving approach
described in Section 3.

3.4. General pattern

The above framework can be adapted to solve the subspace
exploration (7) and projection problems (8). The key step
in applying this approach is to convert the original problem
into an equivalent one, of the form (12) with separable objec-
tive function and linear constraints. The converted problem
can then be solved as shown in Figure 7. Problem (8) can
be solved without introducing auxiliary variables for nons-
mooth terms. The solution to (7) is given in Appendix B.

Remark. When we convert constraints into an equivalent
linear condition (10), the constraints are transferred to auxil-
iary variables. The primal update subproblem (15) is then a
projection onto the manifold of auxiliary variables that sat-
isfy the constraints. For many shape constraints in geometry
processing, we can derive their equivalent conditions with
efficient projection operators. For a thorough discussion of
projection operators for shape constraints, the reader is re-
ferred to [BDS∗12].

3.5. Efficiency

Our algorithm solves problem (3) efficiently. The primal up-
date steps for auxiliary variables ((13), (14), (16)) are inde-
pendent and can be easily parallelized. The 3n× 3n linear
system (17) can be decomposed into three n× n symmet-
ric positive definite sparse linear systems for each of the x,
y and z components, and solved with the same coefficient
matrix. This coefficient matrix depends on µ only, so for a
particular value µ we can prefactorize the matrix and solve
the system efficiently. Moreover, since µ starts from a speci-
fied value and increases exponentially, there is only a limited
number of values for µ before it reaches a predefined upper
bound. We can therefore prefactorize all possible coefficient
matrices. Our algorithm is well suited for GPUs and multi-
core CPUs. For handle-based deformation of a PQ mesh with
1K vertices (>10K variables) on a quad core CPU, our al-
gorithm converges within a few seconds to a mesh where
all constraints are satisfied up to fabrication tolerance. For
subspace exploration, the computation time for each basis
vector is similar to a handle-based deformation. Afterwards,

Figure 8: Local modifications of a planar tri-hex model. The
input displacements are shown on the top.

the exploration itself is realtime. The computation time for
projection onto constrained mesh manifold is shorter than
handle-based modification, due to the absence of auxiliary
variables for the mixed `2/`1 norm.

3.6. Discussion

Our method is closely related to the Alternating Direction
Method of Multipliers (ADMM) [BPC∗11], which is popu-
lar for convex optimization problems with separable objec-
tive function and linear constraints. ADMM is an augmented
Lagrangian algorithm where the primal update is done by
only one iteration of alternating minimization. For noncon-
vex problems, ADMM may fail to converge because it can
produce primal updates far from local minima. Our primal
update performs multiple iterations of alternating minimiza-
tion and terminates when it is close enough to a local mini-
mum. This leads to more accurate results for the primal up-
date, enabling our method to handle nonconvex problems.

4. Limitation and Future Work

Our handle-based approach can be directly generalized to
inequality constraints. However, the subspace exploration
approach is not applicable in this case. In the future, we
want to investigate the exploration of meshes with inequal-
ity constraints. Our method does not detect or prevent self-
intersections. Nevertheless, the fairing terms in our opti-
mizations tend to avoid self-intersections for deformations
that are not too large. As a future work, we would like to
introduce a collision avoidance constraint to prevent the sur-
face to self-intersect or to intersect surrounding elements.
Additionally, our approach keeps a fixed mesh topology dur-
ing the exploration. Changing the topology may produce a
better result, and this is an interesting avenue of research.
Our framework enforces sparsity of the displacement vector
using a mixed `2/`1 norm regularizer. However, the mixed
`2/`1 norm regularization may not completely prevent small
vertex displacements. An alternative approach is to use a
l0-norm based sparsity-inducing penalty [XLXJ11]. But the
convergence guarantee given by [ABMS07] does not hold in

c© 2013 The Author(s)
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Figure 9: Local modifications of a planar hexagonal model,
with input displacements shown on the top. Due to fewer
degrees of freedom, the displacements affect a larger region.

this case because the l0-norm is not continuous. In the future,
we would like to investigate other sparsity-inducing norms
and continuous relaxations for the l0-norm. We also noticed
that by removing the correlation term from the subspace ba-
sis calculation, the system proposed many local edits that
are not in the region of the original deformation. While this
is not applicable to subspace exploration, this provides an
interesting avenue for future work.

5. Conclusion

We introduced a novel framework for exploring local modi-
fications of globally constrained meshes. First, we presented
an approach to compute smooth and local deformations of
a constrained mesh using handles. Second, we showed how
a linear subspace of high quality local deformations can be
constructed using a correlation function. This subspace en-
riches the solutions of the first step and can be explored in
realtime by a user. Finally, we introduced an algorithm to
reproject the deformed meshes generated in the second step
onto the constrained mesh manifold. For each of these steps
we presented a computationally tractable algorithm making
use of variable splitting. We applied our framework on the
design of meshes with planar faces that are of great interest
for architectural geometry.
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Appendix A: Proof of Proposition 1

For (a), using the triangle inequality (6) we have

D(u,v) = 0⇔‖xu+ yv‖2,1 ≡ |x|‖u‖2,1 + |y|‖v‖2,1

⇔ ξ(u,v) = 0.

For (b), note that for ui,vi ∈ R3 and curve C : x2 + y2 = 1,

‖ui‖2‖vi‖2 =
1
4

∮
C

[
(‖xui‖2 +‖yvi‖2)

2−‖xui + yvi‖2
2

]
ds

=
1
4

∮
C

Ai(x,y)Bi(x,y) ds,

where Ai(x,y) = ‖xui‖2 +‖yvi‖2 +‖xui + yvi‖2, Bi(x,y) =
|x|‖ui‖2+ |y|‖vi‖2−‖xui+yvi‖2. From the mean value the-
orem, there exist xi, yi with x2

i + y2
i = 1 such that∮

C
Ai(x,y)Bi(x,y) ds = Ai(xi,yi)

∮
C

Bi(x,y)ds.

Since
∮

C Bi(x,y)ds ≥ 0 ∀i, and D(u,v) = ∑i
∮

C Bi(x,y)ds,
ξ(u,v) = 1

4 ∑i
∮

C Ai(x,y)Bi(x,y)ds, it follows that

ξ(u,v) = 1
4 ∑

i

∮
C

Ai(x,y)Bi(x,y)ds

≤ 1
4

[
max

i
Ai(xi,yi)

]
∑

i

∮
C

Bi(x,y)ds

≤ 1
4

[
max

i
max

x2+y2=1
Ai(x,y)

]
D(u,v).

Appendix B: Numerical solution to (7)

We reformulate the problem in the form of (12)

min
t,y,q,m

Q(t)+ βs

2
‖y‖2,1−

βc

2
C(y)+σ1(q)+σ2(m)

s.t. y = t, q = t, m = t, Jt = 0,

where y,q,m are auxiliary variable, and σ1(q), σ2(m) are
indicator functions for conditions ‖q‖2 = 1 and BT m = 0,
respectively. We solve it using the augmented Lagrangian
method in Section 3. In the primal update, we first fix t and
update (y, q, m), then fix (y, q, m) and update t:

Updating y, q, m. This involves the following subproblems

min
y

βs‖y‖2,1−βcC(y)+µ‖y−ay‖2
2,

min
q

σ1(q)+µ‖q−aq‖2
2, min

m
σ2(m)+µ‖m−am‖2

2,

where µ is the penalty parameter, ay = t− λλλ
y
/µ, aq = t−

λλλ
q
/µ, am = t− λλλ

m
/µ, with λλλ

y, λλλ
q, λλλ

m being the compo-
nents of the multiplier vector for the constraints involving y,
q, m respectively. The solutions are

yi =

 0 if ‖ay
i ‖ ≤

Ci

2µ ,

(1− Ci

2µ‖ay
i ‖2

)ay
i otherwise.

q =
aq

‖aq‖2
, m = (I−BBT )am,

where subscript i indicates components for the i-th ver-
tex, Ci = βs − βc(‖di‖2 + ∑1≤ j<k ‖t

j
i ‖2). Note that the

y-subproblem has a unique solution only if Ci ≥ 0 for
all i. It is therefore required that βs ≥ βc ·maxi(‖di‖2 +

∑1≤ j<k ‖t
j
i ‖2).

Updating t. We minimize the following function about t

Q(t)+ µ
2
(‖t−ay‖2

2+‖t−aq‖2
2+‖t−am‖2

2+‖Jt+λλλ
t
/µ‖2

2),

where λλλ
t is the component of the multiplier vector for the

constraint JT t = 0. This reduces to solving a sparse (if E is
sparse) symmetric positive definite linear system

[µ(3I+JT J)+ωfE
T E+ωhD]d = µ(ay +aq +am)−JT

λλλ
t
,

where D is a diagonal matrix with Dii = 1 for i ∈ Ψ and
Dii = 0 otherwise.
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