
Eurographics Conference on Visualization (EuroVis) 2013
B. Preim, P. Rheingans, and H. Theisel
(Guest Editors)

Volume 32 (2013), Number 3

A Visual Approach to Investigating Shared and Global
Memory Behavior of CUDA Kernels

Paul Rosen†

Scientific Computing and Imaging Institute
University of Utah

Abstract
We present an approach to investigate the memory behavior of a parallel kernel executing on thousands of threads
simultaneously within the CUDA architecture. Our top-down approach allows for quickly identifying any significant
differences between the execution of the many blocks and warps. As interesting warps are identified, we allow
further investigation of memory behavior by visualizing the shared memory bank conflicts and global memory
coalescence, first with an overview of a single warp with many operations and, subsequently, with a detailed view
of a single warp and a single operation. We demonstrate the strength of our approach in the context of a parallel
matrix transpose kernel and a parallel 1D Haar Wavelet transform kernel.

Categories and Subject Descriptors (according to ACM CCS): Hardware [B.8.2]: Performance and Reliability—
Performance Analysis and Design Aids

1. Introduction

The explosion of high-performance computer hardware over
the recent past has been a boon for computational science,
engineering, and many other fields. Scientists and engineers
are now able to process increasingly complicated phenomena
with ever greater level-of-detail. However, the move to high-
performance software has not been an easy one. The complex-
ity of hardware makes programming scalable algorithms chal-
lenging. A significant investment of time and highly tuned
experience and intuition are required to optimize algorithms.
This is in large part due to the lack of good profiling and
visualization tools.

We present a new approach for investigating the interaction
of hardware and software for highly parallel environments,
CUDA in particular. We focus our efforts on the behavior of
the two most heavily used memory systems within CUDA,
global and shared memory. Our visualization uses multi-level
comparative and qualitative analysis stages to isolate rep-
resentative behavior and identify problematic portions of
execution. As a whole, this approach gives a top-down view
of execution for identifying where, then understanding why
memory performance might struggle.

At the top level, the full execution is visualized and a
comparative analysis is performed. Here, users can identify

† e-mail: prosen@sci.utah.edu

groups of threads whose execution is most representative and
those whose execution most deviates from the representative
behavior. As representative warps are selected, the user pro-
ceeds to lower level qualitative visualizations. At these levels
the visual interface shows detailed views of memory access
for smaller groups of threads permitting the identification of
the source of performance bottlenecks.

2. Background

Debugging tools are a crucial component of the software de-
velopment work cycle. These tools, such as GNU Debugger
(GDB), Microsoft Visual Studio, NVIDIA Nsight [NVI12c]
and TotalView Debugger [Tot10], provide a transparent view
of an application, enabling detailed inspection of execution.
The machine-oriented level at which these tools operate as-
sists in searching out the sources of errors. However, these
tools are only focused on correctness. In contrast, the work
we present assumes correctness and is only interested in en-
hancing performance.

Profiling is the approach most frequently used to un-
derstand the complex performance interactions of software
and hardware. Profilers observe an application’s execution
through specialized hardware counters that collect data such
as processor utilization, cache misses, etc. Tools such as
PAPI [TJYD09] and Valgrind [NS03] provide convenient
high-level APIs for accessing these counters which are other-
wise only accessible directly through low-level interfaces.

© 2013 The Author(s)
Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

Desktop profilers, such as GNU GProf [GNU12], Intel
VTune [Int12], and Apple Instruments [App12], use these
performance counters to gather statistics and communicate
those values to a software developer. For graphics processors,
similar statistics are collected through the NVIDIA Visual
Profiler [NVI12d] (Figure 1) and NVIDIA Nsight [NVI12c].
These products remain the work most closely related work to
ours, though they operate at critically different granularity.

For supercomputers, VampirTrace [NAW∗96, Zen12] and
TAU [SM06, Uni12] provide the same statistics as desktop
profilers for each node, along with statistics for the entire
cluster. Recent work [SLB∗11] visualizes this data directly
in the application domain, better connecting the performance
to the data. Visualization has also been used for a variety
of other performance related tasks including memory allo-
cation [MT07] and scheduling [BBH08]. These techniques
are more or less outside of the scope of this work and, in
some cases, complement our approach. Most of these pro-
filing tools work at coarse granularity, limiting potential in-
sights to large scale bottlenecks. The recent work of Choud-
hury [rICPP08, rICR11] has focused on individual memory
transactions. While their approaches enable new insights,
they have not yet been shown to scale to large memory traces
or parallel applications the way this work does.

3. An Overview of the CUDA Architecture

The model for CUDA is to execute a single kernel of code
using thousands of threads on a grid. The threads are all
grouped into blocks of execution, from which groups of 32
threads form a warp. For some operations, warps can be
divided into half- and quarter-warps for servicing. Opera-
tion on the threads of a warp are executed simultaneously
in SIMD (single-instruction, multiple-data) fashion, and due
in large part to hardware optimizations, the behavior of all
threads in the warp affect the performance of a single thread.
Multiple warps from different blocks can execute simulta-
neously on different processors, giving an overall MIMD
(multiple-instruction, multiple-data) behavior.

This work focuses on the two most heavily used compo-
nents of the CUDA memory hierarchy, shared and global
memory. Global memory or device memory is a large, slow
to access memory that is read/write accessible to all threads,
warps, and blocks. Shared memory is a small, fast on-chip
user managed read/write cache, only accessible to the threads
and warps from the same block. Shared memory is an n-way
associative memory† with each bank able to service only one
memory address at a time.

In addition to global and shared memory, other memory
components exist in the CUDA architecture. Local memory
usage is the result of local array storage and register spillage,
accessible to an individual thread only, and stored in global
memory. Constant memory is read-only memory initially
stored in global memory, but once used, it is held in a special

† CUDA 1.x has 16 shared memory banks, and CUDA 2.x onward
has 32 shared memory banks.

on-chip cache. Finally, surface and texture memory use spe-
cialized hardware to quickly access and interpolate data from
global memory when memory accesses have good 2D spatial
locality. For a more detailed explanation of these systems,
see the NVIDIA CUDA Programming Guide [NVI12b].

3.1. Performance Optimization

There are three main approaches to optimizing the execu-
tion of CUDA kernels [NVI12b]. The first is to maximize
utilization by exploiting the optimal amount of paralleliza-
tion, minimizing the idle time of the compute device and
the buses connecting the device and host. The second is to
maximize memory throughput by minimizing the number of
memory accesses and optimizing the memory access patterns
of kernels. This optimization is the main thrust of this work.
The final optimization approach is to maximize instruction
throughput by minimizing control flow, synchronization, and
high-cost arithmetic instructions.

The first approach to optimizing memory performance
is to reduce the number of global memory accesses. This
is most often done by offloading repeated global memory
accesses to shared memory (or one of the other memory sub-
systems).‡ For global memory operations which cannot be
avoided, the remaining performance optimization is to use co-
alesced accesses. When the threads of a warp access memory
in a friendly pattern, the hardware attempts to coalesce those
memory accesses into fewer, more efficient memory trans-
actions. Poorly formulated accesses will issue many transac-
tions, and, due to limitations on the smallest addressable unit,
the transaction may end up underutilized.

For shared memory, performance is penalized by bank
conflicts. Bank conflicts are produced when multiple threads
in a warp request different addresses from the same bank.
Accesses are serialized into multiple transactions, since each
bank is limited to one address per transaction.

3.2. Performance Data

CUDA devices, like most computer hardware, contain a
number of built-in performance counters. These perfor-
mance counters are available at relatively low granular-
ity with no built in ability to capture the detailed data
we seek. Instead, we look towards emulation using gpuo-
celot [DKYC10, KDY11]. Gpuocelot is a dynamic compi-
lation framework for PTX programs that allows executing
the program in a wide variety of environments, including
emulated, GPU, and CPU environments. In emulation mode,
gpuocelot provides tracing functionality for capturing thread,
warp, and block activities, including instruction type, mem-
ory addresses, and active thread flags, for every instruction.
The trace only provides a list of logical activities with no in-
formation on hardware effects. A hardware simulation step is
then used to approximate hardware behaviors, such as shared
memory bank conflicts and global memory coalescence. This

‡ In newer architectures, global access is also sped up by the inclu-
sion of caching hardware which supports a user selectable combina-
tion of L1 and L2 cache. Our analysis excludes this hardware.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

(a) Overview of the user interface (b) Information pertaining to each of 3 implementations

Figure 1: NVIDIA Visual Profiler output for matrix transpose identifies existence of errors (marked in red) but not the source.

is done via a custom component modeled on information
provided by NVIDIA [NVI12b].

4. Performance Analysis Approach

One critical component to our approach is fully understand-
ing how we envision this tool fitting into existing software
development workflows. As software engineers complete
development and correctness checking, they usually move
to performance optimization (obviously there is some itera-
tion between these stages). We envision first beginning the
process with existing tools such as NVIDIA Visual Profiler
(Figure 1). These tools are good at identifying the existence
of performance bottlenecks (even down to the line of source
code causing global memory slowdowns), but fail to give the
visual insights as to exactly why these operations cause slow-
downs. These details include which warps may be causing
the slowing down, the order of memory access, and the shape
of resulting memory transactions. For example, the columns
of Figure 1(b) show various shared and global memory bot-
tlenecks for 3 different versions of matrix transpose, however
they give no insight as to the exact cause (which will be dis-
cussed in Section 6.1). Once the existence of a bottleneck is
confirmed, we envision our tool being used.

Coming to our tool, the first step is a comparative analysis
used to reduce the number of warps to a subset of represen-
tative warps. This step compares the performance of each
warp to that of every other warp. The idea being, if many
warps have similar performance, you only need to do further
investigations on one of them, not all of them.

Next is a qualitative analysis of the representative warps
to identify operations that are performance bottlenecks. The
goal of this step is to select the global operations failing to
sufficiently coalesce and the shared operations producing
many conflicts. Once familiar with our visual metaphors, we
believe this is easily accomplished in our approach.

Finally, software engineers are able to investigate each
individual bottleneck operation. At this level, we provide as
much information as possible about the layout of the memory

transactions. However, ultimately it remains the responsibility
of the software engineer to optimize their software.

5. Memory Behavior Visualization

We have developed an approach to exploring the behavior of
hundreds of thousands of simultaneously executing threads.
Our top-down approach works by first using a comparative
analysis to identifying warps whose behavior is represen-
tative, followed by a qualitative analysis of those warps to
ultimately reveal the source of performance bottlenecks. This
style of approach will play a critical role in exploration of
many type of large data, not just CUDA memory traces.

5.1. Comparative Analysis

At the top-most level, the comparative analysis stages were
designed as an overview of all threads over all time. For such
a view is it critical to highlight any data element which is
potentially interesting for user exploration. Our approach
focuses on identifying representative and outlier behavior,
leaving understanding of the performance quality for lower
level investigations. Therefore, we decided to use a visual-
ization metaphor which highlights differences, indicating to
the user candidates for exploration. This type of filtering is
enabled through a two-level process, closely coupled to the
underlying CUDA architecture, for isolating individual warps
of interest.

5.1.1. Comparing Operation on Warps

Understanding the behavior on the scale of thousands of
threads requires formulating derivative metrics for comparing
large groups of threads. We focused on establishing metrics
for comparing warp behavior.

When comparing an operation on two warps, A and B,
there are 4 aspects which are interesting for our comparison
purposes: instruction type, active threads, and shared and
global memory access.

The difference between two instructions, Ains and Bins is a
simple comparison of type.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

dins(A,B) =

{
0 if Ains = Bins

1 otherwise
(1)

The comparison of active threads considers Athrd and Bthrd
to be the set of threads which are currently active in each
warp. By taking the intersection of those sets, active threads
which are common to both are found. Finally, the cardinality
gives the number of commonly active threads.

dthrd(A,B) = 32−|Athrd ∩Bthrd | (2)

For global memory, both the size and shape of memory
access is important to performance. Therefore, our compar-
ison is the sum of pairwise differences of memory transac-
tion sizes, where Aglob(i) and Bglob(i) represent one memory
transaction from each. In this way, warps with a different
number of transactions, as well as those whose transactions
are of different sizes, will both be highlighted.

dglob(A,B) = ∑ |size(Aglob(i))− size(Bglob(i))| (3)

The most important feature of shared memory access is
the number of bank conflicts which occur. So, we consider
the difference between the number of bank conflicts Acon f
and Bcon f . We decided not to account for bank access order,
since order does not directly affect performance the way that
the number of serialized accesses does.

dcon f (A,B) = |Acon f −Bcon f | (4)

The final difference between two warps is found by taking
the scaled sum of differences.

dWarp(A,B) = sins ·dins(A,B)+ sthrd ·dthrd(A,B)
+ sglob ·dglob(A,B)+ scon f ·dcon f (A,B)

(5)

To balance the impact of any component, all differences
are weighted. For all experiments and figures the fixed value
weights were selected as follows. The instruction difference
is left unchanged, sins = 1. Thread difference was selected
as sthrd = 1/32, based upon the number of threads in a warp.
Shared and global memory are weighted in a more ad-hoc
way. Our selection of scon f = 1/8 indicates an 8-way conflict,
which is a fairly serious conflict. Global scaling was selected
as sglob = 1/1024, since the largest transactable memory is
1024 bytes. For color mapping, the value of dWarp was always
clamped to [0,1]. When considering multiple operations, the
mean of differences for all operations is considered.

5.1.2. Grid-Level Visualization

The top visual interface is the grid-level visualization which
encodes a representation of every thread used to execute the
kernel over long time sequences. The visual interface, as
shown in Figure 2(a), was laid out in a manner consistent
with the architectural organization of CUDA. Each block
of the execution is placed into its own individual region. A
representative block, colored in red, is selected by the user. To
highlight variations between blocks, a simple metaphor of an
indicator light (Label A) was used. Each column of indicator
lights represents the behavior of one warp while each row

encompasses multiple operations (Label B), the number of
which is user adjustable via scrolling.

To color the indicators, a pairwise comparison between
each warp in the selected representative block and the current
block is performed using Equation 5. The indicator lights are
colored with a sequential color map shown in Figure 2(c).
When a block terminates earlier, those associated indicator
lights are colored gray (Label B). In this way, a warp-by-warp
comparison is performed between blocks, indicating blocks
that perform similarly to the selected block and those who
deviate significantly from the selected block. In Figure 2(a)
Label A, the yellow-orange color indicates that warp #1 of
block(1,0) deviates from warp #1 of the representative block,
block(0,0). It does not however indicate whether quality is
good or bad in either.

5.1.3. Block-Level Visualization

After a representative block is selected, a block-level visual-
ization, as seen in Figure 2(b), is displayed. The block-level
visualization, being a second filtering pass, should maintain
as closely as possible the visual metaphors used in the grid-
level visualization and be organized in a manner consistent
with the CUDA architecture.

In the block-level visualization, each warp associated with
the block is given its own region with each region containing
a set of indicator lights. The rows of indicator lights still
represent a collection of multiple operations. However, now
each of the three columns represent a different comparison
metric (Label C). The first column represents difference in
active threads using Equation 2; the second column represents
differences in shared memory access using Equation 4; and
the final column represents the differences in global memory
access using Equation 3. In a similar fashion to the grid-level
visualization, all warps are compared to the representative
warp selected in red and differences are colored the same
sequential color map as in the grid visualization (Figure 2(c)).
In Figure 2(b) Label C, the lights indicate that during this set

In
st

ru
ct

io
n

N
um

be
r

Warp ID Warp ID

A

B

(a) Grid visualization

In
st

ru
ct

io
n

N
um

be
r

C

(b) Block vis.

Execution
Complete

No
Difference

High
Difference

Low
Difference

(c) Color map

Figure 2: Breakdown of grid and block visualizations where:
A is an indicator light highlighting difference; B represents
indicator lights for block-to-block comparison; and C repre-
sents indicator lights for warp-to-warp comparison.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

(e)

(d)

(a) Naive matrix transpose

(f)

(b) Shared memory matrix transpose

(g)

(c) Optimized matrix transpose

(d) Global memory read (e) Global memory write

(f) Shared memory read (g) Shared memory read

Figure 3: Warp visualizations for three version of matrix transpose (left) and four operation visualizations associated with
the various versions of matrix transpose (right). The implementations show a mix of good quality global (d) and shared (g)
transactions, as well as poor quality global (e) and shared (f) transactions.

of operations, warp #2 varies from the representative (warp
#1) in terms of threads, shared memory, and global memory.
Again, no indication of quality is made.

5.2. Qualitative Analysis

Once representative and outlier warps have been isolated,
investigations of quality can be pursued. The qualitative anal-
ysis stages are designed to first identify operations which
may be causing negative side-effects to performance. Then,
descriptive access is given to the configuration of those trans-
actions. The hope being, detailed information about the as-
sociated memory access pattern will enable developers to
potentially reorient the memory access of their kernels.

5.2.1. Warp-Level Visualization

The next level of investigation visualizes the activity of a
single warp over multiple operations. The visualization, as
shown in Figures 3(a) and 3(b), shows the series of operations
and contains 4 important types of visual component. The
visual metaphors used for these components are designed
to mimic the metaphors for the final level of investigation.
Therefore, their motivation will be discussed in Section 5.2.2.

The first component is the thread interface (Figure 4(a)).
Each thread of the warp is represented with a box. During
operations where the thread is active, the box is colored black,
otherwise it is gray. The size of the box is used as a temporal
indicator, varying it by the percentage of time a thread was
active over the prior 100 instructions.

The next visual component represents operations which do
not access global or shared memory (Figure 4(b)). These op-
erations are represented by an empty box. The boxes and their
associated instruction text are colored black if the warp is
active, or gray if the warp is inactive, during these operations.

Global memory operations (Figure 4(c)) are represented by
a series of small boxes, one for each memory transaction. The
boxes are sized relative to the size of the memory transaction.
The colors are assigned categorically, where each category
represents a continuous address space. In Figure 4(c), red
and green indicate 2 continuous address spaces. Further, only
potions of the memory transaction which are used by one or
more of the threads are colored (see Figures 8(a) and 8(c)
for examples of underutilized transactions). A good global
memory access will have few solid colored boxes (such as
Figure 3(a) Label (d)), while a bad memory access will con-
tain many mostly empty boxes (such as Figure 3(a) Label (e)).

Shared memory access (Figure 4(d)) is similarly repre-
sented by a series of boxes. In this case, each box represents
one bank of the shared memory. To color the boxes, each bank
is subdivided by the number of memory transactions which
occur during the operation. Each transaction is assigned a
color, and the banks used by the transaction are colored ac-
cordingly. Therefore, a solid color or low frequency color
change indicates a good memory access pattern (such as those
in Figure 3(c) Label (g)), and high frequency color or many
empty banks indicate a bad memory access pattern (such as
those in Figure 3(b) Label (f)).

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

(a) Active threads (black active, gray inactive)

(b) Non-memory operations

(c) Global memory (each box represents a transaction)

(d) Shared memory (each box represents a bank, while each color
represents a transaction)

Figure 4: The 4 metaphors used in the warp visualization.

5.2.2. Operation-Level Visualization

Finally, we enable detailed investigation at the single warp,
single operation level (Figures 5). The metaphors used in this
interface is tightly coupled to those used at the warp-level.
Here, the threads associated with the warp are laid out along
the left side and colored according to their active status, just
as in the warp-level visualization. For operations without any
memory access, the interface is complete.

The next scenario is a global memory access as seen in
Figure 5(a). Here, the number of transactions and how those
transactions connected to their issuing threads is critical. Each
memory transaction is drawn in its own column. The size of
the memory transaction is indicated by the size of the box.
For example, the memory transaction indicated by Label B
is larger than memory transaction indicated by Label C in
the same operation. Each box is initially drawn empty and
any pieces of that memory transaction that are used by the
threads are colored and connected to the thread accessing it.
In this way, a rough sense of utilization is quickly accessible.
For example, Label C is only partially filled, indicating a
large transaction with minimal usage. The boxes are laid out
vertically as rough indication of memory address. Assuming
the memory accessed is continuous, the layout is continuous.
If, however, there is a jump in the address space, a spacer
is added, the color is changed, and the new address space is
continued (see Label A). For global memory access, good
quality operations will have high utilization with a small num-
ber of memory transactions. Too many memory transactions
flood the memory controller, and underutilization floods the
memory bus with unused data.

The final scenario is a shared memory access as shown
in Figure 5(b). The motivation for the design is similar to
that of global access. The most important components of the
operation are the number of transactions and their connection
to issuing threads. The rows of the visualization are the vari-
ous banks, each represented by a box (see Label D). Again,
each serialized transaction to shared memory is shown as a
column (i.e. more columns, more bank conflicts), with each
thread connected to its particular access. Each column is also
colored uniquely to improve the differentiation of the various
lines connecting threads and banks. Bank accesses which are

broadcast to multiple threads are indicated by a star within
the bank. For shared memory, the most important aspect to
performance is minimizing the number of serialized accesses.

5.3. Correlation to Source Code

At all levels of the visualization, a source code panel (not
shown) is available to the user. As individual or groups of
instructions are selected, the source code is highlighted to in-
dicate the connection between the instruction and the issuing
lines of source code.

6. Results

We have tested our approach on a number of different algo-
rithms, many with multiple implementations. These include
reduction, matrix multiply, matrix transpose, scalar product,
vector addition, histogramming, and Haar Wavelet transform.
The images in Figures 3, 2(a), 2(b), 4, 5, 7, 8, and 9 have all
been generated with our software, though some have been
annotated to assist with the description of our approach. We
now focus on well understood algorithms, matrix transpose
and Haar Wavelet, as case studies for typical behaviors iden-
tifiable using our approach. In addition to these case studies,
we are actively pursuing optimizations on larger, more so-
phisticated software.

6.1. Matrix Transpose

A matrix transpose is a fairly simple operation, however,
naive implementation can have seriously negative effects on
performance. As part of the NVIDIA C/C++ CUDA Sam-
ples [NVI12a], three versions of the matrix transpose kernel
are provided, each with very different performance results.
Our approach makes quite obvious the reason for this varia-
tion. Our trace performed the transpose on a 512x512 matrix
using 1024 (32x32) blocks of 256 threads (8 warps) each for
a total of over 260k threads across the entire grid. Each thread
is responsible for a single matrix component, and depending
upon the kernel version, the execution for each thread/warp
takes between 30 and 50 instructions to complete.

Serialized Transactions

M
em

ory Address

A

C

B

(a) Global memory

Serialized Transactions

Bank Index

D

(b) Shared memory

Figure 5: Breakdown of operation visualization where: A
represents a discontinuity of address space; B shows a single
coalesced transaction; C shows a underutilized transaction;
and D shows a single bank transaction.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

6.1.1. Identifying Good Memory Access Patterns

The naive implementation of matrix transpose has each thread
simply read an element from the input matrix, stored in global
memory, and directly write those values back out to their lo-
cation in the output matrix, also located in global memory
(Listing 1). Figure 3(a) is an example of behavior for this
type of kernel. The problem with this approach is that while
the reading of the data is coalesced and quite efficient (Fig-
ure 3(d)), the writing out of the data has a large stride in
address (i.e. a scatter operation) and produces many non-
coalesced writes (Figure 3(e)). These operations flood the
memory controller by issuing 32 transactions per warp, and
they flood the memory bus since each 4 byte component re-
quires a 32 byte transaction, causing each warp to move 1024
bytes instead of the 128 bytes of actual data.

Listing 1: Naive Matrix Transpose

1 Transpose(flt *out, flt* in, int w, int h){
2 // Index to data element
3 int idX = blkId.x * TILE_D + thrdId.x;
4 int idY = blkId.y * TILE_D + thrdId.y;
5

6 // Index into input and output arrays
7 int idIn = idX + w * idY;
8 int idOut = idY + h * idX;
9

10 // Transpose element
11 for(int i=0; i<TILE_D; i+=BLK_ROWS)
12 out[idOut+i] = in[idIn+i*w];
13 }

To improve upon the naive implementation, shared mem-
ory can be used as temporary storage for the input data, en-
abling “reordering” of the data for writing. This version loads
16x16 submatrices into shared memory and performs the
transpose within the shared memory, allowing for coalesced
writing to global memory (Listing 2). Figure 3(b) demon-
strates this approach in action. The writing of the data is now
performed with two coalesced memory transactions. How-
ever, the alignment of addresses used in the shared memory
is problematic because the 16-way bank conflict lead to 32
serialized transactions (Figure 3(f)).§ Figure 6(left) shows the
bank layout of the submatrices used in the shared memory
read and write. Although this is an undesirable behavior, the
cost of using shared memory is still significantly lower than
the cost of using non-coalesced global memory.

Listing 2: Shared Memory Matrix Transpose

1 Transpose(flt *out, flt *in, int w, int h){
2 // Shared memory for temporary storage
3 __shared__ flt tile[TILE_D][TILE_D];
4

5 // Index into input array
6 int idX = blkId.x * TILE_D + thrdId.x;

§ In CUDA 1.x, each half-warp is serviced separately for shared
memory transaction. Therefore, each half-warp suffers from a 16-
way bank conflict for 32 serialized transactions. Changes in CUDA
2.x cause an 8-way conflict with 8 serialized transactions.

7 int idY = blkId.y * TILE_D + thrdId.y;
8 int id = idX + idY * w;
9

10 // Read element from input to shared
11 for(i=0; i<TILE_D; i+=BLK_ROWS, id+=w)
12 tile[thrdId.y+i][thrdId.x] = in[id];
13

14 // Ensure shared is synchronized
15 __syncthreads();
16

17 // Index into output array
18 idX = blkId.y * TILE_D + thrdId.x;
19 idY = blkId.x * TILE_D + thrdId.y;
20 id = idX + idY * h;
21

22 // Write element from shared to output
23 for(i=0; i<TILE_D; i+=BLK_ROWS, id+=h)
24 out[id] = tile[thrdId.x][thrdId.y+i];
25 }

A final implementation improves upon both of the prior
approaches. The stride of access within the shared memory
is the source of all of the shared memory conflicts. Sub-
matrix blocks are 16 elements wide causing all threads to
access the same shared memory bank. Padding the matrix
storage [rIC12] has been shown to improve caching perfor-
mance in these situations by changing the effective stride of
memory access. Figure 3(c) shows this approach in practice.
Although our submatrix blocks are still 16 elements wide,
the shared memory used for this operation is 17 blocks wide,
causing subsequent rows to begin at different shared memory
banks (Listing 3 and Figure 3(g)). Figure 6(right) shows the
new bank layout of the submatrices used in the shared mem-
ory read and write. The padding of the matrix has corrected
the striding issue formerly present. This final approach solves
both the global memory coalescence and shared memory
conflict problems simultaneously.

Listing 3: Optimal Matrix Transpose

1 Transpose(flt *out, flt *in, int w, int h){
2 // Pad store for conflict-free access
3 __shared__ flt tile[TILE_D][TILE_D+1];
4 . . .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
2
2
2
2

0

1

2
2
2
2
2

100 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6
7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 151

0

0
1
2
3
14
1
0

4
5
6
7

Figure 6: Diagram of banks used in shared memory matrix
transpose. Left: The 16x16 matrix sub-blocks allow writing
of data (blue) to be conflict-free, while reading data produces
conflicts (orange). Right: Padding each row with an unused
element results in conflict-free reads and writes.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

To further verify the results, the performance of these three
implementations were tested on real hardware. These exper-
iments where performed using an NVIDIA GeForce GTX
580. For the naive version of the matrix transpose, the kernel
took 0.072 second to complete. For the second version with
coalesced global access and shared memory conflicts, the
kernel took only 0.040 seconds, a 44% improvement over the
naive version. The final, coalesced and conflict free version
took 0.027 seconds, a 32% and 62% improvement over the
previous and naive versions, respectively.

We have also run these three algorithms through NVIDIA’s
Visual Profiler as seen in Figure 1. The area outlined in red on
Figure 1(a) shows that the profiler identifies the high overhead
cost of global and shared memory bottlenecks. Each column
of Figure 1(b) shows additional output from the naive, shared
memory, and optimized versions of transpose, respectively.
The areas outlined in red indicate shared memory, global
store, and global load performance, respectively. Finally, not
pictured is the analysis tool which identifies the exact line
of code producing global memory overhead. These tools are
effective at identifying the existence of the same performance
bottlenecks as identified in this section. However, the details
of why are left unanswered.

6.2. Haar Wavelet Transform

A Haar Wavelet is a wavelet formed by a linear combination
of square-shape functions. The source code used to generate
this trace is the 1D Haar Wavelet example also provided in
the NVIDIA C/C++ CUDA Samples [NVI12a]. Our trace
performed the transform on a dataset of over 260K elements
using 16 blocks of 512 threads (16 warps) each for a total
of 8192 threads across the entire grid. The longest execut-
ing block performed approximately 550 operations for each
thread/warp.

6.2.1. Grid-level and Block-level Variation

Figure 7(a) shows the grid-level view of the Haar Wavelet
kernel execution. The first notable feature of this visualization
is the large swaths of gray indicating earlier completion of
many blocks. This signals that block #1’s execution is about
20% longer than any other block. This is a fairly common
occurrence among kernels where the first block is used to
finalize computation, write output, etc. The other notable
feature is that many blocks contain small deviations from the
execution of block 1 (see the yellow-orange colored tiles).
These deviations are infrequent and probably not worth any
further investigation.

Figure 7(b) digs deeper into the execution by visualizing an
individual block. The first warp of the block is selected, and
the obvious difference is highlighted among all other warps.
All warps begin similarly, however that condition quickly
changes as execution proceeds. Taking a step further to the
warp-level visualization in Figure 7(c) shows a comparison
between warp #1 and warp #9 of the block. The difference in
execution is apparent as warp #1 executes many instructions
while warp #9 remains mostly idle.

6.2.2. Architecture Comparisons

The design of the hardware architecture has an obvious im-
pact on the execution performance of various operations. We
have added the capability to switch between CUDA 1.x-3.x
architectures for quick comparison of performance. This is
accomplished by retaining the original memory reference
trace and only simulating the result of memory transactions
under a different architecture.

One important change in architecture that appeared be-
tween CUDA 1.0 and 1.2 was an improvement to the memory
coalescing algorithm used in the hardware. These improve-
ments lead to issuing significantly fewer memory transactions
with better utilization. Figure 8 demonstrates this difference
with CUDA 1.0 on the top and CUDA 1.2 on the bottom.
On the left, with a warp visualization, it is quickly apparent
that in the latter portion of the execution, the CUDA 1.0 ver-
sion issues many memory transactions with poor utilization.
Switching to the CUDA 1.2 version, it can be seen that the
number of memory transactions issued and overall utilization
are improved. The operation-level visualization on the right
gives a more detailed view of the problem. For CUDA 1.0,
despite the memory access pattern being localized in nature,
the accesses are not coalesced. For CUDA 1.2 however, this
problem is corrected and the memory access is coalesced.

One significant change between the architectures of CUDA
1.x and 2.x is the number of shared memory banks increased
from 16 in CUDA 1.x to 32 in CUDA 2.x.¶ This has an
effect of halving the number of serialized transactions in
most, but not all cases. Figure 9 shows an example. The same
set of operations for both CUDA 1.x (left) and 2.x (right)
are shown. For the first operation (Figures 9(c) and 9(e)),
in CUDA 1.x the set of addresses used causes a total of
four serialized transactions. With twice as many banks, the
CUDA 2.x example only needs two serializes accesses to
service the conflict. However, in rare cases the increased
bank count does not reduce conflicts. In the second operation
(Figures 9(d) and 9(f)), in CUDA 1.x two serialized accesses
are needed. However, in CUDA 2.x a 2-way bank conflict
persists due to the unusual memory access pattern present.

7. Conclusions

In conclusion, we have presented a novel visual approach to
investigating the memory behavior of CUDA kernels. Our
approach focuses on identifying representative behaviors at
high-levels, followed by detailed investigations at low-levels.
We have also demonstrated the approach for multiple ker-
nel implementations with our results confirmed using real
hardware. The largest limitation to our approach is its incom-
pleteness, mostly due to trade secrets. We have done our best
to conform to the public information regarding the hardware,
but many assumptions have been made and some features
ignored. In the future, we plan to extend this work to fea-
ture additional hardware components and provide tool for
the logic of optimization, for example, visualizing memory
access in the context of data structure memory.

¶ In addition, CUDA 2.x does not split into half-warps for servicing.

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

(a) Grid visualization

. . .

(b) Block visualization (c) Warp visualizations of two divergent warps

Figure 7: Comparative analysis shows little difference at the grid-level (a) but large difference at the block-level (b). Investigation
of two warps (c) shows that the difference is that one warp remains active (top) while the other becomes inactive (bottom).

(a) Warp visualization CUDA 1.0 global access (b) Operation visualization CUDA 1.0 global access

(c) Warp visualization CUDA 1.2 global access (d) Operation visualization CUDA 1.2 global access

Figure 8: A comparison of global memory access on different architectures shows that while the majority of memory transactions
are similarly coalesced, some transactions will perform significantly better on CUDA 1.2 (d) than on CUDA 1.0 (b).

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Paul Rosen / Visual Investigation of Shared and Global Memory Behavior

(a) Warp visualization for CUDA 1.x (b) Warp visualization for CUDA 2.x

(c) Instruction #5 (d) Instruction #8 (e) Instruction #5 (f) Instruction #8

Figure 9: A comparison of a shared memory access on different architectures shows that some instructions ((c) and (e)) improve
as expected while others do not ((d) and (f)).

Acknowledgments

We wish to thank Kristi Potter for her valuable feedback. This
research was supported in part by grants from DOE NETL
and King Abdullah University of Science and Technology
(KAUST) award ID KUS-C1-016-04.

References
[App12] APPLE INC.: Instruments user guide, 2012. 2

[BBH08] BERNARDIN T., BUDGE B. C., HAMANN B.: Stacked-
widget visualization of scheduling-based algorithms. In 4th ACM
symposium on Software visualization (2008), SoftVis ’08, pp. 165–
174. 2

[DKYC10] DIAMOS G., KERR A., YALAMANCHILI S., CLARK
N.: Ocelot: a dynamic optimization framework for bulk-
synchronous applications in heterogeneous systems. In Parallel
architectures and compilation techniques (2010), pp. 353–364. 2

[GNU12] GNU: GNU gprof, 2012. 2

[Int12] INTEL CORP.: Intel VTune Amplifier XE 2013, 2012. 2

[KDY11] KERR A., DIAMOS G., YALAMANCHILI S.: Gpu appli-
cation development, debugging, and performance tuning with gpu
ocelot. GPU Computing GEMS 1 (2011). 2

[MT07] MORETA S., TELEA A.: Visualizing dynamic memory
allocations. In IEEE Workshop on Visualizing Software for Un-
derstanding and Analysis (VISSOFT) (2007), pp. 31 –38. 2

[NAW∗96] NAGEL W., ARNOLD A., WEBER M., HOPPE H.,
SOLCHENBACH K.: VAMPIR: Visualization and analysis of MPI
resources. Supercomputer 12, 1 (1996), 69–89. 2

[NS03] NETHERCOTE N., SEWARD J.: Valgrind: A program
supervision framework. In Workshop on Runtime Verification
(2003). 1

[NVI12a] NVIDIA: CUDA CODE SAMPLES, 2012. 6, 8

[NVI12b] NVIDIA: CUDA Programming Guide 4.2. 2012. 2, 3

[NVI12c] NVIDIA: Nsight. http://www.nvidia.com/
object/nsight.html, 2012. 1, 2

[NVI12d] NVIDIA: Visual profiler, 2012. 2

[rIC12] A.N.M IMROZ CHOUDHURY: Visualizing Program Mem-
ory Behavior Using Memory Reference Traces. PhD thesis, Uni-
versity of Utah, Salt Lake City, UT, 2012. 7

[rICPP08] A.N.M IMROZ CHOUDHURY, POTTER K., PARKER S.:
Interactive visualization for memory reference traces. Computer
Graphics Forum 27, 3 (2008), 815–822. 2

[rICR11] A.N.M IMROZ CHOUDHURY, ROSEN P.: Abstract vi-
sualization of runtime memory behavior. In IEEE Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT)
(2011). 2

[SLB∗11] SCHULZ M., LEVINE J. A., BREMER P.-T., GAMBLIN
T., PASCUCCI V.: Interpreting performance data across intuitive
domains. In Parallel Processing (2011), pp. 206–215. 2

[SM06] SHENDE S., MALONY A.: The tau parallel performance
system. J. of High Performance Computing Applications 20
(2006), 287–311. 2

[TJYD09] TERPSTRA D., JAGODE H., YOU. H., DONGARRA
J.: Collecting performance data with PAPI-C. In Tools for High
Performance Computing (2009), pp. 157–173. 1

[Tot10] TOTALVIEW TECHNOLOGIES: Case studies.
http://www.totalviewtech.com/support/case_
studies.html?via=resources, 2010. 1

[Uni12] UNIVERSITY OF OREGON: Tau - tuning and analysis
utilities, 2012. 2

[Zen12] ZENTRUM FÜR INFORMATIONSDIENSTE UND
HOCHLEISTUNGSRECHNEN: Vampirtrace, 2012. 2

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

