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Abstract
We propose a general technique to visualize multivariate data sequences. It is based on a symbiotic combination

of three powerful concepts from information visualization: sparklines, glyphs and gestalt theory. By visualizing

several well-known data sets in new ways we first demonstrate how explicit consideration of gestalt principles can

be used to leverage visual perception capabilities for the identification of patterns such as trends, periodicities,

change points, or outliers. A more detailed case study with complex and noisy data from a psychological experi-

ment then demonstrates how basic design ideas for gestaltlines can be applied in less controlled, and thus more

realistic, situations. The case study is complemented with reports on feedback from domain experts and a user

study, both indicating that gestaltlines can be a convenient and valid means to explore and communicate patterns

in micro-visualizations.

Categories and Subject Descriptors (according to ACM CCS): H.5.m [Information Systems]: Information Interfaces
and Presentation—Miscellaneous

1. Introduction

We propose a design concept for graphical representations of
sequences of multivariate data, and provide an initial explo-
ration of the idea with examples from the literature, a case
study, and its empirical validation.

Our general motivation is the use of visualization to fa-
cilitate exploration and communication of patterns in multi-
variate data sequences. Patterns of interest typically include
intervals of relative stability, periodicity, trends, transitions,
outliers, and, in the case of sequence collections, shared, re-
lated, and discriminating features. These are often difficult
to describe quantitatively, even in hindsight, but do possess
relatively simple and coherent visual expressions.

A more particular motivation is the intended display of
such visualizations on high-resolution, but small scale, me-
dia. These allow for complex designs while at the same time
facilitating scrutiny within the span of the eye and data nar-
rations within the flow of text.

We advocate the conscious blending of three established
concepts that explicitly leverage human pattern recogni-
tion capabilities in small space. Our approach is based on
the arrangement of multivariate glyphs (see, e.g., [War02]
and [War04, Chapter 5]) in sparklines [Tuf06] to evoke
gestalts (see, e.g., [Ste08, Chapter 3]) that correspond to pat-

terns in the data. An application of this approach for the spe-
cial case of time-varying network data has already been pro-
posed in [BN11]. We here focus on the general design prin-
ciple and its anecdotal, practical, and empirical validation.

The remainder of this article is organized as follows. The
general concept is introduced in Section 2. In Section 3 we
demonstrate its application with multivariate data sequences
from the literature. A case study of our own is described in
Section 4, followed by expert feedback and a user study that
provides initial evidence of the usefulness and validity of the
method. We conclude with a discussion in Section 5.

2. The Concept

Our approach to multivariate data sequence visualization is
an extension of sparklines using glyphs that are designed to
take advantage of gestalt laws. We review briefly the three
constituting elements before proposing a scheme to integrate
them.

2.1. Sparklines

Sparklines are “data-intense, design-simple, word-sized
graphics” [Tuf06]. The main rationale for these datawords

is to allow exploratory visual comparison of large amounts
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of data within eyespan. While high resolution is a prereq-
uisite, however, display media need not be large, and often
should not. The concept is best thought of as geared toward
fine printing on paper.

Because of their size, sparklines have been referred to
as the “Tom Thumb of Statistical Graphs” [Yok09]. Small
size facilitates the arrangement of multiple aligned statistical
graphics as well as their use directly within text. It allows,
e.g., to show data elements repeatedly and exactly where
they are referred to, thus eliminating the need to go back
and forth between a figure and associated statements. Com-
mon examples include line , bar and win-
loss charts of, say, measurement time series, sports
results or, most prominently, stock quotes. Although we can-
not quantify this claim, it appears that most applications of
sparklines today involve univariate time series data.

The design space for sparklines is almost as huge as it
is for any statistical chart. Given their use in small mul-
tiples and in chosen locations inside of sentences, how-
ever, slightly different goals may be pursued. For example,
a tabular arrangement may call for alignment. Moreover,
sparklines can be annotated to convey simple statistics such
as normal ranges, as well as specific data points of special
interest [Tuf06, p. 47] which may be
different each time the data are referred to in a text passage.

Note, however, that area considerations may also intro-
duce additional constraints. If a line chart is integrated into
text, for instance, its height is constrained by font size; if
in addition an average slope of 45 degrees [Cle93, AH06,
Tuf06] is desired, then the length of the corresponding data-
word is implied as well.

2.2. Glyphs

The term glyph is used to refer to a class of graphical ob-
jects with several degrees of freedom that can be used to
represent multidimensional data points by mapping each di-
mension of the data to a distinct free parameter. Compre-
hensive introductions and general design guidelines can be
found in [War02, War04].

The main rationale is that uniform depictions of multiple
attribute values in a single, complex graphical object are eas-
ier to memorize and compare than groups of simpler graphi-
cal objects that represent data dimensions separately. A well-
known example of this kind are star plots [CCKT83], in
which each data dimension is represented along a radial line
segment out of a common origin . Bounding the asymmet-
ric stars by filled polygons yields integrated, yet charac-
teristic shapes for each multidimensional data point.

Heterogeneous dimensions and varying measurement
scales call for more elaborate designs. Although this is yet
another sprawling topic, there are some principled guide-
lines. As indicated by experimental evidence summarized
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Figure 1: Ranking of perception accuracy (top-to-bottom)

as a guideline for graphical mapping. Boxes indicate vari-

ables irrelevant for the corresponding type of data. Redrawn

from [Mac86].
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Figure 2: Seven basic gestalt laws of perception. For exam-

ple, the law of continuity suggests that we tend to perceive

two crossing rather than two touching lines.

in Figure 1, the various graphical variables yield differen-
tial accuracy in elementary perceptual tasks [CM84, Mac86,
HB10]. The features of a glyph should therefore be chosen
accordingly. These choices may, however, interfere when el-
ements are perceived holistically as in the width and height
of a rectangle [War04].

2.3. Gestalt Theory

Wertheimer postulates that the mind organizes disparate
visual stimuli into the simplest stable and coherent
form [Wer23]. In other words, we are biased toward perceiv-
ing wholes, or gestalts, rather than collections of individual
parts. Based on this so-called Law of Prägnanz, gestalt the-
ory consists of qualitative principles such as those listed in
Figure 2. A more detailed overview is given in [Ste08].

Previous applications of gestalt theory in visualization de-
sign include visual screen design [CDT02], algorithmic an-
imations [EA10], human-computer interaction [FM06], and
information dashboard design [Few06].
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2.4. Gestaltlines

While the alignment of glyphs in small multiples is a nat-
ural extension to depict sequentially or spatially ordered
multivariate data (see, e.g., [HBE95, CE97, HPU01, KM01,
FCI05]), we posit that two additional design considerations,
compactness and gestalt, will bring to bear the real potential
of such visualizations. We refer to designs that result from
this principle – the arrangement of gestalt theory-informed
glyphs in sparklines – as gestaltlines.

As a restricted and univariate, but nevertheless inspi-
rational example consider the following illustration of
the workings of sorting algorithms [Sed98]. Each el-
ement of a data array is represented by a line seg-
ment, the slope of which corresponds to the position
of that element in sorted order. An unsorted initial ar-
ray is thus eas-
ily distinguished from a partially sorted intermediate ar-
ray and the fully
sorted final array .
Note the use of slight unimodal length difference to empha-
size the visual effect. By visual comparison of intermediate
states, the operations of different sorting algorithms are il-
lustrated very graphically.

The main challenge in creating gestaltlines is to identify
glyphs and alignment rules from which the presence and spe-
cific nature (e.g., location, extent) as well as the absence of
certain patterns can be perceived holistically.

Generally important data patterns include clustering and
outliers, whereas patterns that are particularly relevant
for sequence data include trends, periodicity, disruptions,
change points, or phase shifts. Note that in multivariate data
such patterns may emerge from combinations of dimensions.

Because of the interdependence of glyph design, arrange-
ments, possibly emerging gestalts and patterns of interest,
establishing broadly applicable guidelines for gestaltline de-
sign is going to require a major research effort. Note that
even such fundamental knowledge as the ranking of graphi-
cal variables in Figure 1 may be invalidated when we try to
make certain patterns graphic by aiming at specific gestalts.

In the following sections, we will hence start with selected
examples of well-known data sets from the literature to il-
lustrate some possible design choices. We then move on to
a more elaborate case study of our own and provide empiri-
cal evidence for the usefulness and validity of these specific
gestaltlines.

3. Examples from the Literature

In this section, we will discuss a few examples from the lit-
erature to illustrate the potential of explicit consideration of
gestalt principles in the visualization of data sequences.

Please observe that the purpose of this discussion is to
pinpoint aspects for consideration, rather than the design of

the most appropriate diagrams. The examples are meant to
demonstrate that using glyphs in sparklines may be only a
slight generalization, if any, but that explicit consideration
of gestalt principles does make a difference.

3.1. Phase Shifts in Population Dynamics

The dynamics of predator-prey populations are examples of
bivariate data sequences. We here use a classic data set in
which fur trade records indicate the population size of Cana-
dian lynx and snowshoe hares between 1900 and 1921 (see,
e.g., [Odu71]).

Such pairs of sequence data can be depicted straight-
forwardly in sparklines using superimposed line

or bar
charts. The data are represented with high accuracy and
comparison of the size of the two populations in any given
year is easy.

The dominant and well-known pattern in this data is one
of periodic peaking of both populations, with predators lag-
ging behind prey.

The same pattern is also visible in an alternative design
using pairs of dots with areas pro-

portional to population sizes. Here, the law of similarity sug-
gests that diagonal grouping of large dots is more immediate
than vertical grouping to time. The slope of perceived di-
agonals is an indicator of the lag between population surges.
Since the perceived diagonals are approximately parallel, the
lag is roughly the same between both pairs of peaks and
phase changes stick out.

So far this re-iterates what is also obvious from the line
or bar chart representations, and we even paid a price be-
cause relative areas are perceived less accurately than rela-
tive positions or lengths (recall the ranking in Figure 1). In
a longer sequence involving more peaks, however, the law
of similarity also applies on another level. If there was a pe-
riod in which the lag differs, this is more easily recognized
as an outlier among the otherwise similar diagonals. In the
extreme case that the sign of the slope is reversed, the outlier
is detected pre-attentively. A population of predators surging
before the prey would be a very interesting pattern. Due to
the strong separation of dimensions in line or bar charts of
color coded populations such a pattern is more easily over-
looked than in the case of an emergent atomic feature, as is
the slope of a perceived diagonal.

3.2. Streaks in Sports Results

Tufte uses the win-loss charts for baseball teams
to demonstrate that “Sparklines can simultane-
ously accommodate several variables” [Tuf06,
p. 55]. These charts contain a tick for each game

and the tick’s location above or below an imaginary center
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(a) 3-means clustering (b) fuzzy 3-means (c) linear regression

(a)
(b)
(c)

Figure 3: Scatterplots of geyser eruption patterns showing waiting times (x-axis) versus subsequent eruption duration (y-axis)

with colors indicating membership in cluster models (a),(b) and estimation error in regression model (c). The gestaltlines below

show the actual sequence of eruptions using the same colors.

line indicates whether the game was won or lost. In addition,
the centerline is actually drawn when the game was played
at home.

By the law of proximity, streaks of wins and losses are
grouped, and by the law of connectedness, partially contra-
dicting stretches of home games are perceived as units. Since
home games are statistically more likely to be won, however,
large parts of both groupings may be induced by the season
schedule and not indicative of interesting variation in perfor-
mance.

To eliminate some of the redundancy, and to focus more
on performance variation, we could omit expected results

and show only home losses and away wins so that grouping
occurs for the performance-induced and relatively surprising
results. In this way, the two data dimensions, home-away
and win-loss, are no longer represented separately in
presence-absence of a horizontal line and above-below
center placement of a vertical line.

Observe that horizontal merging of home-game lines is
visually dominant. Since home-away schedules in baseball
are streaky by design, this may not be the most interesting
piece of information, however. In a variant gestaltline,
we only place dots on the center line to indicate a win.
Using above-below ticks as before, every single outcome
can still be uniquely decoded, but groups and gaps on
the center line now indicate streaks of wins or losses. We
therefore see more easily that Tampa Bay’s 2004 season

started out ordinarily with a few too many home losses.
They had a long winning streak midseason, including a
series of away wins, and after roughly two-thirds of the
season there are two particularly poor stretches of home
losses.

In comparison to the original sparkline, we have trans-
formed the data to be relative to a baseline (wins at home and
losses away) to reduce visual complexity, and determined

glyph parameters from combined data dimensions to place
more emphasis on the most important aspect (wins).

3.3. Periodicity in Geyser Eruptions

An example of complex repetitive patterns are the erup-
tion sequences of Old Faithful. The geyser, which faithfully
erupts about twenty times a day, is a major tourist attraction
in Yellowstone National Park, Wyoming, USA. Understand-
ing and predicting the geyser’s behavior has been subject to
various scientific studies. Among the most recognized ones
is the investigation of Azzalini and Bowman [AB90] which
has been based on 299 successive observation pairs of wait-
ing time between the starts of eruptions (43 to 108 min-
utes) versus duration of the following eruption (50 to 327
seconds). Both waiting time and duration are bimodal dis-
tributed, and the scatterplot in Figure 3 reveals three distinct
eruption patterns that can be recovered from 3-means clus-
tering or simple thresholding just the same.

A gestaltline . . . with
adjacent stripes colored according to a 3-means clustering
model reveals a known periodicity: stretches of an alternat-
ing sequence of short waits for long eruptions and long waits
for short eruptions are interrupted by shorter stretches of
long waits for long eruptions.

Replacing the partition into groups by fuzzy memberships
values, however, yields a gestaltline in which the law of
good continuity lets us perceive a continuous alternating pat-
tern . . . that is only sub-
dued during what seemed to be interrupts. To the best of our
knowledge, this observation is even a new finding not yet
reported in the literature.

In comparison to the clustering, the regression model
. . . appears to yield

much less systematic outcomes.
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3.4. Exceptions in People Flow

Ihler, Hutchins, and Smyth recorded the number of peo-
ple going in and out of a building on the University of
California at Irvine (UCI) campus over a 15-week period
in 2005 [IHS06]. Their interest was in modeling relatively
stable multilevel (daily, weekly, seasonal) behavioral pat-
terns to detect unusual events.

In their original publication, these data are depicted in
standard scatterplots of occupancy or line charts of entry
numbers [IHS06, Figures 1 and 3]. Provided an explanatory
variable and a period can be fixed in advance, outliers and
periodicity are fairly easy to recognize in such diagrams.

Now consider the gestaltlines in Figure 4 which demon-
strates how the recorded data could be shown in full on a
single page. Arranging each day in a row of its own supports
the detection of weekly patterns such as low building occu-
pancy during weekends, and the vertical alignment of day-
time supports the detection of daily patterns such as lunch
break times. Unusually late arrivals on Wednesday of the
first week (Figure 4(a)) and a Monday holiday (Figure 4(b))
stick out by breaking perceived groups of similar dots.

So far, we have made similar use of glyph parameters de-
termined from combined data dimensions to direct attention
to information derived from the data rather than to the raw
data itself.

Some apparent outliers in this data can be related to
known special events taking place in the building. An ad-
ditional horizontal line segment in the background connects
the dots inside the time interval corresponding to
such events. At least this is how we perceive what might ac-
tually be short line segments between neighboring dots. This
is because of the law of closure (the segments are aligned and
of equal appearance) and the law of figure and ground (con-
sistent gray color). By the law of connectedness, the entire
occasion is perceived as a whole and discounted for when
eyeing for groups in the remaining data.

4. Case Study

The examples of the previous section are well-behaved in
the sense that a relatively simple data set exhibits relatively
clear patterns from known categories.

We now turn to a data set that is more complex in the
number of dimensions and relations between them, and for
which no prior knowledge about the presence of a pattern ex-
ists. In fact, these data motivated the research reported here.
Our goal is to demonstrate how the design ideas of the previ-
ous section can be applied in less controlled, and thus more
realistic, situations.

After describing the origin and nature of the data, we elab-
orate on an exemplary gestaltline design. We conclude the
case study with expert feedback on the improved interpre-

(a) first week (starting with Sunday from top)

(b) all Mondays

Figure 4: Net flow of people entering and leaving a build-

ing [IHS06, FA10]. Each row represents a day, each column

a 30 minute interval. The area of a dot is proportional to

the maximum of the number of people entering and leaving

the building within the corresponding half hour, whereas the

color indicates the ratio of in- and out-flow on a color scale

from red (in) via yellow (balanced) to blue (out). Horizontal

background lines indicate known exceptional events taking

place in the building.

tation of their data, and a user study that provides formal
evidence on the usefulness and validity of gestaltlines.

4.1. Background and Data

The data originate from a psychological experiment that was
conducted as part of a larger study on the influence of early-
life stress on human reward processing and decision making.
Further details are reported in [Ste10].

Thirty subjects participated in the experiment. Eighteen
of them were psychiatric patients who experienced early life
stress (10 female, average age 39.1 ± 12.6), half-and-half
to a low and high degree. The other twelve subjects form a
healthy control group (7 female, average age 43.4 ± 17.2).

In a repeated measurement design, each participant was
subjected to a sequence of 240 computerized gambling trials
while being measured for brain activity. As within-subject
factors, 10 (euro) cents or 50 cents were at stake in each trial
and the announced chance of winning was 10%, 50%, or
90%. Each of the six variants was played 40 times, with the
entire sequence in individually randomized order. Subjects
had to decide whether they wanted to pass or play. Hence,
there are four possible outcomes for each trial: passed,
played and won, played and lost, or no decision until a time-
out of 2 sec. Each outcome was presented to the subject be-
fore the next trial.

With a theoretical maximum gain or loss of 120 ·
50cents+120 ·10cents = 72EUR, purely rational decisions
(play at 90% chance of winning, pass at 10%, and any strat-
egy at 50%) yield an expected gain of 40 · [0.9 · (50cents+
10cents) + 0.1 · (−50cents − 10cents)] = 19.2EUR. Sub-
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jects were given a starting budget of 10 EUR and received
an actual payment between 0 EUR and 20 EUR determined
from 20 randomly chosen trial outcomes.

The experiment thus generated 30 sequences of 240 four-
dimensional data points (stake, chance, decision, outcome)
with 24 possible values. Analysis on the aggregate level con-
firmed some expected differences between patients and con-
trol subjects in cortical activation patterns and also in the
number of irrational decisions (play at 10% chance of win-
ning, pass at 90%).

Interestingly, however, five of the seven subjects beating
the expectation were patients, three of them even with a high
stress level. A closer look at the detailed data is supposed
to test for systematic effects such as strategy learning or the
onset of boredom that do not show on the aggregate level.

4.2. Gestaltline Design

Similar to the examples from Section 3, we display each sub-
ject within a separate gestaltline and represent all 240 four-
dimensional data points in sequence order on the horizontal
axis left-to-right, i.e. time progresses in Western text reading
direction.

To support the domain experts in noticing systematic
effects in decision making, we choose glyphs such that
different gambling strategies induce holistic forms. Given
the noise produced by randomization of game settings, we
present the data with regard to a baseline (Section 3.2), in-
stead of ranking data dimensions by importance and map-
ping them separately to an equal number of the most accu-
rately perceived graphical features in the same order (Fig-
ure 1).

There are two data dimensions of utmost importance.
On the one hand, the deliberate decision to play, pass, or
wait until timeout, is the only data dimension that is non-
randomized and directly attributed to the subject. On the
other hand, the announced chance of winning is the piv-
otal determinant of the randomized gambling design, be-
cause this information alone determines the sign of the ex-
pected gain and should hence figure prominently in any de-
cision. Consequently, we propose a baseline – rationality –
that combines these two data dimensions.

Clearly, rationality of a subject’s decision is defined rel-
ative to announced chance and subsequent decision – ratio-
nal decisions: play at 90%, pass at 10%; irrational decisions:
pass at 90%, play at 10%. However, rationality can not be
assessed for decisions at 50% chance of winning, since the
expected gain/loss is zero. Instead, we can score such trials
as active (play at 50%) or passive (pass at 50%) decisions.
Both concepts, rationality and joy of playing, overlap in a
sense that extremely active (play at 10%) or passive (pass
at 90%) decisions become irrational. Thus, we can order
decisions from one extreme (irrational-passive) to the other

(irrational-active) – pass at 90%, pass at 50%, pass at 10%,
play at 90%, play at 50%, play at 10% – relative to a baseline
(rational decisions; pass at 10%, play at 90%).

passive active

irrational rational irrational

pass 90% pass 50% pass 10% or play 90% play 50% play 10%

Figure 5: Visualization and interpretation of participant

decisions relative to a rational baseline.

A corresponding graphical feature to map this order-
ing can be borrowed from Sedgewick’s illustrations (Sec-
tion 2.4). That is, each trial is represented by a line segment,
the slope of which corresponds to the interpretation of that
decision with regard to our baseline; cf. Figure 5. We found
this mapping intuitive, since the leaning of line segments
suggests a correspondence to the subjects’ postures during
the experiment, such as sitting straight during rational deci-
sions and leaning forward while gambling.

Integrating the remaining data attributes into these basic
glyphs is straightforward. Note that we use the same vertical
line segment for both rational decision, since we do not inter-
pret them as being active or passive. To distinguish these de-
cisions, we exploit that outcome of pass at 10% (no change
in a player’s budget) is different from play at 90% (change in
budget). Concretely, outcomes are represented only by small
colored dots (blue for profit, red for loss) in the center rather
than coloring the entire line segment to promote strategy in-
formation over outcome. For the same reason, irrational de-
cisions are slightly highlighted with a stronger glyph hue.

Finally, line width and dot size are determined by the
amount of money at stake and the occurrence of a timeout
is distinguished from authentic pass decisions by the use of
white dots. In this way the colored dot areas correspond di-
rectly to the change of budget. Using less important graph-
ical features for less important experimental conditions and
special outcomes facilitates macro-micro reading [Tuf90] in
which the participant strategy is represented as the visually
dominant information, and details about the individual trials
can be scrutinized if desired.

To increase the effects of continuity and proximity

we decided against a monospace arrangement. That is, the
(horizontal) space of a single glyph is proportional to the
deviations in our baseline (Figure 5), and we use kerning to
reduce space in between consecutive glyphs.

These design decisions take advantage of several gestalt
laws: Local trends in decision making go along with similar
leaned line segments (law of similarity), and little white-
space in between (law of proximity). Still, slight variations
in the leaning of line segments resulting from the random-
ized experiment do not hamper the detection of stable de-
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cision patterns (law of continuity). Moreover, strat-
egy changes are promoted by the law of symmetry , and
irrational decisions are highlighted with prominent line seg-
ments (law of figure and ground). Finally, placing small
dots in the center of line segments does not influence the
perception of leanings (law of closure).

4.3. Expert Feedback

The visualization of the data as it was presented to the do-
main experts is reproduced in Figure 6. They were excited to
“see” their data in its entirety and commented several times
on the gestaltlines’ elegance and compactness. In the follow-
ing we report on some of their interpretations.

The first thing to note is that participants with a net
gain around the expected 19.2 EUR played rationally for
the most part, which was to be expected. Secondly, there
are some obvious differences in strategy. Participant C1,
for instance, employs an aggressive, risk-taking strategy start

to

finish; whereas subject H3 starts out aggressively active

and acts increasingly errant toward the end, where

many irrational decisions go together with the occurrence
of a timeout — possibly indicating the onset of boredom.
As another example, player L8 employs a risk-avoiding

stra-
tegy that occasionally results in irrational decisions. A rare
case of learning appears to be participant L2 for whom the
chart calms considerably from the first quarter of games

to last
quarter of games .

Seeing the entire data in this way, the domain experts
found no indication that the analysis on the aggregate level
was distorted by unlucky patients or superior learning of
control subjects. This was reassuring for the earlier analy-
sis. On the other hand, the domain experts confidently hy-
pothesized that there is more within-class variation among
patients than among controls, and that this variation is larger
with respect to strategy than performance. While this sug-
gests further substantive work beyond the scope of this pa-
per, it should be noted that the strategy hypothesis would
have been difficult to arrive at analytically.

4.4. User Study

Feedback from the domain experts supported our driving hy-
pothesis that sparklines made from gestalt theory-informed
glyphs facilitate holistic recognition of patterns, trends, and
outliers in multivariate sequences. However, the gestaltlines
have been designed to resonate with their understanding of
the substance. To gather evidence on the general validity of

active passive rational irrational

92.3% 92.3%
94.2% 21.2% 1.9%

98.1%
92.3% 21.2% 1.9%
90.4% 94.2%

Figure 7: Results for introductory question of user study

(Section 4.4); Q1 “Please mark for each row the appropriate

fields”. Unexpected answers highlighted in red.

our design, we tested whether it appeals to a broader audi-
ence. Concretely, we conducted an unannounced study with
a group of 52 second-year undergraduate students in com-
puter science who had no prior background in information
visualization.

Subjects were handed a questionnaire with 12 items on
the gestaltlines from Section 4.2 together with a two-sided
A4 handout explaining their design and its basic interpre-
tation. Both handout and questionnaire had been refined fol-
lowing several pretests. The complete user study was limited
to 35 minutes, and the fastest subjects needed 17 minutes to
read the handout and answer the questionnaire.

Initially we tested the subjects’ understanding of deci-
sions being represented relative to a baseline defined by ex-
pected outcome (Figure 5). Subjects were asked to classify
single decisions (Q1) as well as small sequences of glyphs
(Q2). As summarized in Figure 7, the vast majority of sub-
jects understood the basic design. In particular, not a single
decision was unexpectedly classified as passive or active,
and there was only one outlier concerning rationality. We
were mildly surprised, however, to find that more than one
fifth of the subjects interpret every decision at 50% chance
as being rational. On the other hand, subjects were able to
match small sequences of rational (100%), passive

(98.1%), active (98.1%), and irrational
(96.2%) strategies with the expected label.

Subsequently, similar results were obtained for classify-
ing a complex sequence of rational-passive decisions with
noise (Q4; 88.5% rational, 78.9% passive), and identifying
most (ir)rational strategies among various gestaltlines (Q7;
96.2% expected answers). Likewise, subjects were able to
find the most prominent strategy change across two gestalt-
lines (Q8; only 3 subjects selected unexpected gestaltline;
7 subjects selected unexpected breakpoint). About 80% of
the subjects were able to mark the longest uninterrupted sub-
sequence of rational decisions by player H2 (Q9; Figure 6).

In Q3, we asked subjects to mark all (irrational) outliers
within a complex sequence of otherwise rational decisions.
Notably, each outlier instance has been marked by at least
86.5% (and up to 94.2%) of the subjects. Somewhat disap-
pointingly one third of the subjects also marked a pass-at-
50%-chance decision that was surrounded by play-at-50%-
chance decisions . While this constellation indeed results
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Figure 8: Results for Q11 “Please divide the sequence into sub-sequences and label them with a brief description” (irrational,

rational, outliers, passive, active). Answers split into irrational vs. rational (left) and passive vs. active (right) with outliers
highlighted. Top two rows indicate our predictions, others the actual answers (one row per subject).

in perceiving increased leanings of glyphs [TGH12], well-
trained readers would have noticed that irrational decisions
are slightly highlighted with a stronger glyph hue. Still, sub-
jects found an interesting subsequence (after losing two 50%
games, the next one is passed) and potentially have inter-
preted this temporal change in decision making to be irra-
tionally inconsistent.

Since an occasional confusion of rationality and con-
sistency was already observed in our pretests, additional
questions served to disentangle observations from interpre-
tations: We asked subjects to compare a sequence of ra-
tional decisions with
two modified versions of itself. First, all 50% games were re-
defined as being played .
88.2% of subjects (expectedly) evaluated the modified
sequence to be more consistent (Q10), but 51.9% of
subjects also (unexpectedly) evaluated this sequence to
be more rational (Q5; 38.5% equally rational). Second,
the games of the modified gestaltline were permuted

to match the length
of the original gestaltline. As a result, the majority (54.9%)
of subjects evaluated both gestaltlines to be equally ratio-
nal (Q12); only about half of the subjects did realize that
the length of gestaltlines is influenced by rationality of deci-
sions, consistency of decisions, and permutation of games.

Another impression from the pretests was reproduced in
Q6: We asked “Did the following subject go lucky?” with
regard to a sequence of games that were primarily won, but
did involve unfavorable outcomes alike. While the correct
answer was “No” (almost all 50% games were lost), about
half of the answers were wrong (“Yes”), with explanations
such as “more blue dots” / “big wins”. That is, subjects did
observe correctly the relevant information that needs to be
scrutinized (colored dots), but about half of their interpreta-
tions did not succeed in disentangling (expected) profit from
(unexpected) luck.

Finally, subjects were asked to annotate a short sequence
of complex patterns in decision making with strategies,
breaks, and outliers (Q11). The reassuring results are sum-
marized as gestaltlines in Figure 8.

Our user study thus demonstrates that a short briefing is
sufficient for untrained readers to reliably find holistic pat-
terns, outliers and breaks within the proposed visualizations.

5. Conclusions

We proposed a conceptual design approach aiming for
compact graphical representations of multivariate data se-
quences. It consists of the arrangement of especially de-
signed glyphs in sparklines such that patterns of interest
yield gestalts which can be perceived holistically and pre-
attentively.

We feel that our initial explorations with illustrative ex-
amples, a detailed case study, and its internal validity test
show that, as a design principle, the concept of gestaltlines
is viable. We see a wide-open space for creative research into
glyph design and alignment based on this principle. But two
examples for exciting future research topics are the search
for alternatives to existing representations such as separation
plots [GWS11] and the extension to hierarchical patterns.

Given the vastness of the potential design space and us-
age scenarios, however, comprehensive design guidelines
are far beyond the scope of this paper. Much detailed re-
search will be needed to assess with confidence the effec-
tiveness of gestaltlines for specific data patterns in specific
applications. Note that studies such as [FFM∗13] are likely
to yield different results when considering gestalt-informed
glyphs and arrangements. It will also be important to under-
stand the relative reading accuracy and efficiency of vari-
ant gestaltlines and alternative graphical designs. In addition
to task and design-related factors, comparative studies will
have to take contextual factors such as the available media
into account.

Like every form of visualization, gestaltline design is lim-
ited by constraints such as resolution, number of discernible
colors, or shape complexity. Where these boundaries are is
yet another question that we cannot answer today.
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