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Figure 1: The proposed framework for isometric shape matching allows establishing dense correspondences between symmet-
ric shapes in a principled way. Here, we first estimate a single map in an appropriate quotient space and then use it to generate
8 different point-to-point maps between two octopus models. Each correspondence is shown by transferring the XYZ functions
from the target onto the source and rendering them as RGB channels on the mesh. Note, e.g. the location of the orange arm.

Abstract

We introduce a novel method for non-rigid shape matching, designed to address the symmetric ambiguity problem
present when matching shapes with intrinsic symmetries. Unlike the majority of existing methods which try to
overcome this ambiguity by sampling a set of landmark correspondences, we address this problem directly by
performing shape matching in an appropriate quotient space, where the symmetry has been identified and factored
out. This allows us to both simplify the shape matching problem by matching between subspaces, and to return
multiple solutions with equally good dense correspondences. Remarkably, both symmetry detection and shape
matching are done without establishing any landmark correspondences between either points or parts of the
shapes. This allows us to avoid an expensive combinatorial search present in most intrinsic symmetry detection
and shape matching methods. We compare our technique with state-of-the-art methods and show that superior
performance can be achieved both when the symmetry on each shape is known and when it needs to be estimated.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: — Shape Analysis.

1. Introduction

Shape matching is one of the most fundamental and best-
studied problems in digital geometry processing. While
rigid shape matching is a relatively well understood, find-
ing correspondences between pairs of shapes undergoing
non-rigid deformations, such as articulated motion, remains
challenging. Nevertheless, a large number of methods have
recently been proposed to address this problem [BBKO6,
HAWGO8, LF09, TBW*09, OMMG10, KLF11, OBCS*12,
SY13]. Perhaps the most common approach to non-rigid
shape matching is to phrase the problem as finding intrin-
sic near isometries — correspondences that approximately
preserve geodesic distances between pairs of points on the
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shapes. The space of intrinsic isometries is appealing both
because it approximates natural shape deformations based
on articulated motion and because it admits low-dimensional
parameterizations —- under certain conditions it has been
shown that fixing a small set of landmark correspondences
uniquely determines the dense map between a pair of shapes
[LF09,OMMG10].

At the same time, one of the difficulties in applying the iso-
metric shape deformation model in practice is that many or-
ganic and man-made shapes exhibit symmetries, which can
result in approximate self-isometries. This means, in partic-
ular, that when trying to find an intrinsic isometry between
a pair of symmetric shapes, such as a pair of humans, there
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exist at least two equally good solutions. In the intrinsic set-
ting, many valuable cues for distinguishing these, such as
extrinsic orientation, may not be available. Worse still, the
presence of approximate symmetries can lead to extreme in-
stabilities during the solution process [OHG11].

The main goal of our paper is to give a theoretical frame-
work and a practical pipeline which lead to an efficient and
stable solution for the isometric shape matching problem in
the presence of symmetries (Figure 1).

The majority of existing methods try to address this problem
by fixing landmark correspondences either between points
[LF09, OMMG10] or between parts of shapes [OBCS*12],
to “break” the ambiguity in matching symmetric shapes.
However, this does not circumvent the underlying problem,
since reliably establishing the landmark correspondences
can in itself be challenging and error-prone, particularly be-
cause of the symmetric ambiguity in the selection. Purely
intrinsic methods are typically able to return an approxima-
tion of only one of the multiple possible correspondences,
without any indication that another equally good solution
is present. For this reason, common shape matching bench-
marks, (e.g. [KLF11]), consider as correct either of the two
correspondences.

Rather than trying to ignore the symmetric ambiguity prob-
lem or bypass it by fixing landmark correspondences, we
propose to take advantage of it, by incorporating the sym-
metry information directly into the matching formulation.
This idea is in line with several works that stress the great
discriminative potential of symmetry cues as features for ob-
ject recognition or categorization [PLC*08]. Indeed, one of
our observations is that the presence of a symmetry should
make shape matching easier, since intuitively only halves
of the shapes need to be matched. Thus, we propose to per-
form shape matching in a reduced (quotient) space in which
the symmetric parts have been identified and the distinction
between them factored out. Carrying out this identification
literally on the level of points on the shape, however, is prob-
lematic, as the symmetrized object is not itself naturally rep-
resented as a manifold or a mesh.

At the heart of our method is the dual functional map rep-
resentation introduced in [OBCS*12]. In that work, the au-
thors pointed out that while the set of points on a curved
surface can be very complex, the set of square integrable
functions defined on the surface forms a vector space, and
isometric shape matching can be phrased as finding a lin-
ear map between a pair of vector spaces. In our work, we
exploit this vector space structure to define an appropriate
quotient space of the functional space, which efficiently in-
corporates the symmetry information of the shapes to reduce
the complexity of the shape matching problem. This is due to
the fact that the linear-algebraic vector space structure of the
functional space allows operations such as subspace identi-
fication and projection to be handled in a natural, seamless
and efficient way.

As input to our method, we assume that we are given a pair
of approximately isometric shapes without correspondences,
but with a known symmetry map on one of the shapes. Our
goal is to use this information to a) detect the symmetry
on the second shape, and b) obtain both direct and sym-
metric dense correspondences between the pair of shapes.
Remarkably, our method achieves high quality correspon-
dences without requiring any landmark point or part corre-
spondences in the matching process. This is in sharp contrast
to existing shape matching methods which uniformly rely
on some notion of landmark correspondences. Finally, while
we focus on reflectional symmetries in this paper, our frame-
work can handle other types of symmetry, although extract-
ing the final dense map in the general case is not straightfor-
ward and constitutes a direction of future research.

1.1. Related work

Although shape matching is an extremely well-studied prob-
lem, there are relatively few methods that try to study and
systematically address the symmetric ambiguity present in
isometric shape matching.

A number of methods have tried to consider this problem
from the point of view of optimal placement of landmark
correspondences. In the context of rigid matching, Gelfand
et al. [GIRLO3] proposed a landmark placement method,
designed to alleviate the slippage problem, present when
matching two approximately slippable surfaces.

In non-rigid shape matching, Ovsjanikov et al. [OHG11]
pointed out that stability of isometric shape matching is in-
timately related to the symmetry structure of the shapes,
and proposed an efficient landmark selection procedure, de-
signed to improve shape matching performance in practice.
Tevs and colleagues [TBW ™ 11] proposed a guided landmark
selection process for shape matching, which adds landmark
points according to the amount of information contained in
them, as measured by the entropy of an appropriate proba-
bility distribution. In [SY13], the authors used a combinato-
rial multi-resolution matching approach, which tracks sev-
eral possible correspondence maps at the first (coarser) lev-
els, and the one that minimizes the geodesic distortion is kept
at the finer sampling levels. Although diminished, symmet-
ric flipping is still present in the final map.

Conceptually, our method is similar to classic sub-string
matching techniques [KMP77, BM77], where the self-
similarity of the pattern string is first taken into account be-
fore the matching, and then used to simplify and speed up
the matching process into the text string.

In the same spirit, recent works in shape analysis try to ex-
plicitly use the symmetry information in order to lighten up
essential tasks like shape matching [LKF12], shape segmen-
tation [LCDF10], or symmetry classification [RBBK10].
Specifically, Liu et al. [LKF12] reduce the shape match-
ing problem to a symmetry axis alignment problem. First
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they use a combinatorial approach to extract the symme-
try axes on both shapes, which are then aligned using a 1D
string matching algorithm. Eventually, a dense correspon-
dence map between the shapes is obtained by extrapolating
the correspondences found on the symmetry axes. Although
the method exhibits good performance on intrinsically sym-
metric shapes, the use of this approach is limited to shapes
where reliable 1D symmetry axes can be extracted.

In [LCDF10], the authors propose a symmetry-factored em-
bedding and distance, according to which symmetric points
on a shape get mapped to the same point in the new embed-
ding. This proves to be useful in applications like symmetry
orbit approximation or segmentation of symmetric shapes.
Our approach is directly inspired by this work and extends
it to finding correspondences between pairs of shapes by
using the symmetry invariant function space described in
[LCDF10] for shape matching.

In [RBBK10], Raviv et al. analyze and explore the group of
symmetries defined on a shape. In a bottom-up manner, they
use point landmarks to identify symmetry generators, which
are then composed to recover the complete symmetry group.
While elegantly handling different types of symmetry, this
approach is parameter-dependent and can lead to an incom-
plete symmetry group, if one of the symmetry generators is
not properly identified.

Our approach is fundamentally different from the aforemen-
tioned works in that the goal is to first recover symmetries
as consistent dense maps, and then use this information to
find multiple equally good dense correspondences between
shapes without any landmark correspondences. Performing
shape matching using symmetry information removes the
symmetry flipping problem.

Outline: In Section 2 we briefly recall the functional map
framework. Section 3 shows how this framework can be used
to decompose maps into parts which can be estimated in-
dependently. In Section 4 we use this observation to intro-
duce the quotient space matching method, which allows us
to compute a dense correspondence between shapes with a
known symmetry structure. We then extend this approach
to semi-quotient matching (Section 5), which is applicable
in case the symmetry is known on only one of the shapes.
Section 6 describes in detail the application of the proposed
framework for the particular case of reflectional shapes, and
Section 7 presents the results obtained using our techniques.

2. Functional Maps

In order to describe our approach, we first give an overview
of the functional map framework introduced in [OBCS*12].

Notation. We call shape a compact smooth surface M. The
intrinsic distance between points on M is denoted by dj; and
the Laplace-Beltrami operator by Ays. As is common, we
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denote LZ(M) the space of square-integrable functions on
M. This space is endowed with the scalar product (-,-) and
Hilbert norm ||.||. Idss denotes the identity map of M.

Functional map framework. Given a pair of shapes M and
N, a functional map between M and N is a bounded linear
map 7 between the vector spaces L>(M) and L?(N). For
instance, one can associate to every continuous map 7' : N —
M a functional map from the space L>(M) to L?(N) using
the formula 7(f) := foT.

Given two orthonormal bases (/) and (¢) of the spaces
L%(M) and L?(N), such a linear map 7 can be represented
by an infinite matrix C, defined by C;; =< T(Q)]}/I),(va > .
The authors of [OBCS* 12] pointed out that by using a multi-
scale basis, such as the one consisting of the eigenfunctions
of Ay and Ay, the map 7 can be well-approximated by fi-
nite matrices Cy := (C;;)1<i,j<n for a fixed n. Moreover, one
can recover Cy, in practice by formulating constraints of the
type Cnf = g, where f and g are corresponding functions
on M and N respectively. Note that n linearly independent
constraints of this type uniquely define the matrix Cy.

The functional correspondence  constraints  used
in [OBCS*12] are of two types. The functions f and
g can be local shape descriptors, i.e. functions derived from
the geometry of the shapes. Common robust descriptors
include the heat kernel signature (HKS) [SOG09] at a par-
ticular time ¢ or the Wave Kernel Signature (WKS) [ASC11]
for a logarithmic energy parameter c. In practice, these
constraints are usually not sufficient for obtaining a matrix
representing a point-to-point map, as they do not resolve
symmetric ambiguities. One therefore needs to add segment
preservation constraints, i.e. C,f = g where f and g are
indicator functions of the same segment on the two shapes.
Establishing part preservation constraints, however, is
computationally expensive and error-prone. Our goal here is
to derive a shape matching procedure that does not require
any landmark correspondence on the level of parts or points.

Whilst in [OBCS*12], the authors highlighted the fact that
the functional map representation naturally supports cer-
tain algebraic operations such as map sum, difference and
composition, in this paper we explore the so-called func-
tional map decomposition, which allows us to split the func-
tional map between two shapes into parts, each of which can
be estimated independently. This map decomposition corre-
sponds to the decomposition of the vector spaces of func-
tions on the two shapes into linear subspaces. In this work
we consider the particular decomposition of a vector space
into its symmetric and anti-symmetric subspaces, as it allows
us to address the ambiguity present when matching shapes
with intrinsic symmetries.

3. Decomposition of Functional Isometries

Recall that an isometry between two shapes is a map that
preserves distances between points. Throughout this paper
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Figure 2: A function defined on a shape M (left), and its pro-
Jection onto the space of symmetric functions L%_ (M) (cen-
ter) and anti-symmetric functions L2 (M) (right).

we also assume that a symmetry is an isometry between a
shape and itself. A functional isometry is a functional map
T such that || 7 f|| = || f|| for every function f on the source
shape. Note that a functional map induced by an isometry is
a functional isometry, but the converse is not true in general.

Space of symmetric functions L2 (M). We recall some re-
sults on the space of symmetric functions on a shape, some
of which have also been used in [LCDF10]. Note however
that Lemmas 3.1 and 3.2 are specific to the functional map
framework.

Let Sym(M) be the group of symmetries of a shape M. The
subspace of L2 (M) consisting of functions that are invariant
to symmetry is

L2 (M) = {f € L*(M); V S € Sym(M), foS = f}.

When the number of symmetries is finite, the space L (M)
agrees with the space L?(M), where M is the quotient of
M by its symmetry group. In this paper, we show how the
space of symmetric functions can be used in practice to per-
form computations that involve the quotient shape, but with-
out actually computing this quotient.

The orthogonal complement of the subspace L3 (M) is de-
noted L2 (M), and the orthogonal projections on these two
spaces are denoted w+. When the symmetry group has car-
dinality &, these orthogonal projections are given as:

Tf+(f)=l Y ros,

SeSym(M)

T— =IdM—ﬂZ+. (D)

Figure 2 shows an example of a shape and a function f, pro-
jected onto the space L% (M) and L% (M).

Symmetric eigenvectors of Ay;. The Laplace-Beltrami op-
erator Ays has the well-known property of commuting with
isometries. This means that if 7 : N — M is an isometry, then
for any smooth function f in L2 (M),

(Amf)oT =An(foT). ()
Using Eq. (1), this property implies in particular that Ayy

maps the space of symmetric functions Li (M) to itself. We
consider a basis of the space L2 (M) consisting of eigenfunc-
tions of the Laplace-Beltrami operator, that is (v');>¢ such
that AMvi = kivi . We assume that the eigenvalues are sorted
in increasing order.

Lemma 3.1 There exists an orthogonal basis of the space of
symmetric functions L3 (M) consisting only of eigenvectors
of the Laplace-Beltrami operator, i.e. Ayv = A v/,

Proof Consider an eigenpair (A;,v') of Ay. By the commu-
tativity property (2), one has

Ay (vioS) = (Ayv)oS=Av' oS

for any symmetry S of M. Summing these equalities over
all symmetries S in the group Sym(M), and using (1), this
implies that nv is an eigenvector of the Laplace-Beltrami
operator. Since L% (M) = ;. (L?(M)), we can extract from
these vectors a basis of L2 (M). [

Functional map decomposition. Equation (1) implies that
any functional isometry 7 between two shapes M and N can
be partitioned into two parts 74 that act respectively on the
space of symmetric functions and on its orthogonal comple-
ment. Precisely,

Ti:LE(M) = LE(N), Ta(f)=meo0T(f). ()

Moreover, these two maps 7+ are functional isometries be-
tween their source and target spaces.

The following lemma, which is at the heart of our approach,
shows that although there may be multiple functional maps
corresponding to isometries between two shapes, the sym-
metric parts of these maps coincide.

Lemma 3.2 Given two isometric shapes M and N, con-
sider the two functional maps 7, S induced by two different
isometries 7,5 : N — M, then T3 = S;.

Proof By assumption, T o s7lisa symmetry of M and for
any symmetric function f on M one has foT S f.
Thus, foT = foS for all symmetric f,ie. T+ =8+. [

4. Quotient-Space Matching

In the functional map framework, one is searching for a func-
tional map 7 * that is induced by an isometry from N to M.
One of our main observations is that the symmetric part 7.*
of the unknown map 7 is significantly easier to compute
than the anti-symmetric part, for the following two reasons:

e When the shapes M and N have non-trivial symmetry
groups, there exist multiple different isometries between
N and M, which induce different functional maps be-
tween the spaces L?(M) and L?(N), while, as shown in
Lemma 3.2, their symmetric parts 7, coincide.

e Intrinsic descriptors, such as the HKS or WKS, are sym-
metric functions on the shape, and do not give any infor-

(© 2013 The Author(s)
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WKS, nt=10
WKS, nt=100
WKS, nt=200

Mean Projection Error

20 30 40 50 60
Number of basis functions

Figure 3: Average quadratic error obtained when projecting
the descriptors on the space E spanned by the first k eigen-
functions of the Laplace-Beltrami operator (solid lines) and
the symmetric part of this space only (dashed lines).

mation on the anti-symmetric part of the optimal map. In
other words, there are as many linearly independent func-
tion preservation constraints for the symmetric part 7 as
for the full functional map 7 even though the domain and
range spaces of the former are smaller (see Figure 3).

In this section, we show how to exploit these remarks in a
pipeline that is adapted from [OBCS*12] in order to com-
pute functional maps 7+ from symmetric functions to sym-
metric functions. Since computing the functional map boils
down to a linear solve, we first discuss rank-deficiency issues
and ways to increase the rank of the linear system, and then
we introduce the full algorithm for quotient-space matching.

4.1. Rank of the descriptors.

Consider the finite space E;(M) spanned by the k eigen-
functions of the Laplace-Beltrami operator with k& smallest
eigenvalues, and EX (M) := 1 (M) the symmetric and anti-
symmetric parts of this space. A natural question is how to
construct a family of descriptors that span the whole space
EX (M). More realistically, we would like to maximize the
rank of the linear space spanned by the chosen signatures.
Figure 4 (solid lines) shows the rank of the space spanned
by Wave Kernel Signatures [ASC11] taken at certain energy
levels (c;)1<i<¢. as a function of the number of energy lev-
els. We note that beyond a certain point adding more energy
levels does not help to increase the rank of the system.

Increasing the rank. The rank of the descriptor space can be
increased by producing derived descriptors indicating where
certain values of the original descriptors occur on the shape.
This can be done using a very simple partitioning technique.
We split every descriptor f from M to an interval [as,by]
into a finite number of derived descriptors f1,..., fs defined
by the formula

fi) = exp (= (F(x) —az) /07 )

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

WKS, nt=200
0.18 WKS, nt=200 split 5
WKS, nt=100
——&— WKS, nt=100 split 5

0 5 10 15 20 25 30 35 4
nth singular value of the constraint matrix

Figure 4: Singular values of the descriptors constraint ma-
trix before and after the splitting. Note that increasing the
number of levels does not help to increase the rank beyond
a certain point, even after the splitting; hence regularization
is also required.

where 67 = (by —ay)/s and ay; = ay +icy . We apply
the same transformation to the corresponding descriptors
g on the second shape N. We then replace the descriptor
preservation constraint 7 f = g by s such derived constraints
T fi = gi. Intuitively, this splitting operation re-enforces the
local information contained in the original descriptors, aug-
menting the rank of the matrix of descriptors (see Figure 4,
marker lines), which improves the estimated functional map.

4.2. Regularization

Even with splitting, the descriptors usually do not span the
whole space of symmetric functions. This means that the
signature preservation constraints are not sufficient to define
the unknown map 7. uniquely, and one needs to add regu-
larization terms in the optimization in order to converge to a
good approximation of 7. The following Lemma lists a few
properties of the optimal map 77 that follows from §3. As
in [OBCS*12], these properties are used as regularizations
in the map estimation algorithm.

We denote by 8" the distribution of heat obtained by apply-
ing the heat flow from a Dirac mass at x for a time 7. The
symmetrization of this function is denoted &Y.

Lemma 4.1 The map 7 satisfies the following properties:

(i) Commutativity with the Laplace-Beltrami operator, i.e.
A (T3 f) = T3 (Amf) for every function f in L2 (M).

(ii) 75 is an isometry from L2 (M) to L% (N).

(iii) For every point x on M, there exists a point y in N such
that for all times # > 0 one has 778} = &}

These properties follow directly from the fact that T com-
mutes with the Laplace-Beltrami operator, from Lemma 3.1,
and from Eq. (3).
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Algorithm 1: Quotient-space shape matching

Input: Shapes M, N, represented as triangle meshes, symmetries
SM:M—->MSy:N—N

Output: Point to orbit map M — N/Sy. Dense maps M — N in

case of reflectional symmetries.

Compute a multiscale basis (v, ) and (w', ) for L2 (M), L% (N), by

extracting a multiscale basis for L?(M),L?(N) and restricting to

functions, invariant to Sy, and Sy respectively.

Compute a set of descriptors (f;), (g;) on M and N (e.g. WKS for a

particular energy level ¢;), and represent them as vectors of

coefficients in (v, ) and (w', ).

Formulate commutativity constraints CA;C, = A},C, where A;C, is the

projection of Ay onto (v, ).

Estimate the initial Cy using a least squares system.

Refine € using quotient-ICP, and convert it to a point-to-orbit map.

In case of reflectional symmetries, convert to a point-to-point map.

4.3. Algorithm

Our quotient-space matching algorithm follows the pipeline
proposed in [OBCS™12]. The main difference is that we are
searching for a functional map between the spaces of sym-
metric functions L2 (M) to L% (N). The main steps of the
algorithm are summarized in Algorithm 1.

The quotient matching algorithm tries to approximate the
unknown functional map 77 by a matrix (Cj;) in these
multi-resolution bases. These bases are obtained by sym-
metrizing Laplace-Beltrami eigenvectors using the operator
7+ and by pruning the redundant vectors. The basis of the
space L2 (M) constructed this way is denoted (v, ), with cor-
responding eigenvalues ;. On L2 (N), they are denoted re-
spectively (w?, ) and u;. In a first step, we construct an initial
estimation Cp of the optimal map by enforcing in a least-
square sense signature preservation and Laplace-Beltrami
commutativity. This map is then refined using a variant of the
iterative closest point algorithm called quotient-ICP. More
details about the implementation of both steps of the algo-
rithm can be found in §6 of [OBCS*12].

Initial estimation. The initial matrix Cyp is constructed by
minimizing the functional Ey(C) := Esig(C) + Ecom(C). The
first term Ejg corresponds to the signature preservation de-
fect, and the second term Ecom corresponds to the defect of
commutativity with the Laplace-Beltrami operator, as justi-
fied by Lemma 4.1(i). These defects are measured in a least-
square sense:

2 2 2
Ecom(C) =Y Cij(hi—u))”, Egg(C) =Y ||Cijfs —gs||”
ij B
The functions (fs) and (gs) are corresponding symmetric
signatures on M and N. In our experiments, we used WKS
functions as signatures, similar to the [OBCS™12] setting.

Quotient-ICP. The matrix C; is then refined iteratively us-
ing a variant of the ICP algorithm, which is motivated by
Lemma 4.1 (ii) and (iii). We first construct a sparse sampling

S of M; then at every step i, we compute the map

T,:xeS— argynéi]rvl Hﬁf - C,-Si’t .
This nearest-neighbor computation can be easily performed
using an adapted data structure such as a k-d-tree. The up-
dated matrix C; | is then obtained by computing the singular
value decomposition of the matrix ¥ g Bﬁ(x)‘t(Bit)T, after
replacing all of its singular values by one.

4.4. Conversion to point-to-orbit and point-to-point.

The map 7+ obtained as an output of the algorithm pre-
sented above can be converted to a point-to-orbit map, where
every point x in M is mapped to a set of the form Oy :=
{S(y);S € Sym(N)}. This conversion is performed using the
algorithm used in [OBCS™12] to compute the point-to-point
map: given a query point x in M, one computes a point 7' (x)
that minimizes

. x,t vt
argmin Hﬂﬁ -8
yEN ot

Note that one should not expect the point-to-point map T
to be continuous, as the choice between a point y in N and
a symmetric point y' is completely arbitrary. As shown in
Section 7.1 the map R : x = Or(y) from points on the first
shape M to orbits on the second shape N turns out to be
continuous in most practical cases.

Point-to-point maps. A fundamental domain of M is a
closed set D C M such that for every symmetry S of M the
restriction of S to the interior of D is one-to-one. Moreover,
we require that the family of sets S(D) cover M. We call
decomposition of M into fundamental domains a covering
(Di)1<i<n of M by images of D under symmetries, such
that the sets (D;) have pairwise disjoint interior. Now as-
sume that we are given consistent decompositions (D;)<j<p
and (E;)1<j<y of the shapes M and N into fundamental do-
mains. Note that such a consistent decomposition can be
found when both shapes M and N have a single reflectional
symmetry, as shown in Section 6. In this setting, it is possible
to convert a point-to-orbit map R into a consistent point-to-
point map T, by defining the image of a point x that belongs
to a fundamental domain D; C M as the unique point in the
intersection of the orbit Or(,) with the corresponding fun-
damental domain E;.

5. Semi-Quotient Matching

A more realistic scenario when matching two symmetric
shapes is that the symmetry, or rather the space of symmetric
functions L+, is known for only one of the two shapes under
consideration. This is the case for instance when matching
two poses of a shape, one of which possesses an ambient
reflectional symmetry — such as the rest pose of a human
shape. In this section we show how our approach can be used
to transfer the known symmetry information from the target

(© 2013 The Author(s)
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Figure 5: For semi-quotient matching we aim to estimate the
functional map R* = ny o T from L*(M) to L% (N), where
only a symmetry on N is known. Thus, for any function f on
M (left), R*f is a symmetric function on N. (center) R* f
computed using the ground truth map, and (right) estimated
using our method. Note that all isometries N — M induce
the same R™* making it easier to compute.

shape to the source, and then use the ideas of the previous
section to establish the dense correspondence map between
the two shapes. Hence, throughout this section, we assume
that the source and target shapes M and N are isometric, and
that we know the space L2 (N) for the target shape only.

Let T be an isometry between N and M, and 75 be the de-
composition of the functional map 7 induced by T on the
spaces of symmetric and anti-symmetric functions. The goal
is to recover the functional map R* from L?(M) to L1 (N),
which maps a function in M to the symmetrization of the
corresponding function on N. This means that R* =707,
where T is the projection onto the space of symmetric func-
tions on N (see Fig. 5). Note that Lemma 3.2 also holds in
this case, which means that the optimal map is uniquely de-
fined, making it easier to estimate in practice. In this sce-
nario, however, the map R* cannot be expected to be an
isometry, as the dimension of its domain and range spaces
are different. The following Lemma shows that the regular-
ization induced by LB commutativity and quotient-ICP can
be adapted with minor modifications of the algorithm.

Lemma 5.1 The map R* satisfies the following properties:

(i) Commutativity with the Laplace-Beltrami operator, i.e.
An (R*f) = R* (An f) for every function f in L?(M).
(i) The orthogonal complement of KerR* is L2 (M).
(iii) The restriction of R* to L (M) is an isometry.

(iv) For every point x on M, there exists a point y in N such
that for all times ¢ > 0 one has R*§"' = &'

The algorithm for semi-quotient matching is then very simi-
lar to the one presented in Section 5. The main difference is
in the semi-quotient ICP step, which we describe below.

Semi-quotient ICP. For semi-quotient matching, the matrix
C; that we compute has dimension

dim(EX(M)) x dim(EX (N)) ~ k x (k/2).

Properties (ii) and (iii) of Lemma 5.1 suggest to estimate first
Li (M) as the orthogonal complement of the kernel, and then

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

to enforce the isometry property on the subspace Li (M).
Using the same notations as in the previous section, the ICP
projection step can be modified as follows. First, compute

T;(x) := argmin HBX’;’ — &
yey

Then, compute the singular value decomposition of the rect-
angular covariance matrix M; =Y g Bﬁ(x)"[ (&), The re-
fined matrix C; is then obtained by replacing all the singu-

lar values of M; by one.

Function transfer from L2 (N) to L?(M). The pseudo-
inverse of the functional map R : L?(M) — L2 (N) can be
used to transfer symmetric functions from the second shape
to the first shape. In practice, however, we observe that the
space spanned by the first few eigenvectors of the Laplace-
Beltrami operator does not allow us to approximate well cer-
tain functions. In order to be able to transfer any symmetric
function defined on N, we convert the map R into a point-
to-orbit map R using the same algorithm as in Section 4. The
pull-back of a symmetric function g in Li (N) is the function
f on M defined by the formula f(x) := g(R(x)).

6. The Case of Reflectional Symmetries

In this section, we assume that both shapes M and N have
a single reflectional symmetry. Moreover, we assume that
we are given the unique non-trivial symmetry Sy of the tar-
get shape, or that we can estimate it easily. We show how
to exploit the information contained in the semi-quotient
matching of the previous section in order to pull back the
symmetry map from the target shape N to the source shape
M. Finally, we explain how to construct dense point-to-point
matchings between the shapes M and N.

A shape has a single reflectional symmetry if its symme-
try group contains exactly two symmetries: the identity map
Idys and an involutive symmetry Sy, i.e. such that Sy; o Sy
is the identity map. Moreover, we assume that the symmetry
axis My := {x € M;Sp(x) = x} separates the shape into two
parts, denoted My and M, for left and right.

6.1. Symmetry transfer

The simplest idea for transferring the symmetry operator
from the second shape to the first shape would be to use Eq.
(1). When the shape has only two symmetries, this equation
implies Sy(f) = 27+ (f) — Idi2(p), and one could expect
to be able to estimate the functional Sy, using the orthogo-
nal projection onto the space of symmetric functions. While
elegant in theory, we observe that this idea does not always
provide good results in practice.

Left-right map. We call left-right map of M the map €y
that maps every point on the left part M, to —1 and every
point on the right part M, to 1. The knowledge of the left-
right map is equivalent to the knowledge of the left and right
parts of M. Although we do not use this in practice, we also
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note that the decomposition of M into the right and left parts
can in principle be recovered from a single correspondence
between a point p, and its correspondence p, = Sy(py), if
pe¢ # pr, by simply considering the intrinsic Voronoi cells of
these two points.

Our goal is to use the result of the semi-quotient matching
between shapes M and N to estimate the left-right map on
shape M. The algorithm from the previous section gives us
amap R : L*(M) — L2 (N), which can be used to pull back
symmetric functions from the target shape N to M. Note that
this does not allow us to pull back the left-right map of N
directly since this map is anti-symmetric. We can circumvent
this difficulty using the following pipeline:

1. Compute the (symmetric) function ¢ : N — R that maps
every point x on N to the intrinsic distance between x and
the symmetric point Sy(x). If speed is important and if
the shape N has an extrinsic reflectional symmetry, one
can use the extrinsic distance between x and Sy (x).

2. Pull the function ¢ back on M as explained in the previ-
ous section, thus constructing an approximation \ of the
function y : x € M — dpr(x, Spr(x)).

3. Extract the left and right part of M using the persistence-
based clustering algorithm introduced in [CGOS11]. In
this setting, we use the mesh itself as the nearest neigh-
bor graph, and choose the persistence threshold param-
eter automatically from the persistence diagram so as to
yield exactly two clusters M, ¢ and M,.

This partition of the shape M is finally converted to a left-
right map €y.

Symmetry reconstruction. The approximation £; of the
left-right map on M can then be used to create new descrip-
tors. This means that in addition to the usual descriptor-
preservation constraints (fs) that lie in the space of sym-
metric functions Li (M), we can construct anti-symmetric
descriptors (£&yfs). This allows us to use the functional
map pipeline from [OBCS*12] to estimate the symmetry
Sy between M and itself. We search for a functional map S
from M to itself which satisfies the descriptor-preservation
constraints S€yy fs = —€y fs in addition to the standard con-
straints S fs = fs. This map is refined using the ICP regular-
ization, and can then be converted to a point-to-point map.
The results of this algorithm are reported in Section 7.2.

6.2. Pipeline for quotient-based shape matching

One can combine the algorithms of the previous sections in
order to construct pairwise matchings between shapes (M;)
that are isometric deformations of a shape M| with a single
reflectional symmetry, which we assume to be known.

1. For every shape M;, estimate the left-right map €y, and
the space of symmetric functions Li (M;) by using the
semi-quotient matching and symmetry transfer between
M; and M1, as explained in Section 6.1.
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Figure 6: Geodesic error for correspondences computed for
each shape in the TOSCA dataset to the undeformed shape
in the same class, where both the point and its symmetric
image are considered as correct.

2. For every pair of shapes we perform quotient-space
matching as described in Section 4. This gives us func-
tional maps 7,7 : L1 (M;) — Ly (M;).

Note that in general, the result of quotient-space matching
can only be converted to a point-to-orbit map. However, in
the case of reflectional symmetries, we have a consistent de-
composition of all shapes into fundamental domains, namely
the right part and the left part of the shape.

3. Convert the point-to-orbit map to a consistent point-to-
point map by enforcing the preservation of the left and
right parts of the shapes as in Section 4.4. We get a second
consistent matching by switching the left and right parts.
Section 7.3 describes this step in detail.

7. Results

The quantitative experimental results given in this section
were obtained using the TOSCA dataset, which contains 9
classes of shapes (3 humans, 5 animals, and 1 centaur), 81
shapes in total [KLF11,BBKO08]. All shapes exhibit a reflec-
tional symmetry. Each class contains one undeformed ver-
sion of the shape, except for the class “gorilla”. It is worth
mentioning that we first updated the ground truth from the
benchmark (with the authors’ permission), in order to obtain
a more accurate evaluation, since we observed that some of
the landmark correspondences were noisy. We improved the
benchmark both by increasing the number and the quality
of symmetric correspondences to 50 uniformly distributed
pairs of points in each shape class. This ground truth is
used for evaluating symmetry detection, and shape match-
ing, when symmetric flipping is allowed.

Following the pipeline given in Section 6.2, we will first re-
port the results of the semi-quotient shape matching method
described in Section 5, when matching each shape to the un-
deformed shape in the same class. In this case, the reflec-
tional symmetry on the undeformed shape is a global ex-
trinsic reflectional symmetry and can therefore be computed
easily. Note that we excluded the class “gorilla” from all of

(© 2013 The Author(s)
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A )
Figure 7: The distance function d(x,S(x)) computed on the
undeformed shape, the transferred function using the esti-
mated map, result of persistence-based clustering and the
final estimated symmetry.

the following examples, because no undeformed version of it
is provided. Using the symmetry transfer described in Sec-
tion 6.1, we get the symmetry map for each shape in the
dataset; the quality of these maps is evaluated in Section 7.2.
Finally, the results of the quotient-based matching method
are given in Section 7.3.

7.1. Semi-quotient matching

To evaluate the semi-quotient space matching we first con-
verted the estimated functional map to a point-to-point map.
For this we used the method described in [OBCS*12] based
on finding the nearest delta-function on the target shape to
the image of a given delta-function on a source shape. Note
that in this case, we have to project each delta function on the
target onto the space Li, and since symmetric points will
have the same projection in this space, the point-to-point
map can arbitrarily flip between a point and its symmetric
counterpart.

We then evaluated the resulting point-to-point map 7 :
M — N, by computing, for every point x in the bench-
mark, the minimum between the distances d(7 (x),x’) and
d(T(x),8(x")), where x’ is the ground truth correspondence
for x and S : N — N is the ground truth symmetry on
N. Figure 6 shows the fraction of correspondences against
the geodesic distance computed as above (See [KLF11] for
the description of the scale). We also compare our method
to two state-of-the-art techniques: Blended Intrinsic Maps
(BIM) [KLF11] and the original functional maps method in
[OBCS*12] on the same dataset. We stress that unlike these
methods, our technique does not rely on any landmark corre-
spondences, and computes the point-to-point map only dur-
ing post-processing. In particular, this allows us to achieve
comparable results at only the fraction of the time. For ex-
ample, on this dataset we achieve a 5x speedup compared
to the functional maps technique, which uses an expensive
combinatorial search to establish part correspondences.

7.2. Symmetry transfer

While the results for semi-quotient matching are comparable
to those of other methods, they can further be improved by
using them for the symmetry transfer followed by quotient-
space matching described in Section 4. Thus, we first use
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Figure 8: Geodesic error for symmetry detection on the
TOSCA dataset, using estimated and exact symmetry axes.

these results to estimate the symmetry. Namely, we com-
pute the distance function on the undeformed version of each
shape in the dataset, and use the correspondences computed
earlier, to transfer it onto the source shape. We then perform
persistence-based clustering to find two clusters and use con-
straint splitting to estimate the symmetry on each shape.
Note that this process is very robust since persistence-based
clustering is very global in nature and can recover from lo-
cal errors in the map. Figure 7 shows the process of sym-
metry estimation through transfer on one of the dog shapes.
Note also that the symmetry estimation method only uses
the map to the target shape to estimate the symmetry axis.
Therefore, one can compare the results of this technique to
the case where the symmetry axis is specified and no target
shape is used.

We evaluated this symmetry estimation by computing the
geodesic error of the computed correspondences. In this case
there is no ambiguity in the result, since we assume ex-
actly one reflectional symmetry on each shape. We also com-
pared the maps generated by our method with Blended In-
trinsic Maps-based symmetry detection. Note that BIM was
introduced as a shape matching technique in [KLF11], and
in [LKF12], the authors give a brief evaluation of BIM as a
symmetry detection method, concluding that it gives state-
of-the-art results for symmetry detection. Figure 8 gives the
quantitative results obtained with the two methods on the
TOSCA dataset, whereas Figure 9 illustrates some exemplar
results. Note that our method shows significant improvement
in the quality of the final symmetry compared to BIM which
is not able to capture high-frequency features close to the
Symmetry axis.

7.3. Quotient-based shape matching

Finally, we use these results for quotient-based shape match-
ing, as explained in Section 6.2. Figure 10 shows the results
of quotient-space matching on the TOSCA dataset. To avoid
clutter, we only plot the error for one of the two possible
maps between each pair of shapes. Note that unlike the plot
in Figure 6, in this evaluation we only allow the flipping of
the entire maps, and not of every point. Thus, we consider,
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Figure 9: Symmetry maps obtained on the TOSCA dataset
using BIM (first row), and using our method (second row):
compared to BIM, the improvement achieved by our method
is noticeable especially on regions close to the symmetry
axis, encompassing high-frequency features.

for every map, its average error with respect to the direct and
ground truth symmetry map, and then compute the per-point
evaluation based on the ground truth that had the smaller er-
ror. The same procedure was used in the original BIM bench-
mark [KLF11] to evaluate intrinsic matching.

As can be seen in Figures 10 and 11, the quality of the fi-
nal maps computed with our method is significantly better
than that of both the original functional maps framework and
BIM. We also compared our technique to the recently pro-
posed method for computing correspondences using symme-
try axes [LKF12]. To achieve a fair comparison, we assumed
that in both cases the symmetry axis is exact and provided by
the user. As shown in Figure 10, our method achieves a sig-
nificant improvement in the results (average error lower by
2.5 times). We attribute this improvement to the reduction in
the dimensionality of the solution space, which is achieved
without sacrificing the representation quality.

Remarkably, the quality of the symmetry and correspon-
dence maps obtained using the symmetry transfer method
is very similar to the case when the symmetry axis is given
(Figures 8 and 10), showing the robustness of the proposed
transfer procedure.

7.4. Parameter selection

Both the quotient and semi-quotient matching methods rely
on several key parameters. Perhaps the most important is
the number k of eigenvectors of the LB operator used in
the matching. We set k = 30 for all of the experiments in
this paper (note that the dimension of the space Li was es-
timated between 16 and 20 depending on the model). We
also used the Wave-Kernel Signature with nf = 100 and con-
straint splitting with s = 5 intervals. Finally, in all of the ex-
periments, we estimated the initial map using LB commu-
tativity with descriptor preservation constraints. We then re-
fined this initial map using the ICP procedure with 20 steps.
Finally, we refined the initial map by converting the point-
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Figure 10: Geodesic error for shape matching on the
TOSCA dataset.

to-point map and using ICP refinement with a larger number
k (100 and 300) as described in Section 8.1 of [OBCS*12].

8. Conclusion

In this paper, we have introduced a principled framework
for performing shape matching between pairs of symmet-
ric shapes. Our main insight is to combine the ideas of the
symmetry-invariant function space [LCDF10] with the func-
tional map framework [OBCS*12] to show how dense cor-
respondences can be found efficiently in this reduced space.
The use of functional map framework is essential since it al-
lows us to perform shape matching in a reduced linear space
and avoid the explicit identification of symmetric points.
Notably we have shown that high-quality maps can be ob-
tained using this framework without establishing any land-
mark point or part correspondences, since the map between
symmetric spaces is unique even in the presence of multiple
isometries between the shapes.

Limitations and future work. While our framework is gen-
eral and can, in principle, handle any pair of symmetric
shapes, it still has some limitations. Most importantly, we
rely on an estimation of the space Li, for which we currently
need at least one reference shape with a known symmetry. It
would be interesting to see if this space can be estimated au-
tomatically e.g. using the method of [LCDF10]. Moreover,
there is a number of key parameters, which are currently
set manually. An automatic or data-driven approach would
be better. Finally, our current method for extracting dense
correspondences after quotient space matching only works
for a limited class of symmetries (notably cyclic symmetries
with a single generator), and shapes on which a fundamental
domain can be consistently estimated. In the future, a more
thorough investigation is necessary to extend this method to
more general cases of symmetries and shapes.
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Figure 11: Correspondences obtained on the TOSCA dataset [BBK06] between a target shape (first row) and a source shape,
using BIM [KLF11] (second row), the original functional maps approach [OBCS™ 12] (third row), and our semi-quotient method
(last row). Corresponding points are indicated through the same color. Note that BIM reports continuous maps, but fails in
capturing the details of the shape, whereas the original functional maps method exhibits the opposite behavior. The proposed
method achieves satisfactory results in terms of both, maps continuity and accuracy.
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