
HAL Id: hal-00864707
https://enpc.hal.science/hal-00864707

Submitted on 22 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantizing Complex 3D Scenes using Constrained
Attribute Grammars

Alexandre Boulch, Simon Houllier, Renaud Marlet, Olivier Tournaire

To cite this version:
Alexandre Boulch, Simon Houllier, Renaud Marlet, Olivier Tournaire. Semantizing Complex 3D
Scenes using Constrained Attribute Grammars. Computer Graphics Forum, 2013, 32 (5), pp.33-42.
�10.1111/cgf.12170�. �hal-00864707�

https://enpc.hal.science/hal-00864707
https://hal.archives-ouvertes.fr

Semantizing Complex 3D Scenes

using Constrained Attribute Grammars

A. Boulch1, S. Houllier1, R. Marlet1 and O. Tournaire2

1Université Paris-Est, LIGM (UMR CNRS), Center for Visual Computing, ENPC, F-77455 Marne-la-Vallée 2CSTB, F-77447 Marne-la-Vallée

Figure 1: Automatic analysis. Left to right: input CAD model (triangle soup), polygon reconstruction, semantization, rendering.

Abstract

We propose a new approach to automatically semantize complex objects in a 3D scene. For this, we define an
expressive formalism combining the power of both attribute grammars and constraint. It offers a practical con-
ceptual interface, which is crucial to write large maintainable specifications. As recursion is inadequate to express
large collections of items, we introduce maximal operators, that are essential to reduce the parsing search space.
Given a grammar in this formalism and a 3D scene, we show how to automatically compute a shared parse for-
est of all interpretations — in practice, only a few, thanks to relevant constraints. We evaluate this technique for
building model semantization using CAD model examples as well as photogrammetric and simulated LiDAR data.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Object hierarchies I.4.8 [Image Processing and Computer Vision]: Scene Analysis—Object recog-
nition I.5.4 [Pattern Recognition]: Applications—Computer vision

1. Introduction

We consider here the problem of semantizing complex ob-
jects in a 3D scene. The need for interpreting such scenes is
an old problem but still largely unsolved. The recent avail-
ability of inexpensive 3D data has stimulated progress on
this topic. It is now cheap and easy to make real world acqui-
sition, e.g., using photogrammetry, time-of-flight cameras or
active stereovision systems such as the Kinect. Purely syn-
thetic 3D data has become mainstream too, with 3D model-
ing software such as SketchUp, making it possible for any-
body to easily create 3D models.

Scene semantization has many uses. In large 3D reposito-
ries (such as Aim@Shape or Trimble 3D Warehouse), se-
mantic information is needed to perform relevant and ef-
ficient queries. Applications include, e.g., virtual sets for
games or movies, interior design, product design for e-

manufacturing [ARSF09], etc. However, manually annotat-
ing geometry with semantics is a time-consuming and te-
dious task, which is error prone and expensive. Besides, the
size of some repositories is such that a systematic manual
treatment is unfeasible in practice. Automation is required.

Businesses such as the building industry are also rapidly
moving toward relying heavily on high-level semantized 3D
models for the whole lifecycle of their products, from sketch
and design to construction, operation and dismantlement.
These industries typically work from data acquired using
devices such as laser scanners, whose expensive price has
also greatly reduced lately. The stakes are high as semantized
3D models enable much quicker, safer and cheaper develop-
ments and decisions. However, while 3D models tend now
to be created for new products, they are generally not avail-
able for existing ones. In particular, old buildings — i.e., by

�

Renaud Marlet

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

Figure 2: Automatic semantization of LcF building.

far, most buildings — do not enjoy digital 3D information
whereas they would benefit the most from it, e.g., to plan
cost-effective renovation that achieves good thermal perfor-
mance. Actually, as building rehabilitation becomes more
complex due to the evolution of techniques and regulations,
and as customers now require not only low-priced solutions
but also performance guarantees, rules of thumb and cross-
multiplication do not scale. Simulations based on complete,
accurate and semantized data are needed.

The challenge is thus to efficiently produce 3D models
that are not limited to geometry but that are also structured
with respect to their semantics, e.g., building elements: floor,
roof, wall, windows, stairs, etc. What we propose in this pa-
per is a new technique to semantize an existing high-level
geometry. We assume we are given a geometric model as a
set of 3D polygons and we produce labels for these polygons
identifying the semantic part of the model they belong to.

Interestingly, architects can also make use of such a se-
mantizer after they sketch a building for presentation to bid-
ders or customers, to get approval before producing detailed
design and plans. Although CAD systems do offer rendering
features, quality is often poor and inadequate for ambitious
projects. Architects have to go to a graphic designer to ob-
tain spectacular views of their proposal. For this, they have to
communicate the model with information about the nature of
building elements. They usually do so by assigning different
colors to geometric components and telling the graphic de-
signer how to interpret and replace them by relevant textures
for quality rendering. We can do this labeling automatically
(see Fig. 1). A similar issue arises at a large scale in the game
industry. Level designers tend to focus on the geometry and
structure of what they create, providing little information to
graphic artists, that often have to “paint” each scenic element
separately (architecture, objects, etc.) [CLS10].

Related work. There is a large amount of work regarding
semantic segmentation, classification, matching, retrieval,
fitting and reconstruction of 3D shapes. Most methods con-
cerning complex objects rely on graph-based analysis. The
graphs may originate from volume skeletons [BMMP03]
or surface decomposition, either from “perfect” geometry

[EMM03], point clouds [SWK07] or meshes [PSBM07].
They can be automatically learned from examples [TV08]
or designed “by hand” [SWWK08]. Graph matching algo-
rithms are then used to retrieve given objects in the scene,
possibly allowing a few mismatches: maximal common sub-
graph, matching with edit distance [GXTL10], etc. Although
these matching problems are NP-complete, basic algorithms
and heuristics are usable if the graph is not too large.

However, we are interested here in objects, e.g., buildings,
that are complex in the sense that (1) they have a high de-
gree of compositionality, i.e., they can be broken down into a
deep hierarchy of components, (2) the number of parts is un-
known and potentially highly variable, and (3) the relations
between the different parts can be sophisticated, not limited
to adjacency and relative position or orientation. For this
kind of objects, the relevant underlying structure seems to
be a grammar: (1) each production rule represents an alterna-
tive decomposition level in the hierarchy, (2) recursive rules
can express an arbitrary number of items, and (3) the gram-
mar can express constraints to cope with complex relations
between parts. Furthermore, grammars are naturally modu-
lar to some extent, enabling the writing and maintenance of
large specifications, contrary to hard-coded approaches rely-
ing on weak, hard-coded domain knowledge [MMWVG12].

Shape grammars have been popular for the procedu-
ral generation of model instances [MWH⇤06], but hardly
reversed to perform analysis: such uses are scarce, with
simplified grammars (e.g., split grammars) and reduced to
fronto-parallel image parsing, i.e., 2D [MZWVG07, RB07,
TKS⇤11]. Generative models in 3D have little been consid-
ered for analysis and are then restricted to specific, hard-
coded grammars such as roofs [HBS11] and Manhattan-
world buildings [VAB10, VAB12]. Only very recently has
procedural modeling been associated to multi-view 3D for
parsing [STK⇤12]. However, it reduces to the incorporation
of a depth term in a basically 2D energy; it does not com-
pute 3D from parsing. Moreover, the search space is so huge
that its requires a heavy optimization machinery, and it is not
clear how it can scale to complete buildings and full 3D.

As opposed to the above top-down parsing techniques,
bottom-up approaches have also been proposed, with inter-
leaved top-down predictions of missing or occluded compo-
nents [HZ09, WZ11]. However, they are currently restricted
to images and compositions of basic primitives, e.g., projec-
tions of 3D rectangles or circles. A multi-view variant with
a 3D grammar interpreter that hard-codes some operations
and exhaustively checks shape composability (without con-
straint propagation) has been used for reconstructing Doric
temples [MMWG11]. In 3D, a grammatical approach has
been used to construct building shapes from airborne LiDAR
data [TMT10], but the parsing is hard-coded, e.g., rules are
applied in a specific order and specific structures are sought
“outside the grammar” such as maximum spanning trees; it
cannot be generalized to any set of grammar rules.

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

Our approach. We present here a purely bottom-up ap-
proach, although it can be complemented by top-down pre-
dictions to treat incomplete data (see Section 6). It relies on a
constrained attribute grammar with geometry-specific pred-
icates. Terminals are detected 3D primitives that are com-
bined using production rules to construct higher-level non-
terminals. This could normally lead to a combinatorial ex-
plosion. But one of the key to the practicality of our ap-
proach is the use of constraint propagation to reduce the
search space incrementally as much as possible, in partic-
ular with the use of invertible predicates, which drastically
reduce the involved domains as soon as part of their argu-
ments are known. “Constrained” attribute grammars have
been proposed in the past but in much more restricted set-
tings, e.g., without constraint propagation and with a single
greedy interpretation, to parse the layout of mathematical
formulas [Pag98]. Our contributions are as follows:
• We propose a constrained attribute grammar formalism

for specifying complex objects, including 3D objects.

• It provides a practical conceptual interface as opposed,
e.g., to low-level graph node descriptions, which is ar-
guably crucial to write large maintainable specifications.

• As complement to recursion, we introduce maximal oper-
ators, that are essential for search space reduction.

• Given a grammar in this formalism and a scene, we show
how to efficiently compute a shared parse forest.

• We evaluate our approach both on synthetic and real data
(CAD models, photogrammetry and simulated LiDAR).

Though we illustrate here building semantization, our tech-
nique is general and could be applied to other domains too.

The rest of the paper is organized as follows. Section 2
presents the formalism. Section 3 describes what a corre-
sponding parse tree is. Section 4 explains how to efficiently
compute a share parse forest. Section 5 shows experimental
results with building grammars. Section 6 studies the advan-
tages and perspectives of grammars and Section 7 concludes.

2. Constrained attribute grammar

We consider a scene containing objects that have a hierachi-
cal decomposition into parts having complex relations. This
can be modeled using a constrained attribute grammar.

Basic grammar ingredients. We consider a grammar G =
(N,T,P,S) consisting of a set N of nonterminals, a set T of
terminals disjoint from N, a set P of production rules and
a set S ⇢ N of start symbols. A terminal corresponds to a
geometric primitive in the scene, e.g., polygon with holes,
cylinder. A nonterminal corresponds to a complex form in
the scene; it can be decomposed via G into other grammar
elements. A production rule r 2 P is of the form r = Y !
X1, . . . ,Xk where the rule’s left-hand side (LHS) is Y 2 N
and the right-hand side (RHS) is (Xi)1ik 2 (N[T)⇤, e.g.,

step! riser, tread

Figure 3: Automatic stairs detection in LcC building.

Some nonterminals may be introduced in a grammar as aux-
iliary constructs, that are meaningless for end users. We use
start symbols to identify parses only of relevant objects.

We use the vertical bar for disjunction: Y ! W | W 0

is equivalent to the two rules Y ! W and Y ! W 0. And
Y ! X1,optional X2 is equivalent to Y ! X1 | X1,X2, al-
though with a semantic nuance (see “Collections” below).
This definition of a grammar is refined in the following.

Constraints. Contrary to 1D grammars and split gram-
mars, a rule r = Y ! X1, . . . ,Xk only expresses dominance
of Y over Xi, not precedence of Xi over Xi+1. To cope
with 3D, complex association constraints between X1, . . . ,Xk
are shifted into a separate condition C attached to the rule,
which we note r hCi. (See below for predicates usable in
conditions.) Additionally, as there might be several occur-
rences of the same grammar element in a rule, we also intro-
duce the possibility to name each occurrence with a corre-
sponding variable: Y y! X1 x1, . . . ,Xk xk, e.g.,

step s! riser r, tread t hedgeAdj(r, t)i

Attributes. Moreover, we consider that each grammar el-
ement has attributes, describing features of the underlying
geometric primitive or complex form. An attribute can be
of a primitive type (e.g., Boolean, integer, float, 3D-vector)
or correspond to a grammar element. We thus actually con-
sider an attribute grammar G = (N,T,P,S,A) where A is
a set of attribute names and each rule in P is of the form
Y y! X1 x1, . . . ,Xk xk hCi {E} where the condition C may
refer both to rule variables (xi)1ik and to associated at-
tributes (xi.a)1ik,a2A, and where E is a set of evaluation
rules defining attributes of y among (y.a)a2A, e.g.,
step s! riser r, tread t hedgeAdj(r, t)i {s.len}= {r.len}

We currently consider only inherited attributes: in a rule
Y ! X1, . . . ,Xk, the attributes of Y are determined by the
attributes of X1, . . . ,Xk, but the attributes of Xi do not de-
pend on the attributes of Y nor on other Xj with j 6= i. Some
attributes are also predefined for every form. For example,
each nonterminal has a smallest bounding box and provides
breadth, length, breadth vector and length vector.

Predicates. A condition C is a conjunction of predicates
applying to rule variables xi, possibly via attributes xi.a.
Predicates primarily express geometric requirements but can

�
�

Renaud Marlet

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

more generally represent any constraint on the underlying
object(s). Most predicates apply both to terminals and non-
terminals. The main available predicates are:
• edgeAdj(x,y), intEdgeAdj(x,y), extEdgeAdj(x,y),

vertexAdj(x,y): x is adjacent to y via an edge (resp.
interior hole edge, exterior contour edge, vertex), as
primitive or via any underlying primitive,

• horizontal(x), vertical(x): x is horizontal (resp. vertical),
as a primitive or all of its underlying primitives,

• parallel(x,y), orthog(x,y), above(x,y), under(x,y): x is
parallel to y (resp. orthogonal, above, under), as primitives
or all of their underlying primitives,

• x==y, x !=y, x <y, etc.: x is equal to y (resp. different from,
less than, etc.). y can be a literal constant.
Exact predicates are actually relaxed to allow approxi-

mate satisfaction: adjacency and relative height position is
up to a given distance; horizontality, verticality, parallelism
and orthogonality is up to some angle error. Predicates can
also be user-defined in the implementation language of our
prototype for more complex checking but then, they are not
specifically optimized (see below).

Collections. A collection Y of items of the same kind X can
be expressed with a recursive rule, e.g., Y ! X ,Y |?. How-
ever, if there are m instances of X , there can be up to 2m

different groups Y . This is useless in practice for semantiz-
ing 3D models. Indeed, we are generally interested in the
largest group, e.g., all windows in a wall, all steps of a stair,
not every subset of windows or steps. For this, we introduce
collection operators (default value in brackets):
• maxset(X ,c, [c0= true]): maximal set of m � 0 instances

x1, . . . ,xm of X such that for all 1 im, condition c(xi)
holds, and for all 1 i < jm, both conditions c0(xi,x j)
and c0(x j,xi) hold.

• maxconn(X , [c= true],c0): maximal set of m � 0 in-
stances x1, . . . ,xm of X such that for all 1  i  m, con-
dition c(xi) holds, and for all 1  i < j  m, there exists
a sequence of indices 1  e1 . . .el  m such that i = e1,
el = j and for each 1 k < l, both conditions c0(xek ,xek+1)
and c0(xek+1 ,xek) hold.

• maxseq(X , [c= true],c0): maximal sequence of m� 0 in-
stances x1, . . . ,xm of X such that for all 1  i  m,
condition c(xi) holds, and for all 1  i < m, condition
c0(xi,xi+1) holds.

• cycle(X , [c= true],c0): collection of m � 0 instances
x1, . . . ,xm of X such that for all 1 im, conditions c(xi)

and c0(xi,xi+1) hold, noting xm+1
def
= x1.

Depending on expected arity, arguments c and c0 can be
unary or binary predefined predicates, e.g., edgeAdj, or
“lambda-terms” such as x 7! c or (x,x0) 7! c0.

A operator oper(X ,x 7! c,(x,x0) 7! c0) is context-free iff
the only variables that c and c0 refer to, if any, are the
non-contextual variables x and x0. Otherwise, it is context-
sensitive: it refers to at least one contextual variable, i.e., a

riserBase

tread

ri
se
r

nosingElement

st
epst
ai
rw
ay

Figure 5: Elements of the stairway grammar (left), and ex-
ample of automatic recognition on a CAD model (right).

rule variable or attribute in the RHS different from x and x0.
All operators define an attribute “size” that can be used to
constrain in C the number of elements in the collection. Note
that the optional statement actually is a maximal operator
too. Y ! X1,optional X2 means that X1 is enough to build
a Y , but X2 has to be associated if present. It is equivalent to
Y ! X1,maxset(X2) s2 hs2.size <=1i, which has a single
interpretation, whereas Y ! X1 | X1,X2 has two. A simple
grammar example for a stairway is given in Figure 4. Men-
tioned grammar elements are pictured in Figure 5.

3. Scene interpretation

Interpreting a scene, given primitives and a grammar, con-
sists in producing one or several parse trees. A parse tree
reflects the structure of the scene w.r.t. the grammar. It pro-
vides primitives with semantic labels and relations.

Parse tree. A parse tree is a tree t anchored on primitives
that reflects the instantiation and combination of grammar
rules. Each node n in t corresponds to a terminal or non-
terminal t(n) 2 T [N, that is called the type of n. A ter-
minal node is associated to each geometric primitive in the
scene according to its type: polygon, cylinder, etc. Each
nonterminal node n corresponds to the instantiation of a
rule Y y! X1 x1, . . . ,Xk xk hCi {E} in the sense that:

• node n has type t(n) = Y ,
• the sons of n are nodes (ni)1ik, of type (Xi)1ik,
• assigning (ni)1ik to variables (xi)1ik satisfies con-

dition C and defines via E the attributes y.a of n.

The set of all terminals under node n if called a form, of type
t(n). (We detail in Sect. 4 the case of collection operators.)
With a 1D grammar, the ordered sequence of terminals in a
parse tree is equal to the input string, each terminal being
counted once and only once by construction. In our relaxed
grammatical setting, we have to explicitly require an exclu-
sivity constraint to prevent the multiple occurrence of the
same terminal in a parse tree. E.g., if a step belongs to a
stair, it cannot be used in another stair in the same building.

Parse forest. In 1D, parsing generally has to derive the
whole input string from the start symbol. In contrast, for 3D
scene interpretation, we are interested in locating as many
objects as possible among possibly uninterpreted data. In

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

tread t ! polygon p hhorizontal(p), p.breadth <=2.0i
riserBase b ! polygon p hvertical(p.breadthVector), 0.05 <= p.breadth, p.breadth <=0.25i

nosingElement e ! polygon p hhorizontal(p.lengthVector), p.breadth <=0.05i
riser r ! riserBase b, maxseq(nosingElement, edgeAdj) n hedgeAdj(b,n), above(b,n)i
step s ! riser r, tread t hedgeAdj(r, t), above(r, t)i

stairway w ! maxseq(step, edgeAdj) s, optional riser r hedgeAdj(s,r), above(s,r)i

Figure 4: Grammar example for a stairway (units in meter).

fact, contrary to much other work that produce a single, best
parse tree, we construct a shared forest F representing all
possible parse trees. Consequently, we identify by nature all
occurrences of a grammatical element in the scene. How-
ever, grammatical ambiguity can occur and different, mu-
tually exclusive analyses can be obtained. One of the key
to our approach is to constrain the grammar enough so that
only relevant analyses are defined. In most cases in our ex-
periments, we actually obtain scenes with one or a few inter-
pretations. It is future work to estimate the likelihood of rule
application to prune ambiguous analyses and select only the
most pertinent parse(s). The shared parse forest F is a di-
rected acyclic graph (DAG): a node n in F can belong to
several trees. This is a compact representation: a forest of
size m can denote a number of parse trees exponential in m.

Node sharing is not incompatible with the exclusivity con-
straint. The actual requirement is that two forms sharing a
terminal are not associated into a new form. E.g., if a step
belongs to a stair, it cannot be used simultaneously in an-
other stair in the same building. But it can be shared by two
stairs and thus belong to both of them as long as they do
not “live” in the same interpretation: they are then mutually
exclusive. Owing to this constraint, the different parses in a
shared forest F correspond exactly to all maximal subsets of
root nodes in F such that their tree are pairwise disjoint.

4. Bottom-up parsing

We now describe how to efficiently parse a scene, given ge-
ometric primitives and a grammar as described above. This
procedure is fully automatic.

Parse forest computation. Our parsing algorithm operates
bottom-up, starting with a forest made of all geometric prim-
itives as terminal nodes, and iteratively applying all possible
grammar rules to create new nonterminals nodes in the for-
est. Applying a rule (see below) consists in looking in the
forest for nodes of type as specified in the RHS, checking
that the rule condition holds, and generating a new node cor-
responding to the LHS, with associated attributes.

To enforce sharing and guarantee termination, (1) we
merge all identical trees as they are constructed, (2) we re-
ject a rule application that constructs a new node of type X if
it already contains a node of type X as a succession of only-
child descendants, and (3) we stop iterating when no rule
can be applied anymore. The exclusivity constraint guaran-

tees that all rule application eventually fail as the number of
primitives involved in a nonterminal instance is bounded by
the number of primitives in the scene.

Besides, building a maximal collection oper(X , . . .) prac-
tically requires that all instances of X are known. For this,
we partition the grammar rules into layers that are fully pro-
cessed in an order that guarantees this requirement. We con-
sider the graph of the nonterminal dependency relation de-
fined as follows: given a rule Y ! X1, . . . ,Xk, then Y depends
on each nonterminal Xi, or on X 0

i if Xi = oper(X 0
i , . . .). We

then construct the graph strongly connected components. If
any component includes an edge corresponding to a max-
imal operator dependency, e.g., Y depends on oper(X , . . .)
and X depends on Y , then the grammar is deemed unusable
for parsing. Last, the condensation of the dependency graph,
i.e., the contraction of each component to a single vertex, is
a DAG that we order using a reverse topological sort, yield-
ing an ordered partition ((Yi, j) j2Ji)1id of the nontermi-
nals. The layers (Ri)1id that we consider consist of the
rules ri, j that have Yi, j as LHS. All this computation of or-
dered layers is linear in the number of nonterminals.

This iterative scheme is summarized in Algorithm 1. Note
that terminals are encapsulated primitives, predefining extra
information, such as the bounding box, in the form of gram-
mar attributes. In the following, we consider the case of a
rule r = Y y! X1 x1, . . . ,Xk xk hCi {E}. We explain how to
efficiently look for nodes in F that match types t(Xi)1ik
and that satisfy C and the exclusivity constraint. We first de-
scribe the case of simple grammar elements and general con-
straints, then extended it to reversible predicates as well as
context-free and context-sensitive collection operators.

Algorithm 1 Parse forest computation
F {terminal(p) | p geometric primitive}
(Ri)1id ordered partition of P (see text)
for i = 1 to d do

repeat

unchanged true
for each rule r 2 Ri do

F 0 applyRule(r,F)
if F 0 6=? then

unchanged false
F F [F 0

until unchanged

�
�

Renaud Marlet

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

Operator Graph components Algorithm
maxseq maximal acyclic paths depth-first search (DFS) to find extremal vertices, then DFS to find paths
cycle elementary cycles Tarjan’s algorithm
maxset maximal cliques Bron-Kerbosch’s algorithm
maxconn strongly connected components DFS (as the graph is undirected owing to the symmetry of edges)

Table 1: Maximal collection operators and corresponding graph algorithms to enumerate all instances.

Basic rule application. The basic idea consists in assem-
bling the sets D(xi) of nodes in F whose type is Xi, i.e.,
D(xi) = {n 2 F | t(n) = t(xi)}. This can be computed for
the whole rule in a single pass on F , or maintained in a
separate data structure. If any domain D(xi) is empty, the
rule does not apply. Then all node combinations (ni)1ik 2
’1ik D(xi) can be checked to see if condition C(ni)1ik
is satisfied, before a corresponding new Y node is con-
structed, with specific attributes E(ni)1ik.

For efficiency, it is critical to order variable instantiations
and constraints checking so that impossible combinations
are discovered as soon as possible to prune the search space.
The general principle consists in instantiating the most con-
strained variables first, as it may fail early. All unary pred-
icates p(xi) in C are thus checked before a new node ni is
inserted into D(xi). Besides, without prior knowledge, vari-
ables xi with the smallest domains D(xi) are more likely to
participate in failing predicates p(. . .ni . . .) and should be in-
stantiated first. Similarly, variables involved in many predi-
cates are more likely to fail before variable involved in few
or no predicate, and should also be instantiated first. As of-
ten in constraint programming, we heuristically stipulate a
constraint degree to order variables (in decreasing degree):

deg(x) =
number of predicates on x in C

| D(t(x)) |

Invertible predicates. This simple scheme can be made
more efficient using specific predicate knowledge. Consid-
ering a binary predicate p(zi,z j) where zl = xl or xl .al , we
say it is invertible iff, given a value vi for argument zi (and
conversely for z j), the set Nj of values n j satisfying p(vi,n j),
or respectively p(vi,v j.a j) if z j = x j.a j, is small and can
be efficiently enumerated. It is used to narrow the domains:
D j D j \Nj. If D j becomes empty, variable assignments
backtracks and next possible node for xi is considered.

Adjacency predicates are invertible: given a primitive or
form ni, it is in general adjacent to just a few other prim-
itives or forms n j . For primitives, a rich adjacency graph is
computed before rules are processed, yielding immediate ad-
jacency answers. For forms, to list all nodes of a type t ad-
jacent to a node n, we go down node n to its primitives, get
adjacent primitives, and go up the forest from these adjacent
primitives to look for nodes of type t. A cache of already
visited nodes prevents redundant traversals.

Equality zi ==x j is invertible too: given a node or value vi
for argument zi, there are in general few nodes n j such that

vi = n j. This is also true for zi ==x j.a and vi = n j.a. (Note
that strict equality only makes sense for discrete domains.)
Efficient retrieval of such nodes can be achieved by hashing:
before processing a rule, a map is built for each argument
of such an equality, associating to each possible value vi of
argument zi the set of nodes n j such that vi = n j and like-
wise symmetrically. Again, this is also true for vi = n j.a.
These maps can be constructed with a single, linear pass on
all nodes of F .

On the contrary, predicates such as above or orthog are
not considered invertible: many primitives or forms can be
above another one and, in a man-made environment such as
a building, many primitives are orthogonal to each others.

Last, as variables occurring in an invertible predicate are
by definition more constrained, they should be instantiated
first. For this, we introduce a constraint degree deginv(x) de-
fined as follows and list variables lexicographically in de-
scending order, first according to deginv, then deg.

deginv(x) =
number of invertible predicates on x in C

| D(t(x)) |

Context-free operators. Collection operators oper(X ,x 7!
c,(x,x0) 7! c0) are treated as any terminal or nonterminal Xi.
The only difference is in the computation of domain D(xi),
that is not built via a linear traversal of F .

The exclusivity constraint is a major issue for such opera-
tors. In general, the set of valid collections (i.e., that satisfy
exclusivity) that are maximal cannot be easily deduced from
the set of maximal collections. Our approach is to approxi-
mate the set of maximal valid collections, staying on the safe
side: we may underestimate it, i.e., miss some collections,
but not overestimate it, i.e., build non-valid or non-maximal
valid collections. Besides, if there is no exclusivity between
elements of a given type, maximal collections also are max-
imal valid collections. Users can thus be told if a parsing re-
sult is complete or if solutions could be missing. In practice,
grammars can often be written to prevent incompleteness.

To build D(xi) if the operator is context-free, i.e., if vari-
ables in c and c0 are only x and x0, we construct a graph
G = (V,E) where V = {n 2 F | t(n)=X ^ c(n)} and E =
{(n,n0) | c0(n,n0)^¬excl(n,n0)}, where excl checks exclu-
sivity. E is symmetrized for maxset and maxconn. Maximal
collection instances are then computed as described in Ta-
ble 1. The exhaustivity of maximal valid collections is al-
ways satisfied for maxset as there is no edge between ex-
clusive nodes. It is not for other operators. Besides, exclu-

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

Element Color Element Color
Wall gray Opening cyan, blue
Roof terracotta Stair red, orange
Floor green, brown Not assigned black

Table 2: Color assignments for semantized elements.

sivity has to be enforced at collection level. For maxseq and
maxconn, the constraint is checked as the graph is traversed;
for cycle, it is checked after cycle construction. In the worst
case, despite maximality, the number of such collections can
be exponential in the number of primitives. But in practice,
with the low connectivity of our graphs, the number of col-
lections remains low, and enumeration is fast.

Context-sensitive operators. Semantic and complexity is-
sues arise when context is introduced in the conditions of
maximal collection operators. For this reason, we impose
that all contextual variable in c and c0 are instantiated before
the operator is considered for instantiation.

It excludes rules with circular dependencies between op-
erators. It does not seem a practical limitation: this was in
fact never needed in our experiments. Also, the prior instan-
tiation condition never was a sacrifice to efficiency. On the
contrary, collections are more efficiently grown from known
anchors, rather than without constraints and later discarded.
If a valid variable instantiation ordering exists (no cycle),
it is given by a topological sort on the variable dependency
relation. This order is partial and previously mentioned cri-
teria concerning constraint degrees deg and deginv are then
used for optimizing backtracking efficiency. Last, variables
with identical constraints for instantiation ordering are kept
sorted as written in the rule to let the writer of the grammar
possibly specify his/her own heuristics.

5. Experiments

We have implemented a parser prototype that supports the
above features (except the syntactic sugar). We present here
results obtained both on CAD models with a relatively clean
geometry, and on real or realistic data with incomplete and
partly wrong geometry. In all experiments, we have used
grammars where terminals are surfaces rather than volumes.
It is consistent with a semantization task from surfacic data
obtained, e.g., with a laser scan or photogrammetry. Our ap-
proach is not restricted to surface parsing though.

Results on CAD models. We processed 5 building informa-
tion models (BIM) created with CAD software, in IFC for-
mat. Using IfcObj, we extracted their geometry, i.e., a soup
of 3D triangles, which we merged into 3D polygons with
holes with proper adjacency, and feeded to our parser. The
buildings are listed in Table 3, with size information.

In theory, one could construct polygons by just merging
co-planar triangles sharing two vertices. In practice, trian-
gles are not exactly co-planar and what we actually con-

Figure 6: Automatic semantization of roofs, walls, openings
in CAD models. Top: LcG. Bottom: LcA (left), LcD (right).

struct as “3D polygons” are sets of almost co-planar 3D tri-
angles (angular difference less than 3�). More importantly,
CAD models do not feature proper triangulations. The rea-
son is they are in general constructed mostly by replicating,
stucking and stacking already meshed components (2D or
3D), rather than by appropriately meshing the surface of a
well-defined volume. Besides, some points or surfaces are
not always properly snapped one to another. The actual task
to form polygons is thus to merge possibly overlapping tri-
angles with approximate adjacency, rather than just connect
them via simple and exact adjacency (sharing two vertices).
This a difficult problem, for which we have used a simple
heuritics that works well on our examples. We first establish
the inclusion relation or approximate adjacency of triangle
edges in other triangles. To that end, for each vertex of a
triangle T , we look for neighboring triangles T 0 (at a small
distance, typically 1-10 mm), using an AABB tree. If two
vertices v1 and v2 of T are inside or nearly adjacent to the
same triangle T 0, then we merge the two triangles. There are
actually two cases. If triangles T and T 0 share both vertices
v1 and v2, this is a simple ordinary fusion. If not, we create
a new vertex v0 at the centroid of T 0 as well as a new trian-
gle T 00 = (v0,v1,v2), and then merge the three triangles. The
process is iterated from a given triangle in a region-growing
fashion: merging it with nearly adjacent or overlapping tri-
angles, and putting them into a worklist from which new tri-
angles are drawn to continue growing the region. The actual
fusion of triangles consists in projecting them into the plane
of the seed triangle and merging the projected triangles (with
the 2D-polygon tools of the CGAL library). This defines a
2D polygon with holes, whose edges are back-projected to
the corresponding 3D triangles, forming a 3D polygon.

We ran the parser with a general building grammar (not
particular to a specific kind of architecture) to recover build-
ing elements: walls, roofs, floors, stairs, openings (windows
and doors). Some results are pictured in Figures 2, 3, 6 and 7.
The color code is given in Table 2. Table 4 provides quanti-
tative evaluation for stairs and outside building elements.

�
�

Renaud Marlet

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

of # of Parsing time (s)
Name triangles polygons stairs openings
LcG 48332 9705 5 15
LcA 111979 26585 14 42
LcC 385541 111732 33 306
LcD 313012 75257 25 111
LcF 286996 84347 39 322

Table 3: Models and parsing time (w/o polygon processing).

of # of Stairs (%) Openings
Name stairs steps Prec. Rec. # Prec. Rec.
LcG 3 45 100 93 83 100 90
LcA 6 84 100 100 62 98 83
LcC 30 210 100 100 196 100 98
LcD 5 61 93 100 74 100 93
LcF 7 98 100 50 99 100 96

Table 4: Evaluation of stair & opening semantization: num-
ber of items (#), precision (Prec., %) and recall (Rec., %).

As can be visible from this table as well as illustra-
tions, we properly recognize most elements. We only have
a few false positives (stairs with a spurious riser, openings
including a spurious window ledge) and some false nega-
tives (missed stairs and openings). We actually discovered
that the geometry originating from CAD models was not as
clean as expected. Triangles happened to reflect the history
of building block composition, with meaningless interpene-
trating volumes causing spurious polygon adjacencies and
bogus sizes. For instance, some steps are missed because
some risers go deep inside the slab or the preceding step,
leading to sizes larger than expected and wrong adjacencies.
Missed steps in LcF are due to the strange geometry of the
stairs, that looks like two interlaced stairs with twice as large
risers and treads. There are missed adjacencies too due to
bad block snapping. Those were by far the major cause of
missed and spurious detections. In fact we would not have
such problems with (clean) real data, e.g., laser scans, as
only the visible geometry would be modeled. Concerning
false negatives, a few frameless doors are geometrically part
of a wall plane in LcC, LCD and LcF, and thus included in
wall polygons before having a chance to be parsed (see Sec-
tion 6 though). Missed openings in LcA and LcG are due
to limitations in our grammar, which does not take into ac-
count dormer windows (with small walls sticking out of the
roof) nor skylights (non vertical windows). There are also
many French windows/doors in these buildings because of
balconies, but model designers disagree: some tag them as
doors in the original model, others as windows. This is why
we do not report here separate figures for doors and win-
dows; we just labeled them as openings.

Running times are given in Table 3, with a prototype im-
plementation that is far from being optimized. The grammar
has been split here in two parts to measure the relative contri-
bution of the two main complex objects: stairs and openings.

Figure 7: Semantization of slabs and stairs in CAD models.

(It has little impact on the overall parsing time.) We can ob-
serve good asymptotic properties. In particular, even though
we use a bottom-up approach, it is not exponential, which is
a key feature and major originality of our parser. The whole
point of our constraint-processing approach is precisely to
prune the search space to prevent exponential exploration.
For instance, when parsing stairways, a first step is drawn as
a potential element of a “maxseq(step)”. Being a maxseq, a
stairway is grown with more steps in two directions starting
from this initial step, based on the adjacency graph, which is
basically linear. The steps belonging to the resulting stairway
are recorded as such and when they are later considered as
other potential seed steps to find other stairways, no growing
is attempted in the same directions as it has already been per-
formed. This mostly linear behavior is reflected in the time
measurements of Table 3, w.r.t. the number and size of stairs
(Table 4). Considering the most complex model (LcC), an
exponential approach would not be able to determine in 33 s
that the 210 detected steps exactly form 30 different stair-
ways. This generalizes to more complex situations. In prac-
tice, the running time depends mostly on constraint rigid-
ity and on the average vertex degree in the adjacency graph,
little on the number of rules or the number of variables in
a rule (assuming rule conditions constrain rule application
enough). A combinatorial explosion is theoretically possi-
ble, but does not seem to happen on realistic cases.

In the current implementation of the algorithm, rules are
applied sequentially. But they could be applied in parallel
too, in particular independant rules. Rule dependency has to
be obeyed though (see Section 4). For instance, the compu-
tation of walls and stairs are independent, but it is not the
case for walls and floors or stairs and floors as walls must be
adjacent to floors, so as stairs; floors must be detected first.

Results on real data. To evaluate our algorithm on real
data, we consider a multi-view photogrammetric reconstruc-
tion of a castle courtyard using images in Strecha’s dataset
[SvHVG⇤08]. This is a kind of worst case scenario as noise
here is typically 5-10 cm, which is huge compared to win-
dow ledges. Yet, the 3D mesh is precise enough to display
a number of edges of windows looking onto the yard. To
construct polygons, we segment the underlying point cloud

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

Figure 8: Castle courtyard, seen “from the outside”. Left:
1817 extracted primitives. Right: automatic semantization.

Figure 9: Starway detection on simulated LiDAR data.

into planar clusters [SWK07], then compute an alpha shape
for each cluster to build the 1817 corresponding polygons
(see Fig. 8, left). Some polygons corresponding to edges of
windows are not found at this point; conversely, some shapes
are split into separate primitives or wrongly estimated, yield-
ing spurious or abnormal polygons. Finally, an approximate
adjacency graph is computed, to be given as input with poly-
gons to our parser. To accomodate the noise in the data, we
use a simplified grammar for windows. We look only for
windowpanes surrounded by a large enough (� 2) sequence
of edges (using maxseq) rather than a complete frame (using
cycle). Besides adjacency, we also weaken size and orienta-
tion constraints. Although a general methodology for such a
grammar relaxation is needed (see Section 6), the result is
encouraging. Indeed, walls and many windows are reason-
ably well recognized (see Fig. 8): we detect 22 windows out
of 31 on the 3D facade. These are decent results given the
level of noise and the lack of photometric information. Win-
dow recognition actually is difficult. It is not considered a
solved problem in 2D [TKS⇤11, STK⇤12], let alone in 3D.

We also experimented with CAD-based, simulated Li-
DAR scans, including effects due to visibility, anisotropic
sampling and slight noise. After normal estimation [BM12],
we produced segments as regions grown on depth images
and polygons as bounding rectangles. Figure 9 illustrates
stairs detection on such data: visible steps are well detected,
but invisible treads prevent the full straiway to be recovered.

6. A case for grammars

Results on CAD models are extremely promising, both re-
garding accuracy and practical complexity. However, there
is still room for improvement concerning real data. The main
issues are noise and incomplete data.

Because of noise, geometric primitives can be missed,
wrongly estimated, or split into separate components. As fu-
ture work, to make our apporach more robust, we are con-
sidering introducing simultaneous alternative detections (the

most probable ones), rather than a single one. This would
fit nicely with the excluvity constraint: at most one of the
detections could participate in an actual form. This would
be compatible with split detections too: subsets of the point
cloud could be interpreted alternatively as several primi-
tives or a single one. Additionnaly, rather than following
sharp binary decisions to allow (or not) component com-
position via grammar rules and constraint satisfaction, we
are considering continuously relaxing some constraints to
provide approximate matching. Of course, detection alterna-
tives and contraint relaxation would make the search space
much larger. But this could be adressed by taking into ac-
count detection likelihoods and fitness measures for relaxed
constraints, which could be combined with rule probabili-
ties too. As a result, infered nonterminals could be given
scores and the shared parse forest would then be pruned ac-
cording to this score to allow exploring large spaces while
keeping a reasonable size. Along this line, a useful feature
would be to possibly split (as alternatives) a shape into sev-
eral pieces, e.g., to address the detection of doors that are
merged into wall too early in the process. This could either
be supported by photometric information at primitive detec-
tion level for a better segmentation, or by late splitting dur-
ing parsing if shape cues are provided (e.g., the recognition
of the other side of the door). Photometric cues could also
be used to assign labeling likelihoods, as in top-down ap-
proaches [TSKP10], to later participate in shape scoring.

Besides, we believe the strength of our approach will be
fully distinctive with a proper treatment of partial informa-
tion, e.g., due to occlusions or fragmentary acquisitions. The
fact that all the structure and regularity is expressed formally
in the grammar makes it easier to reason on it, to complete
existing elements and to hypothesized missing ones [HZ09].
Our preliminary results on this kind of top-down completion
are encouraging, including when several elements are miss-
ing, such as a few steps between two floors. To infer likely
objets like this, comprehensive grammar constraints are es-
sential. An open issue is to find the right level to enforce
general regularity such as dimension repetition and symme-
try [PMW⇤08], whether by explicit operators or meta rules.

Actually, we argue that formulating structure, including
regularity, as expressed in a grammar, is crucial for seman-
tic analysis. With real (noisy, incomplete) data, structure is
essential to prevent spurious and missed detections. For in-
stance, grid alignment constraints would be crucial to re-
cover missed windows in Figure 8. Even on perfect CAD
data, spurious step objects are detected in the polygon soup,
and regularity is required to compose individual steps into
consistent stairways, filtering out false detections. One of the
nice thing about grammars is that each rule is simple; com-
plexity only originates from their composition. For example,
all 9 rules in the actual stairs grammar are indispensable to
obtain the accurate recognition of Table 4.

Structure can be hard-wired in code performing semantic

�
�

Renaud Marlet

A. Boulch, S. Houllier, R. Marlet & O. Tournaire / Semantizing Complex 3D Scenes using Constrained Attribute Grammars

analysis. But such programming would not scale to complex
objects and scenes. A formalism to represent structure is re-
quired, both to allow systematic optimization (pruning via
constraints) and to facilitate the expression of rules by hu-
mans. We see a grammar formalism as a domain-specific
language to express regularity. In fact, rules here are as-
sumed written by experts, e.g., architects, not computer sci-
entists. A separate issue is the automatic inference of gram-
mar rules from a database of annotated examples. Another
one is shape approximation, to prevent exhaustive grammat-
ical descriptions and gain robustness. For instance, although
our actual grammar for stairs easily accomodates complex
(but regular) noses, it would be better to specify a simple
“generic” nose and a basic shape matching approximation.
Anyway, structure and regularity have to be made explicit.

7. Conclusion

We have presented a high-level grammar formalism to spec-
ify complex objects, and a practical parsing procedure. Al-
though it relies on efficient graph algorithms, the low-level
node-and-edge machinery remains hidden, allowing large
and maintainable specifications, to be written by non com-
puter scientists. Thanks to alternatives, maximality opera-
tors, and recursion, the expressive power our grammars is
larger than that of graph pattern matching. Owing to maxi-
mality and to the mixing of adjacency conditions with other
kinds of constraints, it is superior to graph grammars too.

Although we have good results for CAD models, concern-
ing both accuracy and running times, work clearly remains
to properly handle noise and incomplete data. We actually
consider that this paper constitutes a well-delimited first step
towards more general scene parsing. We enumerated (Sec-
tion 6) a number of sensible and promising research direc-
tions to address more complex issues arising with real data.

References

[ARSF09] ATTENE M., ROBBIANO F., SPAGNUOLO M., FAL-
CIDIENO B.: Characterization of 3D shape parts for semantic
annotation. Computer-Aided Design 41, 10 (2009), 756 – 763. 1

[BM12] BOULCH A., MARLET R.: Fast and robust normal esti-
mation for point clouds with sharp features. Comp. Graph. Forum
31, 5 (Aug. 2012), 1765–1774. 9

[BMMP03] BIASOTTI S., MARINI S., MORTARA M., PATANÉ
G.: An overview on properties and efficacy of topological skele-
tons in shape modeling. In Shape Modeling Int’l (2003). 2

[CLS10] CHAJDAS M. G., LEFEBVRE S., STAMMINGER M.:
Assisted texture assignment. In SI3D (2010), ACM. 2

[EMM03] EL-MEHALAWI M., MILLER R. A.: A database sys-
tem of mechanical components based on geometric and topolog-
ical similarity. Computer-Aided Design 35, 1 (2003). 2

[GXTL10] GAO X., XIAO B., TAO D., LI X.: A survey of graph
edit distance. Pattern Anal. Appl. 13, 1 (Jan. 2010), 113–129. 2

[HBS11] HUANG H., BRENNER C., SESTER M.: 3D building
roof reconstruction from point clouds via generative models. In
Advances in Geographic Information Systems (2011), ACM. 2

[HZ09] HAN F., ZHU S.: Bottom-up/top-down image parsing
with attribute grammar. Tr. PAMI 31, 1 (2009), 59–73. 2, 9

[MMWG11] MATHIAS M., MARTINOVIC A., WEISSENBERG
J., GOOL L. V.: Procedural 3D building reconstruction using
shape grammars and detectors. In IEEE International Confer-
ence 3DIMPVT (2011), pp. 304–311. 2

[MMWVG12] MARTINOVIĆ A., MATHIAS M., WEISSENBERG
J., VAN GOOL L.: A three-layered approach to facade parsing.
In ECCV (2012), LNCS 7578, Springer, pp. 416–429. 2

[MWH⇤06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural modeling of buildings. ACM Trans.
Graph. 25, 3 (2006), 614–623. 2

[MZWVG07] MÜLLER P., ZENG G., WONKA P., VAN GOOL
L.: Image-based procedural modeling of facades. ACM Trans.
Graph. 26, 3 (2007). 2

[Pag98] PAGALLO G. M.: Constrained attribute grammars for
recognition of multi-dimensional objects. In Advances in Pattern
Recognition, LNCS 1451. Springer, 1998, pp. 359–365. 3

[PMW⇤08] PAULY M., MITRA N. J., WALLNER J., POTTMANN
H., GUIBAS L.: Discovering structural regularity in 3D geome-
try. ACM Transactions on Graphics 27, 3 (2008), 1–11. 9

[PSBM07] PASCUCCI V., SCORZELLI G., BREMER P.-T., MAS-
CARENHAS A.: Robust on-line computation of Reeb graphs:
simplicity and speed. ACM Trans. Graph. 26, 3 (2007), 58. 2

[RB07] RIPPERDA N., BRENNER C.: Data driven rule proposal
for grammar based facade reconstruction. In Photogrammetric
Image Analysis (PIA) (2007), pp. 1–6. 2

[STK⇤12] SIMON L., TEBOUL O., KOUTSOURAKIS P.,
VAN GOOL L., PARAGIOS N.: Parameter-free/Pareto-driven
procedural 3D reconstruction of buildings from ground-level
sequences. In CVPR (2012), pp. 518–525. 2, 9

[SvHVG⇤08] STRECHA C., VON HANSEN W., VAN GOOL L.,
FUA P., THOENNESSEN U.: On benchmarking camera calibra-
tion and multi-view stereo for high resolution imagery. In CVPR
(2008). 8

[SWK07] SCHNABEL R., WAHL R., KLEIN R.: Efficient
RANSAC for point-cloud shape detection. Computer Graphics
Forum 26, 2 (June 2007), 214–226. 2, 9

[SWWK08] SCHNABEL R., WESSEL R., WAHL R., KLEIN R.:
Shape recognition in 3D point-clouds. In WSCG (2008). 2

[TKS⇤11] TEBOUL O., KOKKINOS I., SIMON L., KOUT-
SOURAKIS P., PARAGIOS N.: Shape grammar parsing via re-
inforcement learning. In CVPR (2011). 2, 9

[TMT10] TOSHEV A., MORDOHAI P., TASKAR B.: Detecting
& parsing architecture at city scale from range data. In CVPR
(2010). 2

[TSKP10] TEBOUL O., SIMON L., KOUTSOURAKIS P., PARA-
GIOS N.: Segmentation of building facades using procedural
shape priors. In CVPR (2010). 9

[TV08] TANGELDER J. W., VELTKAMP R. C.: A survey of con-
tent based 3D shape retrieval methods. Multimedia Tools Appl.
39, 3 (Sept. 2008), 441–471. 2

[VAB10] VANEGAS C., ALIAGA D., BENES B.: Building recon-
struction using Manhattan-world grammars. In CVPR (2010). 2

[VAB12] VANEGAS C. A., ALIAGA D. G., BENES B.: Auto-
matic extraction of Manhattan-world building masses from 3D
laser range scans. IEEE Trans. Vis. Comput. Graph. 18, 10
(2012), 1627–1637. 2

[WZ11] WU T., ZHU S.: A numeric study of the bottom-up and
top-down inference processes in and-or graphs. IJCV 93, 2 (June
2011), 226–252. 2

