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Figure 1: Solving for optimal rigid alignment for incomplete geometry. (a) Traditional least-squares ICP does not distinguish
between inliers and outliers, resulting in poor alignment. (b) The (,-ICP is more robust, but still cannot cope with the large
amount of correspondence outliers. We show that (,-ICP, with p € [0,1] robustly handles large amounts of noise and outliers.
Bottom rows: Illustration of sparsity-inducing norms. (o) Regularization of the input vector (black-framed) with an (,-norm
leads to increased sparsity as we decrease the value of p. (B) The vector of complements provides an indication of how much its
corresponding entry contributes in the optimization. Large outliers (red) contribute progressively less as we decrease p.

Abstract

Rigid registration of two geometric data sets is essential in many applications, including robot navigation, sur-
face reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algo-
rithm are employed for this task. These methods alternate between closest point computations to establish cor-
respondences between two data sets, and solving for the optimal transformation that brings these correspon-
dences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often
observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number
of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to
tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm
that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our
new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results
when dealing with outliers and incomplete data. The complete source code of our implementation is provided at
http://lgg.epfl.ch/sparseicp.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems
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Figure 2: (left) A plot of the penalty functions used to induce sparsity in our optimization; for small values of p, large outliers
do not incur a large penalty in the optimization; this allows the optimization to effectively discard correspondence outliers when
computing the optimal rigid transformation. (right) The alignment of the “coatie” dataset from [AMCOO08] with several values
of p matching the ones in the plot. By decreasing the value of p, the quality of the registration improves. The distribution of
alignment residuals in the histograms highlights the sparse characteristics of our optimization.

1. Introduction

The registration of digital geometry is a fundamental task in
computer graphics and geometry processing. In this paper
we focus on pairwise registration, where we aim to compute
the optimal alignment of a source onto a target model. We
additionally assume that the aligning transformation is rigid,
that is, decomposable into a rotation and a translation.

Registration applications. Pairwise rigid alignment is
widely employed as a sub-routine in a number of appli-
cations. In the acquisition of digital models, self-occlusion
and limited sensor range create the need to scan the ob-
ject from multiple directions; these scans have to be aligned
into a common frame of reference to enable further pro-
cessing [Pul99, GMGPOS]. In digital quality inspection, a
scan of a physical model needs to be registered with its
ground truth CAD model, so to be able to measure and
classify possible manufacturing errors [LGO4]. In mobile
robotics, matching a scan of range data to a digital rep-
resentation of the scene is used to refine coarse satellite
based localization [SHT09]. Even in non-rigid registration,
a rigid alignment step is often used to bring a template of
the deforming geometry into coarse alignment with the in-
put data [PMG™*05, LSP08, WBLP11]. Recently, consumer
level 3D scanning devices (e.g. Microsoft Kinect) have lead
to a growing interest in robust rigid alignment algorithms.
The low cost of these acquisition devices comes at the ex-
pense of severely degraded data, which necessitates registra-
tion algorithms that can deal with large amounts of noise and
outliers; see Figure 3.

Iterative closest point. Given two sets of points related
by a correspondence relationship, there exist several ways
of computing the optimal rigid transformation that aligns
them with each other [ELF97]. The practical rigid registra-
tion problem consequently simplifies to finding a suitable
set of corresponding points on source and target. The Ifer-

ative Closest Point (ICP) algorithm [BM92] addresses this
problem by assuming the input data to be in coarse align-
ment. Under this assumption, a set of correspondences can
be obtained by querying closest points on the target geom-
etry. With a convergence guarantee, ICP computes a locally
optimal registration by alternately solving for closest corre-
spondences and optimal rigid alignment.

Correspondence outliers. As ICP is effectively performing
local optimization, the quality of the solution is related to
the quality of correspondences provided as input to the rigid
transformation sub-routine. However, incorrect closest-point
correspondences are particularly common in the registration
of acquired geometry. Closest point queries are not only cor-
rupted by measurement noise, but also by partial overlap of
the source and target — many samples on the source sim-
ply do not have an ideal corresponding point on the target
shape. To address this problem, various techniques rely on
a set of heuristics to either prune or downweigh low quality
correspondences. Typical criteria include discarding corre-
spondences that are too far from each other, have dissimilar
normals, or involve points on the boundary of the geometry;
see [RLO1] for details. These heuristics are often difficult
to tune. For example, classifying boundary points in point
cloud data is ill-posed and typically obtained by heuristic
methods [BLO04]. Furthermore, fixing a single parameter for
distance thresholds is typically not sufficient, often leading
to sub-optimal alignment; see Figure 4 for an example.

Sparsity inducing norms. In this paper, we propose a so-
lution that implicitly models outliers using sparsity. Our
work is based on recent advances in sparsity-inducing penal-
ties [BIMO12,MS12] that have been successfully applied in
compressive sensing [CW08]. We formulate the local align-
ment problem as recovering a rigid transformation that max-
imizes the number of zero distances between correspon-
dences. This can be achieved by minimizing the ¢, norm of

(© 2013 The Author(s)
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the vector of error residuals. In our work, we show how the
ICP algorithm can be reformulated using ¢, norms, where
p € 10,1], instead of the classical squared ¢, norm (see Fig-
ure 2). Having the possibility to choose p between zero and
one allows a tradeoff between efficiency and robustness.

Contributions. We propose a new technique for rigid align-
ment that robustly deals with significant amounts of noise
and outliers, while not requiring any heuristic for corre-
spondence pruning. We propose a sparse ¢, (p < 1) opti-
mization problem that automatically learns the separation
between data and outliers (see Figure 2 and Figure 6).
Our optimization is the result of a careful design allowing
to solve the alignment problem by iterating over a set of
simple and tractable subproblems that can be solved effi-
ciently. Moreover, our optimization builds on top of classical
ICP components which permits us to reuse optimized clos-
est point search [FBF77] and least-squares optimization for
rigid transformation [ELF97]. We evaluate our approach by
quantitative comparison to classical rigid registration meth-
ods [BMO92] as well as recent robust variants. Our experi-
ments demonstrate improvements in the quality of the regis-
tration on challenging datasets affected by noise, large num-
ber of outliers and incomplete data.

2. Background and related works

Over the last two decades, the registration of digital geome-
try has been an intensively studied problem. The recent sur-
vey by Tam et al. [TCL*12] provides a classification of sev-
eral techniques for both rigid and non-rigid registration. In
this section, we provide a simpler classification of rigid reg-
istration methods, where we distinguish solutions according
to whether they seek a global optimum, or whether they at-
tempt to perform a local refinement of an initial, possibly
coarse, alignment. Roughly speaking, these optimizations at-
tempt to minimize an alignment energy that measures the
proximity of source and target models according to a given
metric; see Section 3 for a detailed discussion.

Global optimization. Global approaches to registration ex-
ploit the small number of degrees of freedom of rigid trans-
formations (6DoF). These transformations can be fully spec-
ified by two sets of matching points having cardinality of at
least three. Global methods transform the continuous align-
ment problem into a discrete one, where the objective is to
seek one of these pairs; see [vKZHCO11, Section 5.1]. A
notable contribution in this domain is the paper by Aiger
et al. [AMCOO08] that exploits geometric invariants of rigid
transformations. They proposed an O(n?) RANSAC algo-
rithm capable of computing registration of geometry con-
taining up to 40% outliers and having just 40% overlap. It is
critical to note that global methods typically require local
refinement in post processing in order to achieve high qual-
ity alignment. This creates a need for algorithms capable of
performing robust local alignment — the problem we address
in this paper.

(© 2013 The Author(s)
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Figure 3: “The Thinker”: Alignment of two scans obtained
by consumer-level depth cameras. Partial overlap and struc-
tured noise degrade the performance of ¢,-ICP. Robust (-
ICP achieves a more accurate registration, as can be ob-
served in the leg and chair regions.

Local optimization. Local ICP approaches refine the align-
ment assuming an initial coarse registration of source and
target models is provided. Although commonly used in
static registration, these algorithms are especially useful in
real-time registration; see [RLO1]. Indeed, assuming a suf-
ficiently dense temporal sampling, the alignment achieved
in the previous time-step can be used as initialization for
the registration refinement. Registration based on local op-
timization effectively performs a descent optimization of the
alignment energy [PHYHO6]. Techniques in this class can
be distinguished according to the way in which they ap-
proximate the alignment metric. When the distance to the
closest point on the target is used, we obtain the point-to-
point method of the original ICP algorithm by Besl and
McKay [BM92]. Unfortunately, closest point distances only
provide a good approximation of the distance function of the
target geometry in far-field conditions [PHO3]; a first-order
Taylor expansion of the distance field can be used to improve
this approximation in the near-field, resulting in the well
known point-to-plane ICP variant [CM91]. Second-order
approximations of the squared distance function [PHO3]
are also possible, resulting in schemes able to achieve
quadratic convergence [PHYHO6]. Note that although iter-
atively fetching closest points is the most common way of
approaching local registration, there also exists the possibil-
ity of caching an approximation of the distance function at a
desired precision [CLSB92, PLH04, MGPGO04], or even di-
rectly aligning two distance functions [TK04,JV11].

Outliers and partial overlap. Various methods and heuris-
tics have been proposed to improve the robustness of ICP
at its different stages to cope with noisy and incomplete
data [RLO1]. Another prominent approach uses robust func-
tions [Zha94, MY95, TFR99, Fit03] to reduce the impor-
tance of outliers, instead of explicitly pruning them. A no-
table side effect of this approach is an increase in the spar-
sity of the alignment residuals vector. This observation mo-
tivates the recent trend to model inliers/outliers by explic-
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itly enforcing sparsity [FH10, HMS12] using ¢, regulariza-
tion [BJMO12]. Unlike the above-mentioned approaches,
our regularizer is based on the ¢, norm with p € [0,1]. It
has been shown recently that ¢, norms with p < 1 outper-
form the ¢; norm in inducing sparsity [Cha07], which makes
our optimization more resilient to a large number of outliers.
However, when p < 1, the resulting optimization problem
is non-smooth and non-convex. It is therefore necessary to
carefully design the optimization problem in order to obtain
a robust and efficient solution [MS12, CW13]. We present a
reformulation of ICP that takes advantage of p-norms, while
still leading to a simple implementation that uses the core
components of the original algorithm: optimized ¢, clos-
est point search [FBF77] and least-squares optimization for
rigid transformation [ELF97].

3. Pairwise rigid registration

Given two surfaces X', ) embedded in a k-dimensional space,
we formulate the pairwise registration problem as

argmm / O(Rx+t,Y)dx + Iso) (R), (1)

where R € R¥** is a rotation matrix, t € R is a translation
vector, and x € R¥ is a point on the source geometry. The
rigidity of the transformation is enforced by constraining
R to the special orthogonal group SO(k) using the indicator
function I4(b) that evaluates to 0 if » € A and to +oo other-
wise. The quality of a registration is evaluated by the met-
ric ¢ that measures the distance to ) and is defined as

o(x,Y) = m1n<p( ,y) = min (x,y) +1y(y). (2
yERK

Discrete pairwise registration. As we are solving the regis-
tration problem numerically, we sample the continuous sur-
face X by a set of points X = {x; € X,i = 1...n} to obtain

n
ar%min Y o(Rx;+t,) +Iso)(R). 3)
t i=1
Using Equation 2 and defining ¥ = {y; € R¥;i = 1...n} we
can then rewrite this energy as

arl%?}in Y ORx; +t,y) +1y(yi) + Lo (R).  (4)
RS =

Generalized ICP. In order to solve the non-linear problem
of Equation 4, we can decouple the optimization by alter-
nately solving two sub-problems as in the traditional Ifera-
tive Closest Point (ICP) algorithms:

n
Step 1: argmin Z ORx; +t,y;) + 1y (yi) 5)
Y=l
n
Step 2: ar%{min Z O(Rx; +t.y;) +Iso) (R)  (6)
=1

In the first step, the alignment is fixed and a set of corre-
spondences Y is computed; in the second step, the corre-
spondences remain fixed and the optimal rigid transforma-
tion is solved. As in each iteration the total energy weakly
decreases (and this energy is bounded from below) this algo-
rithm converges to a local minima [BM92]. The correspon-
dences in Equation 5 are computed by finding the closest
points y; € Y from x; as defined by the selected metric ¢.
This is possible as the first step is separable with respect to
Y

mm):(p %i,yi) + 1y (yi) Zmlmp %,vi) +1y(yi), (7)
where %; = Rx; +t. As a consequence, the individual elements
of Y can be optimized for independently from each other.

Classical ICP. In the seminal paper of Besl and McKay
[BM92] the authors chose ¢ to be the classical squared Eu-
clidean distance ¢(x,y) = ||x —y||3. This particular choice
of metric has two important consequences. Firstly, the opti-
mization sub-problems can be solved in closed form. Equa-
tion 6 can be solved by following the ideas presented in
[ELF97], while the closest point computation can be acceler-
ated, for example, by a kd-tree data structure with an ¢, dis-
tance metric [FBF77]. However, this choice of metric affects
the capability of ICP to deal with noise and outliers. Indeed,
employing ¢, signifies that we are optimizing for Equation 6
in a least-squares sense, imposing a fundamental assump-
tion that the error residuals assume a normal distribution —
i.e. where outliers rarely happen. In our setting, measure-
ment outliers and incomplete data substantially violate this
assumption. As discussed in Section 1, this problem can be
mitigated by filtering the set of input correspondences by a
number of heuristics. Conversely, we approach the problem
by identifying an appropriate robust metric ¢, and present
an algorithm to efficiently solve the associated optimization
problem.

4. Robust alignment by sparsity enforcement

Given a generic optimization residual z; € R¥, an outlier-
robust scheme attempts to automatically categorize a vector
of residuals z = [||z||2,...,||z:]|2]" into a large set of inliers
having ||z;||» ~ 0 and a small set of outliers having ||z;||> > 0.
This objective can be achieved by attempting to find a sparse
vector z. As the /o norm counts the number of non-zero en-
tries in a vector, optimizing for sparsity can be re-formulated
as minimizing ||z||o. However, due to the problems caused by
the high non-convexity of the ¢y-norm, a popular choice is to
optimize for sparsity by employing the ¢, norm [CRTO06].
The ¢; norm penalizes the number of non-zero entries, thus
inducing sparsity; it is the closest convex relaxation of the
fp-norm.

Non-convex relaxation. In this paper, we employ non-
convex {,,p < 1 relaxations of the ¢y, norm and optimize
it with the Alternating Direction Method of Multipliers

(© 2013 The Author(s)
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Figure 4: (a) The alignment of the virtually scanned “owl” model is evaluated by the root mean square error (RMSE) € w.r.t the
ground truth alignment. (b,c,d) Traditional ICP registration is combined with correspondence pruning where correspondences
with a distance above §,,% of the diagonal bounding box are rejected. As illustrated, it is difficult to find an appropriate
threshold, which leads to sub-optimal alignment results. (e) {,-ICP without explicit outlier management converges to a better
minimum, but the alignment is still poor. (f) Our (,-ICP outperforms all the previous methods.

(ADMM). This approach has recently been shown to out-
perform its ¢; counterpart in quality of results and perfor-
mance [Cha07,MS12]. As we will demonstrate in Section 7,
choosing p < 1 significantly improves the resilience of the
method to large amounts of outliers.

Robust distance function. In our rigid alignment problem,
given a pair of corresponding points (x;,y;), the alignment
residual is given by the vector z; = Rx; +t —y,. Consequently,
to optimize for alignment residual sparsity, we choose ¢ in
Equation 4 to be ¢(x,y) = ¢(|[x —yl2), where ¢(r) = |r|” and
p € [0,1]. Note that ¢ constructed in this fashion is still a
metric [BKOS8, Chapter 1]. The curves of these functions, il-
lustrated in Figure 2 for the simple scalar problem, can be
interpreted as penalty curves; an outlier, having ||z||, > 0,
will not be strongly penalized when a small value for p is
chosen. This implies that the optimization will not skew the
solution in order to reduce the large penalty associated with
an outlier (see Figure 1). Please note that in this paper we are
not solving for simple element-wise sparsity, but instead for
group sparsity [EKB10], where each dimension of a residual
vector z; should vanish simultaneously (see Figure 5).

E
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Figure 5: [llustration of the difference between group spar-
sity and element-wise sparsity. For rigid alignment it is im-
portant to consider group sparsity, as a good corresponding
pair will have small values in x,y,z simultaneously.

(© 2013 The Author(s)
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5. Numerical optimization

The introduction of sparse p-norms to increase robustness in
the rigid alignment optimization results in a localized change
to the classic ICP formulation. Hence, we still adopt the
well-known two-step optimization:

n

Step1:  argmin IRx; +t—yi|5 +Iy(y:) (8
i=1
n

Step 2: arf,;min \|in+t—}’i||§ +150(k)(R) 9)
=1

However, for p € [0,1] these two problems are non-convex
and non-smooth. We explain below how we can nevertheless
obtain an efficient optimization algorithm.

5.1. Step 1 - Correspondences

o(r) = |r|? is a non-decreasing function on R*, ¢(||.||2) and
thus achieves its minimum value at the same points as ||.||>.
Consequently, the optimization in Equation 8 is equivalent

Figure 6: Our shrinkage operator for p = 0 acts as a binary
outlier classifier. Upon convergence, this classification sim-
ply identifies overlapping regions in the aligned geometry
(marked in black).
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Figure 7: A qualitative comparison of whole-in-part registration using point-to-point ICP. We compare two “robust weight
Sfunctions” with the p-norm weight function presented in Equation 11. In (b) and (c) the weight functions fail to produce the
correct registration because of the small amount of overlap, while our method succeeds in computing a perfect registration (a).
It is interesting to note that the p-norm weight functions tend to infinity when approaching zero, strongly enforcing sparsity. We
refer the reader to [MB93] for the definition of the robust weight functions.

to

n

argmin )" |[Rx; +t —yill2 + Iy (vi), (10)
Y o=

allowing us to employ a kd-tree based on the I, metric for

the first step of the optimization.

5.2. Step 2 - Alignment

Problems involving ¢,, similar to the one in Equation 9, can
be approached by reweighting techniques [CY08]. For rigid
registration this means iteratively solving the weighted least-
squares problem

n
argmin )" w! | Rx; +t — i[5 + Igo( (R), (1)

Rt =1
where w; is the ¢, residual of the previous iteration. Given
these weights, each iteration can be solved using classi-
cal methods for rigid transformation estimation. In prac-
tice, however, this approach suffers from instability when the
residuals vanish, as 1/ wiz_” goes to infinity; see Section 7. To
optimize the problem in a robust manner, we introduce a new

set of variables Z = {z; € R¥,i = 1...n} and then rewrite the
problem as
n
argmin ) [|zi]|5 + Iso) (R) st 8 =0, (12)
tZ =1

where §; = Rx; +t —y; —z; is introduced solely for compact-
ness of notation. As detailed in Appendix A, augmented La-
grangian methods are an effective tool to approach the con-
strained optimization problem above. The augmented La-
grangian function for Equation 12 is defined as

n
T 2
LARZA) =Y |lzill5 +Ai 8+ 518ill2 + Isou) (R),
i=1
where A = {A; € R¥,i=1...n} is a set of Lagrange multipliers
and p > 0 is a penalty weight. We optimize this function by

employing the Alternating Direction Method of Multipliers
(ADMM); see Appendix B. ADMM effectively decomposes

our problem into three simple steps:

Step 2.1: argéninZHz,-Hg—F%Hzi—hiH% (13)
i

Step2.2:  argmin) |[Rx; +t—¢il[3 + Lo (R) (14)
R, i

Step 2.3: A =\; +,u8,' (15)

where ¢; = y; +2z; — l,-/,u and h; = Rx; +t—y; +)u,‘//d. In Step
2.1, like for Equation 7, the problem is separable and each z;
can be optimized independently. Each sub-problem can then
be solved efficiently by applying the following shrinkage op-
erator [PB13] to each vector h;:

£ _ { 0 if byl <h
Z, =

Bh;  if hif> >k (16)

The values of B and &; are detailed in Appendix C. The shrink
operator can be interpreted as a classifier acting on residual
vectors. For example, when p = 0, B from Equation 16 will
always evaluate to one; this results in a binary classification:
the operator either rejects the value #; or accepts it fully. In
Figure 6, we highlight correspondences classified as inliers
which are naturally located in regions of overlap between
source and target. Since the only free variables in Step 2.2 are
R, t, this least-squares problem can approached by classical
rigid transformation estimation techniques.

6. Higher order metric approximants

Rusinkiewicz and Levoy [RLO1] experimentally observed
how the point-to-plane variant of ICP has better conver-
gence speed than its point-to-point variant. Subsequently,
Pottmann et al. [PHYHO06] formally demonstrated how un-
der appropriate conditions, these classical algorithms pos-
sess linear resp. quadratic convergence properties. These ob-
servations were made possible by expressing rigid alignment
as an optimization problem involving the Taylor expansion
of the ¢, metric ¢(x,y) for y € ), the “foot point” of x, i.e. the
closest point of x onto Y [FH10, pg.63], as

T
~ _ Xpo—Yy _
y(x ~ ||xXg — + | — X—¥). 17
(Py( )|x0 H 0 YHZ <on_y||2) ( y) ( )

(© 2013 The Author(s)
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° ® o
b)p=05 ) p=20
Figure 8: Partial registration of two synthetically corrupted
laser scans (a) can be achieved even in the presence of a
large amount of outliers in the source geometry by using a
robust metric (b). The classical least-squares ICP (p = 2)
fails to align the scans, as in this case the outliers heavily
bias the estimation of the rigid alignment (c).

(a) original

As x¢ approaches Y at the foot point y, the term ||xo — ¥||2
vanishes and ¢y (x) can be rewritten as

Py(x) ~n’ (x—), (18)

where n is the normal of the surface ) at y. Consequently,
we can linearize the metric in Equation 8 as ¢(x,§) = ¢(||x —
¥ll2) =~ ¢0(§y(x)) and rewrite the optimization as

arngiﬂ Y 18y (Rx; +8)[” + Iso (R). 19)
St

i=1

This problem can be optimized using the same techniques
introduced in Section 5, resulting in the ADMM steps:

Step 2.1: argminz |zl +5(@i— h,‘)2 (20)
z i

Step 2.2: argmin Z(B,- —¢)? +Iso(R) 2D
Rt i

Step 2.3: A =N +ud; (22)

where §; :Ill-T(RX,'-‘rt—y,’), h; :5,-+7u,-/,u and c; :zi—K,-/,u.

By comparing the optimization step in Equation 20 with the
one of Equation 13, it becomes clear that the sparsity formu-
lation of point-to-plane ICP involves a simple scalar prob-
lem. Furthermore, Equation 21 is nothing but a traditional
least-squares point-to-plane optimization that we can solve
by an elementary linearization of rotation matrices [Rus13].

7. Evaluation

In this section we empirically evaluate the characteristics of
our method in comparison to some variations of the tradi-
tional ICP approach. In Figures 1, 2, and 4, we compare

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

against the recent ¢ -ICP technique from [FH10]. Through-
out the paper, unless otherwise specified, we employ the lin-
earized point-to-plane distance metric; for Figure 8 and Fig-
ure 9, where surface normals are not well defined, we em-
ploy the point-to-point metric. We will focus our compar-
isons on partial overlap and outliers in the data, which are
the most challenging problems for the ICP algorithms. Note
that it is difficult to perform an exhaustive comparison of
ICP methods considering the large amount of heuristics and
variations available, and the size of the parameter space: 6
dimensional rigid transformation space for the initialization,
p-parameter, noise parameters, etc. We therefore limit our
analysis to a set of experiments that we believe best illus-
trate the unique properties of our approach.

Rejecting v.s. penalizing outliers. Figure 1 shows how
least-squares ICP registration (p = 2) performs poorly unless
appropriate heuristics for outlier management are adopted.
Typical heuristics include rejecting pairs on boundaries, hav-
ing distance above a given threshold or with dissimilar nor-
mals; see [RLO1]. Outlier rejection approaches can be diffi-
cult to tune and even be harmful as they drastically increase
the number of local minima. This is especially visible when
the source is far from the target at the initialization. In this
case, selecting a distance threshold too small will lead to the
rejection of most of the correspondences, which in turn will
increase the probability of converging to a bad local min-
imum. Selecting a distance threshold too big will not lead
to a good final alignment as not enough outliers will be re-
jected. Conversely, our approach weakly penalizes outliers
leading to a more stable approach. In Figure 4, we compare
the alignment performance of our approach with outlier re-
jection techniques using a distance threshold. To evaluate
the quality, we simulate the scan of a digital model, regis-

initialization

registration

(@ (b)

Figure 9: We align two models with partial overlap and a
large number of outliers in the target geometry. As our £,
algorithm still employs closest point correspondences, we
converge to the correct solution only when source and target
are in relatively close proximity (a). Placing the models too
far from each other will drive the optimization towards a bad
local minimum (b).
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100 200 300 400
iterations

Figure 10: Convergence of the reweighting approach com-
pared to the ADMM method. When using point-to-point
distances (top), iterative reweighting converges faster that
ADMM. However, when using point-to-plane distances
ADMM outperforms the iterative reweighting approach. The
slow convergence of iterative reweighting in this case is due
to the ill-conditioning of the associated linear system, as the
weights vary in the range [0, 0.

ter it, and evaluate the RMSE of the registered point loca-
tions w.r.t. the ground truth. As demonstrated by the values
of RMSE in Figure 4 and in the supplemental video, our
technique outperforms classical ICP with outliers rejection.
Another approach for robust registration selects the best k-
percent of the set of correspondences at each step of the reg-
istration [CSKO5]. As illustrated in Figure 12, contrary to
this approach, where the percentage of inliers k needs to be
known beforehand, our method automatically selects the set
of inliers for the registration.

Iterative reweighting. Discarding unreliable correspon-
dences is undoubtedly the simplest and most common way
of dealing with outliers. Another common approach is to re-
weight correspondences using “robust functions” [MB93]
resembling the weight function presented in Equation 11;
see Figure 7. An important observation is that only the
weight function of p-norms, amongst the ones shown, tend to
infinity as we approach zero. Clearly this has immediate im-
plications in terms of sparsity, as only p-norms will greatly
reward values approaching zero. Unfortunately, as p-norm
weights are defined in the [0,00] range, both stability and
convergence speed of ICP algorithms employing reweight-
ing are affected due to the ill-conditioning of the system;
see [PBB11] and Figure 10. Fortunately, the ADMM opti-
mization described in Section 5 does not suffer from this
drawback as it does not employ a reweighting scheme. This
makes our optimization both stable and efficient as demon-
strated in Figure 10. It is interesting to note the similarity of
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Figure 11: An analysis of the convergence rate of our algo-
rithm for different values of p (top) and first order approx-
imations (bottom). When p decreases, the number of itera-
tions of the ICP algorithm increases. Higher order approxi-
mations drastically speed-up the convergence of the ICP al-
gorithm. The initial alignment is shown on the left.

the Tukey reweighting function in Figure 7-b and a weight
function for outlier pruning that is a step function.

Outliers source v.s. target. In Figure 8, we show the effects
of outliers in the source model. These outliers can be seen
as samples lacking a proper ground truth match on the tar-
get shape. Outliers in the farget geometry have a completely
different effect. Consider the example in Figure 9, where
the source geometry is outlier-free while the target has been
corrupted with uniform environment noise. In this scenario,
when a coarse initialization is given (small overlap between
source and target), most closest-correspondence queries are
incorrectly matched to outliers, thus severely affecting the
effectiveness of the closest-point step of Equation 5.

Convergence speed. Figure 11-a illustrates the a trade-
off between reducing p to achieve robust registration and
convergence speed. As p is reduced, our registration be-
comes more resilient to outliers; however, the convergence
speed decreases. This is mainly due to the fact that when
p decreases, the contribution of pairs of correspondences
with large distances also decreases forcing the optimiza-
tion to take smaller steps. Figure 11-b reports a compari-
son between our sparse implementation of point-to-point and
point-to-plane for p = 0.4. Similarly to what was previously
discovered for standard ICP [RLO1,PHYHO6], our optimiza-
tion also greatly benefits from the extra degree of freedom
(i.e. tangential motion) of the point-to-plane metric approxi-
mation.

Selecting “p”’. Our experiments show how the performance
of the algorithm varies with p, progressively trading-off be-
tween performance and robustness. Throughout our exper-
iments, unless otherwise stated, we selected p = 0.4 as it
seemed to offer a good trade-off.

Limitations. In our approach we essentially focused our ef-
forts to robustify the second of the two ICP steps, i.e. Equa-

(© 2013 The Author(s)
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TrICP

Our

p=03 p=0.6 p=09

Figure 12: Contrary to TrICP [CSKO05], where the percent-
age of inliers k is a parameter of the algorithm, our approach
automatically selects the set of inliers. As shown in this ex-
ample, the set of inliers used at the last iteration of the reg-
istration (shown in black) is stable and accurate in our ap-
proach.

tion 6. However, as we demonstrated in Section 7, the op-
timization step seeking closest correspondents (Equation 5)
can still be affected by outliers. The performance of our al-
gorithm is consequently degraded when there are too many
outliers in the target geometry; see Figure 9. To address this
problem, we would like to extend our formulation in order
to relax the one-to-one correspondence assumption to one-
to-many allowing fuzzy correspondences [GP02, CR03].

Source code and integration. An important advantage of
our new ICP formulation is that already deployed implemen-
tations can easily be adapted. Code implementing heuris-
tics for outlier selection can be improved using our ¢, op-
timization. We provide a C++ implementation at the URL
http://lgg.epfl.ch/sparseicp.

8. Conclusions

We presented an extension of the classical ICP algorithm
that systematically addresses the problem of outliers com-
monly observed in acquired 3D data. We express the ICP
registration problem as a sparse ¢, optimization, obtaining
an heuristic-free, robust rigid registration algorithm having
only one free parameter. We believe that our method can re-
place or extend most existing ICP implementations that often
are a crucial component in numerous geometry processing
applications.
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Appendix A: Augmented Lagrangian Method (ALM)

We briefly discuss constrained optimization methods to pro-
vide a suitable background for the optimization approach
taken in this paper. Consider the equality-constrained op-
timization problem having x € R*:

min f(x) subjectto ¢;(x)=0 i=1...n. (23)
X
Given a vector of Lagrange multipliers A € R" and u € R*,

we can transform the problem into an unconstrained opti-
mization expressed by the augmented Lagrangian function
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(© 2013 The Eurographics Association and Blackwell Publishing Ltd.


http://www.cs.princeton.edu/~smr/papers/icpstability.pdf
http://www.cs.princeton.edu/~smr/papers/icpstability.pdf

Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly / Sparse ICP

La(x,A,p) X)+ Z Aici(x g ,z(x) (24)

uM:

A close inspection of this expression reveals that it is a com-
bination of a linear penalty typical of dual ascent meth-
ods [PB13, Ch. 2] and a quadratic one from penalty meth-
ods [NWO06, Ch. 17]

£x) :f<x>+§x,»c,-(x>

Intuitively, dual ascent methods exploit the fact that the La-
grange dual function g(A) = minx £(x,A) is a lower bound on
the primal problem [BV04, pp. 216]. A gradient ascent w.r.t.
A of appropriate size gradually closes the duality gap, effec-
tively optimizing Equation 23 as shown in Equation 26. Con-
versely, penalty methods gradually increase the penalty pa-
rameter u, resulting in progressively increased constrain sat-
isfaction. Unfortunately, both approaches suffer severe lim-
itations; dual ascent methods place strong assumptions on
the problem, like strict convexity and boundedness of g(.);
penalty methods offer limited control on constraint satis-
faction, running into numerical issues as u is increased to
very large values. These issues are addressed by the aug-
mented Lagrangian approach; the optimization involves an
algorithm strongly resembling dual ascent:

() =509+ T ).

Step 1: Xt :=argmin£(x,7\.t,,u) (25)

Step 2: AN =X =11 (26)

providing an asymptotic approximate constraint satisfaction
in the form [NW06, Thm 17.2]

ci(x) = (M — M) /u. (27)

Consequently, constraints can be satisfied by either increas-
ing u, or alternatively by providing multipliers A having val-
ues close to the optimal A*; note that this is achieved by the
Lagrange multiplier ascent step inherited from dual ascent;
see Equation 26.

Appendix B: Alternating Direction Method of Multipliers

The ADMM method is an extension of the augmented
Lagrangian method to optimize a compound problem
f(x) = f(%) + f(®) by decoupling it into simpler sub-
problems [BPC*11]. Under appropriate conditions [PB13,
Ch. 3], as the optimizer is separated in x = [X, %], the problem
can be approached by iteratively solving the following three
steps:

Step 1: g —argmlnll([x 1,0, u) (28)

Step 2: £ =argmin (& &],A 1) (29)
R

Step 3: 7»?“ =\ 4 u c,-(x’“) i=1l...n (30)
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Note that alternately looping over Steps 1/2 until conver-
gence would simply correspond to a block coordinate de-
scent decomposition of the joint minimization in Equa-
tion 25. Consequently, ADMM can be interpreted as apply-
ing a single step of block coordinate descent optimization
applied to the augmented Lagrangian problem.

Appendix C: Shrink operator for f(z) = ||z||5 + £|lz—h]|3

The minimization of f(z) can be simplified into a scalar prob-
lem by noticing that z can be expressed as z = ah (see Ap-
pendix D) leading to

. 2 . -2 2
min |cch]}5 + % loth — 3 = min [ |4 out” + 4o — 1.

(3D
As proven in [MS12], the optimal o* is given by:
« [0 if|h|, <h
= i - 32
0o s 2

where the threshold / is computed as

L
h=oa+ 2ol ™!, aa= (%(1 —p)) ey
B is found by using the following update scheme
Bt =1 Eln]5 g7 (34)

by initializing By € [ow|[h[; ', 1]. Similarly to [MS12], we no-
ticed that this scheme converges in two or three iterations.
The optimal z is then given by z* = o*h.

Appendix D: Scalar version of f(z) = ||z||5 + 4||z—h]|3

The minimization of f(z) can be re-interpreted into a simpler
scalar problem where the optimal solution can be expressed
as z* = a*h, a € R. We verify this by expressing z as a linear
combination of a component oh lying in the space defined
by h, and « orthogonal to it, that is, k" h = 0. All that is nec-
essary is to prove that Vk € R3, f(ah+x) > f(oh). This can
be verified by checking that both of the two following in-
equalities |loh +k]|5 > ||ath||5 and ||oh +x —h|| > |joh — h]|3
hold. We can easily convert the first of these into one in-
volving quadratic exponents only. We first raise both sides
to the power 2/p and then expand the norm as an inner prod-
uct obtaining (ah+x)" (ah+k) > ||ah|?>. As h and x are or-
thogonal we get ||ah||3 + ||x||3 > |loh[3; this is always veri-
fied as ||x||3 > 0. To verify the second expression, we again
expand the norm as an inner product, then, after removing
|h||3 from both sides, we obtain ||oh + k|3 — (ah+%)"h >
lloth|3 — (oth) h. Similarly to what we did before, we expand
the norm and exploit orthogonality, simplifying the expres-
sion to ||||? > 0, that, again, is always verified.



