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Abstract
We introduce the novel concept of composite barycentric mappings and give theoretical conditions under which
they are guaranteed to be bijective. We then focus on mean value mappings and derive a simple procedure for
computing their Jacobians, leading to an efficient GPU-assisted implementation for interactively designing com-
posite mean value mappings which are bijective up to pixel resolution. We provide a number of examples of 2D
image deformation and an example of 3D shape deformation based on a natural extension of the concept to spatial
mappings.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation G.1.1 [Numerical Analysis]: Interpolation—Interpolation formulas

1. Introduction

A barycentric mapping between a source polygon Ω ⊂ ℝ2

with n≥ 3 source vertices vi, i = 1, . . . ,n, ordered anticlock-
wise, and a target polygon Ω̂⊂ℝ2 with the same number of
target vertices v̂i, is a mapping

f : Ω→ Ω̂, f (v) =
n

∑
i=1

bi(v)v̂i, (1)

where the functions bi : Ω → ℝ, i = 1, . . . ,n are a set of
barycentric coordinates with respect to Ω. That is, the bi
form a partition of unity,

n

∑
i=1

bi(v) = 1, v ∈Ω,

allow us to express any point as an affine combination of the
vertices,

n

∑
i=1

bi(v)vi = v, v ∈Ω, (2)

and satisfy the Lagrange property

bi(v j) = δi, j, j = 1, . . . ,n,

so that f maps the source vertices to the target vertices,

f (v j) = v̂ j, j = 1, . . . ,n. (3)

Some barycentric coordinates have the additional property
of being piecewise linear along the boundary ∂Ω of Ω, im-
plying that f maps ∂Ω to ∂Ω̂ in a piecewise linear fashion.

One of the main applications of barycentric mappings in
computer graphics is image warping, where a source image
I : Ω→ C over Ω with respect to some colour space C is
deformed into a target image Î : Ω̂→C by simply setting

Î( f (v)) = I(v). (4)

The vertex interpolation property (3) guarantees that the
user has intuitive control over the target image and can eas-
ily modify the latter by interactively moving the target ver-
tices v̂i. However, according to (4) the target image is well-
defined if and only if f is bijective. Indeed, if f is not sur-
jective, then Î may be undefined for some v̂ ∈ Ω̂, and if f is
not injective, so that f (v) = f (w) = v̂ for some v ∕= w, then
the definition of Î(v̂) is ambiguous.

Unfortunately, a set of barycentric coordinates that yields
bijective mappings for any choice of source and target poly-
gons does not exist [Jac12]. However, by splitting the map-
ping into a finite number of steps it is possible to define a
composite barycentric mapping that bijectively maps from
source to target polygon (see Section 2.2). Bijectivity is also
crucial for the application of barycentric mappings to shape
deformation, where some object contained in Ω is smoothly
deformed by applying f to the object points.

1.1. Related work

While barycentric coordinates are unique for simplices, they
can be generalized in several ways to arbitrary polygons and

c⃝ 2013 The Author(s)
Computer Graphics Forum c⃝ 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

Eurographics Symposium on Geometry Processing 2013
Yaron Lipman and Hao Zhang
(Guest Editors)

DOI: 10.1111/cgf.12180

http://www.eg.org
http://diglib.eg.org


T. Schneider & K. Hormann & M. S. Floater / Bijective Composite Mean Value Mappings

polytopes in higher dimensions, and several such general-
ized barycentric coordinates have been found in the past few
years. In ℝ2, the most well-known are Wachspress [Wac75],
discrete harmonic [EDD∗95, PP93], and mean value coor-
dinates [Flo03], which are all given in closed form and can
be evaluated efficiently. Harmonic [JMD∗07] and maximum
entropy coordinates [HS08] are more costly to evaluate, but
have the advantage of being positive inside arbitrary poly-
gons. All of these, as well as the recently discovered Poisson
coordinates [LH13], are piecewise linear along ∂Ω, but giv-
ing up this property can be beneficial if conformal mappings
are preferred [WBCG09].

Mean value coordinates have also been extended to ℝ3

[FKR05, JSW05, LBS06], with a particular focus on their
application to shape deformation. Some of the shortcomings
of 3D mean value mappings, which result from the coordi-
nates being negative for non-convex polyhedra, have been
overcome by using positive mean value [LKCOL07], har-
monic [JMD∗07], or Green coordinates [LLCO08], but none
of these spatial mappings are guaranteed to be bijective and
can lead to fold-overs in the deformed shapes.

Image warping has first been mentioned as an application
of barycentric mappings in the context of mean value [HF06]
and transfinite Wachspress coordinates [WSHD07], but nei-
ther these nor any of the follow-up work [JBPS11, MS10,
WG10] is guaranteed to avoid fold-overs in the warped im-
age. Modifying the interpolation speed along the bound-
ary of Ω has the potential to overcome this problem
[WBCGH11], but it is unclear if this approach works for any
arbitrary source and target polygons.

So far, bijectivity can only be guaranteed for the spe-
cial case of Wachspress mappings between convex poly-
gons [FK10] or by triangulating Ω and computing a piece-
wise linear mapping which preserves the orientation of each
triangle [ACOL00, Lip12], but this solution comes at the
price of giving up smoothness.

1.2. Contributions

We introduce the novel concept of composite barycentric
mappings, which can be used to design smooth and bijec-
tive mappings between arbitrary polygons (Section 2). The
key observation is that any barycentric mapping is bijec-
tive if source and target polygon are sufficiently close (Sec-
tion 2.1). Hence, by creating sufficiently many intermediate
polygons and successively mapping from one to the next, it
is possible to get a composite mapping that is bijective.

A similar approach has been described in the context of
free-form deformations with tensor-product B-spline map-
pings [GD01], but we are able to provide sufficient bounds
to guarantee bijectivity, which depend on the gradient of the
barycentric coordinates used to define the mapping (Sec-
tion 2.2). For the special case of mean value mappings, these
bounds can provably be satisfied for mappings between any

convex polygons and our numerical examples suggest that
this also holds for arbitrary polygons (Section 3).

We further discuss how to implement our approach effi-
ciently on the GPU, allowing the user to design visually bi-
jective mappings, that is, bijective up to pixel resolution, by
interactively modifying the target vertices (Section 4). As an
essential ingredient of our implementation, we derive a sim-
ple procedure for computing the Jacobian of a mean value
mapping (Section 4.2). We briefly mention how to extend
the idea to spatial mappings (Section 4.5) and conclude with
a conjecture regarding the inverses of composite mean value
mapping (Section 5).

2. Theoretical background

Let us denote the partial derivatives of the barycentric map-
ping f = ( f 1, f 2) in (1) at v = (v1,v2) ∈ Ω by ∂k f (v) =
∂ f/∂vk, k = 1,2, and the gradient of f by∇ f = (∂1 f ,∂2 f ).
We further denote the dot product of two vectors u,v ∈ ℝ2

by u ⋅ v and the 2D cross product by u× v = det(u,v).

As we consider only source and target polygons with-
out self-intersections and assume that the barycentric coor-
dinates bi are at least continuously differentiable, it is clear
that the barycentric mapping f is always surjective. A suf-
ficient condition for the injectivity of f is that its Jacobian,

Jf =

∣∣∣∣∂1 f 1
∂2 f 1

∂1 f 2
∂2 f 2

∣∣∣∣ (5)

is strictly positive in Ω [MO63]. As it follows from (2) that
a barycentric mapping between identical source and target
polygons is the identity with Jf (v) = 1 for all v ∈ Ω, it is
reasonable to expect that a small perturbation of the target
vertices keeps Jf positive and the mapping bijective.

2.1. Perturbed target polygons

It turns out that the maximum possible perturbation is
closely related to the gradient of the barycentric coordinates
bi. Let us first consider the perturbation of a single vertex.

Lemma 1 Consider the target polygon with vertices v̂i = vi+
u for some i and v̂ j = v j for j ∕= i. The barycentric mapping
f in (1) is injective if the displacement vector u = (u1,u2)
satisfies ∥u∥< 1/Mi, where

Mi = sup
v∈Ω

∥∇bi(v)∥.

Proof Substituting the target vertices in (1), the linear preci-
sion property (2) implies that

f (v) = v+bi(v)u

for any v ∈Ω and

Jf (v) =
∣∣∣∣1+∂1bi(v)u1

∂2bi(v)u1

∂1bi(v)u2 1+∂2bi(v)u2

∣∣∣∣= 1+∇bi(v) ⋅u.
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Therefore,

Jf (v)≥ 1−∣∇bi(v) ⋅u∣ ≥ 1−∥u∥∥∇bi(v)∥,

which is strictly positive if ∥u∥< 1/Mi.

This result extends nicely to a perturbation of all vertices.

Lemma 2 Consider the target polygon with vertices v̂i =
vi + ui for i = 1, . . . ,n. The barycentric mapping f in (1) is
injective if the maximum displacement distance satisfies

d = max
1≤i≤n

∥ui∥<
√

5−1
2M

,

where M = M1 + ⋅ ⋅ ⋅+Mn.

Proof These target vertices imply that

f (v) = v+
n

∑
i=1

bi(v)ui

for any v ∈Ω and so, with ui = (u1
i ,u

2
i ),

Jf (v) =
∣∣∣∣1+∑

n
i=1 ∂1bi(v)u1

i ∑
n
i=1 ∂2bi(v)u1

i
∑

n
i=1 ∂1bi(v)u2

i 1+∑
n
i=1 ∂2bi(v)u2

i

∣∣∣∣
= 1+

n

∑
i=1
∇bi(v) ⋅ui +

n

∑
i, j=1

∂1bi(v)∂2b j(v)(ui×u j).

Therefore,

Jf (v)≥ 1−Md−M2d2,

which is strictly positive if Md < (
√

5−1)/2.

2.2. Composite barycentric mappings

Lemma 2 suggests to “split” a barycentric mapping from
source to target polygon into a finite number of steps, where
each step perturbs the vertices only slightly.

To this end, suppose that ϕi : [0,1]→ ℝ2, i = 1, . . . ,n are
a set of continuous vertex paths between each source vertex
vi = v0

i = ϕi(0) and its corresponding target vertex v̂i = v1
i =

ϕi(1). Further assume that the gradients of the barycentric
coordinates bt

i associated with any of the polygons Ω
t with

vertices vt
i = ϕi(t) are all bounded by a common constant

M∗ = max
1≤i≤n

sup
t∈[0,1]

sup
v∈Ωt
∥∇bt

i(v)∥. (6)

Definition 3 Let τ = (t0, t1, . . . , tm) with t0 = 0, tm = 1, and
tk < tk+1 for k = 0, . . . ,m− 1 be a partition of [0,1] and fk
be the barycentric mapping from Ω

tk to Ω
tk+1 , based on the

barycentric coordinates btk
i . The mapping

fτ = fm−1 ∘ fm−2 ∘ ⋅ ⋅ ⋅ ∘ f0,

is called a composite barycentric mapping from Ω
0 to Ω

1.

Denoting the maximum displacement distance between
Ω

tk and Ω
tk+1 by

dk = max
1≤i≤n

∥∥vtk
i − vtk+1

i

∥∥,

t =0 t =0.25 t =0.5 t =0.75 t =1

source target

Figure 1: Example of a composite mean value mapping with
1000 uniform steps. The resolution of the grid is increased
by a factor of four in the close-up.

it follows from Lemma 2 that fτ is bijective if

dτ = max
0≤k<m

dk <

√
5−1

2nM∗
. (7)

Theorem 4 Under the assumption (6), there exists some τ,
such that fτ is bijective.

Proof It follows from the continuity of ϕi that there exists a
partition τ

i such that ∥ϕ(ti
k)−ϕ(ti

k+1)∥< (
√

5−1)/(2nM∗)
for each k. Condition (7) is then satisfied for τ=∪n

i=1τ
i.

In particular, there exists some m ∈ ℕ such that the uni-
form partition τm with tk = k/m gives a bijective composite
barycentric mapping fτm .

3. Practical considerations

While the construction of composite barycentric mappings is
independent of the particular choice of underlying barycen-
tric coordinates, we prefer to use mean value coordinates
[Flo03], because they are well-defined for any simple poly-
gon, even sets of nested simple polygons, and they have a
simple formula that can be evaluated efficiently [HF06].

Figure 1 shows an example of a composite mean value
mapping for two nested squares, with the interior square ro-
tated by 90 degrees in the target configuration. We use lin-
ear vertex paths ϕi(t) = (1− t)vi + tv̂i in this example and
the uniform partition τ1000, and we verified numerically that
condition (7) is satisfied by this choice. Note that Figure 1 vi-
sualizes the deformation induced by f for a domain Ψ that is
larger than Ω, which is possible because mean value coordi-
nates are well-defined for any point v∈ℝ2 and not restricted
to Ω. While the mapping is still guaranteed to be injective,
global fold-overs can potentially occur if the image f (∂Ψ)
of the boundary of Ψ happens to self-intersect, although we
never experienced such a behaviour in our experiments.

c⃝ 2013 The Author(s)
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source

Wachspress mean value
composite mean

value

Figure 2: Example of a convex source (top) and a convex
target polygon (bottom), taken from [FK10], for which the
mean value mapping (middle) is not bijective, but the Wach-
spress (left) and the uniform composite mean value mapping
fτ10 (right) are.

3.1. Choosing the vertex paths

The vertex paths ϕi must be chosen such that all intermediate
polygons Ω

tk are simple, because mean value coordinates are
not well-defined for polygons with self-intersections. Linear
vertex paths work well for the example in Figure 1, but they
are not guaranteed to avoid such artefacts in general.

Instead, we use the method by Sederberg et al.
[SGWM93], which constructs Ω

t by linearly interpolating
the signed turning angles at vi and v̂i, and by finding edge
lengths that are as close as possible to the linearly interpo-
lated edge lengths. As both quantities are invariant under
translation and rotation, the interpolated polygon is unique
only up to a rigid body transformation. In our implementa-
tion, we specify the translation such that the barycentre of
Ω

t aligns with the linear interpolation of the barycentres of
source and target polygon, and we fix the rotation by lin-
early interpolating the angles between the horizontal axis
and the first edges of Ω and Ω̂, as suggested by Sederberg
et al. We further scale Ω

t such that the area of the polygon
varies linearly between source and target. Overall, this pro-
vides a smooth deformation which is intuitive for the user,
but we should point out that the composite mapping fτ does
not depend on this particular choice, because mean value co-
ordinates are invariant with respect to similarity transforma-
tions [HF06].

t =0 t =0.25 t =0.5 t =0.75 t =1

source

1 step 4 steps

10 steps 20 steps

Figure 3: Examples of uniform composite mean value map-
pings for different numbers of uniform steps.

Another advantage of Sederberg et al.’s method is that it
preserves convexity by construction. Thus, if source and tar-
get polygon are both convex, it is possible to derive an upper
bound on M∗ in (6) explicitly by following the considera-
tions in [RGB12, Theorem 4.3], and hence deduce a parti-
tion τ that guarantees the bijectivity of fτ. We carried out
these calculations for the example in Figure 2 and found that
a uniform composite mean value mapping with m = 10 steps
is provably bijective, although we admit that it is probably
preferable to simply use a bijective Wachspress mapping in
this example.

c⃝ 2013 The Author(s)
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In practice, however, we suggest to start with a small num-
ber of uniform steps, to test for the bijectivity of the mapping
numerically, and to uniformly refine the partition if needed.
A result of this strategy can be seen in Figure 3. An even
more efficient and adaptive alternative is described in the
next section.

A potential drawback of Sederberg et al.’s method is that
Ω

t may self-intersect, invalidating the overall construction.
While this never occurred in all our examples, this does not
affect the theoretical considerations in Section 2, and other
methods of choosing vertex paths can be used in practice.

4. Efficient implementation

On the one hand, a sufficiently large number of m steps guar-
antees the bijectivity of a composite mean value mapping,
as shown in the previous section, but on the other hand, it
is important to choose m small, because the computations
scale linearly with m. To find such a small m that stills gives
mappings which are bijective up to pixel accuracy, we adopt
the following strategy, which relies on the minimum of the
Jacobian

Jmin = min
v∈Ω

(
Jf (v)

)
.

We first explain how to exploit the condition on the posi-
tivity of Jmin to construct a binary partition τ that guarantees
bijectivity (Section 4.1). We then describe how to efficiently
compute Jmin in order to have a real-time application (Sec-
tion 4.2), and finally illustrate how to use the two previous
ingredients to efficiently compute the composite mapping
(Section 4.3).

4.1. Creating binary partitions

Suppose we start with the initial partition τ = (0,1) and
consider the classical mean value mapping fτ : Ω

0 → Ω
1.

We can now compute Jmin for this mapping and check for
positivity. If Jmin is negative, and hence the mapping is not
bijective, we can try to restore bijectivity by inserting 0.5
into the partition τ and considering the intermediate poly-
gon Ω

0.5. We then recalculate Jmin for the two mappings

Listing 1: Pseudo-code of the algorithm for finding a binary
partition with a small number of steps.

function checkJacobian(a, b)
Jmin← computeJmin(a, b)
if Jmin ≤ 0 and ∣b−a∣> ε then

c← (a+b)/2
τ← τ∪ c
checkJacobian(a, c)
checkJacobian(c, b)

end
end

source binary partition

f : Ω0 → Ω1 f0 : Ω0 → Ω0.5

f1 : Ω0.5 → Ω0.75 f2 : Ω0.75 → Ω0.875

f3 : Ω0.875 → Ω0.9375 f4 : Ω0.9375 → Ω1

Figure 4: Example of a composite mean value mapping with
a 5-step binary partition.

f1 : Ω
0 → Ω

0.5 and f2 : Ω
0.5 → Ω

1 and test both for pos-
itivity. We continue this binary refinement of τ until Jmin is
positive for all mappings fk or if the distance between two
steps becomes numerically too small, that is, smaller than
some threshold ε > 0. We used ε = 0.01 in our examples.
The pseudo-code in Listing 1 illustrates a recursive algo-
rithm for finding such a binary partition. Given two domains
Ω

a and Ω
b for 0≤ a< b≤ 1, the algorithm’s core consists of

c⃝ 2013 The Author(s)
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source t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 5: Colour-coded plots of Jf for the mean value mapping f : Ω
0→Ω

t for different values of t.

v
i+1

v
i

v
i −1

v

r
i

®
i

®
i −1

Figure 6: Notation used for the definition of mean value co-
ordinates.

computing Jmin for the mapping between Ω
a and Ω

b. Then,
by checking the positivity of the minimum, the algorithm
decides whether to introduce an intermediate step. Overall,
this produces a binary partition which guarantees that the
corresponding composite mapping is bijective and consists
of a small number of intermediate steps. Figure 4 shows an
example of the result of this algorithm.

4.2. Efficiently computing Jmin

In order to compute Jmin, we need a formula for the partial
derivatives of the mean value coordinates

bi(v) =
wi(v)

∑
n
i=1 wi(v)

,

where

wi =
tan(αi−1/2)+ tan(αi/2)

ri
(8)

and αi is the angle between vi − v and vi+1 − v and ri is
the distance between v and vi; see Figure 6. To efficiently
evaluate expression (8), we express the tangent as

ti = tan(αi/2) =
sinαi

1+ cosαi
=

si× si+1
riri+1 + si ⋅ si+1

,

where si = vi− v.

The gradient of bi can now be derived from the gradients
of the cross product,

∇(si× si+1) = (vi+1− vi)
⊥ =

(
v2

i − v2
i+1

v1
i+1− v1

i

)
,

the distance,

∇ri =
−si

ri
.

and the dot product

∇(si ⋅ si+1) =−(si + si+1),

and by using the chain rule, which first gives

∇ti =
∇(si× si+1)− ti(∇riri+1 + ri∇ri+1 +∇(si ⋅ si+1))

riri+1 + si ⋅ si+1
,

then

∇wi =
∇ti−1 +∇ti−wi∇ri

ri
,

and finally

∇bi =
∇wi−bi∇∑wi

∑wi
. (9)

In order to efficiently compute (9), we opt to evaluate it
on the GPU using a vertex shader. This shader receives the
vertices of the source and target polygons, computes the Ja-
cobian, and writes it as a colour. Figure 5 shows some ex-
amples of the values of Jf computed this way. The major
drawback of this approach it that the output of the shader is
a full resolution image, which must be read back and anal-
ysed by the CPU, which should be avoided if possible.

The vertex shader knows only the position of the currently
processed vertex, hence finding the global minimum is im-
possible. To circumvent this problem we exploit the z-buffer.
This particular OpenGL-buffer is used to determine which
object is closer to the camera. Using this trick we modify the
shader to “collapse” all the points to the same (x,y) position
and we artificially set the z-component to the value of the
Jacobian (clamped to zero if negative). In this way the gen-
erated image contains only one pixel which is the one clos-
est to the camera and the colour of this pixel corresponds to
Jmin. At the end, the CPU reads only one pixel and produces
a sequence of domains Ω

i, i = 1, . . . ,n such that the mapping
between two successive domains is visually bijective.

c⃝ 2013 The Author(s)
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source mean value warp composite mean value warp

Figure 7: Comparison of image warping using a non-bijective mean value mapping and a visually bijective composite mean
value mapping with 9 steps from a binary partition.

v̂1 = (0.41,0.51) v̂1 = (0.4,0.5)

Figure 8: Composite mean value mappings from a unit
square [0,1]2 to a deformed square with upper right ver-
tex v̂1. The slight change of position induces a change in the
binary partition and thus gives different composite mappings
(see close-up).

4.3. Computing composite mean value mappings

For computing the overall composite mapping, we decide
again to implement the algorithm on the GPU using a ver-
tex shader. The shader receives two successive domains Ω

k

and Ω
k+1 and moves the vertex position according to the

mapping fk. We then exploit the transform feedback buffer,
a technique that allows to alter the rendering pipeline of
OpenGL such that the primitives, in our case the vertex po-
sitions, are written into a buffer object. Hence the algorithm
becomes a “ping pong” between two transform feedback
buffers. We use the first buffer as output (where the vertex
position is written) and the second as input (from where the
positions are read). In the next step the role of the two buffers
is inverted and so on. At the end, the last output buffer con-
tains the vertex positions of the composite mapping. Figure 4
shows the warping of the star for different choices of in-
termediate steps. When the partition is sufficiently refined,
the morphing is visually bijective and prevents fold-overs.
The real-world example in Figure 7 shows how the non-
bijectivity of the direct mean-value mapping is avoided by
our composite approach with just 9 intermediate steps.

4.4. Continuous binary partitions

Our initial tests showed that visual artefacts can appear when
interactively moving a target vertex leads to the creation of

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

s

J m
in

Figure 9: Jmin for different warps of the unit square to a
unit square with the upper right vertex moved to the position
(1− s,1− s) for s = 0.005.

a bc=
a+b

2

J
min
≥1

J
min
=1/3

J
min
=2/3

J
min
=0

J
min
≥1

J
min
=1/2

...

Figure 10: Partitions with additional intermediate steps (red
circles), placed according to the value of Jmin.

an intermediate step in the binary partition between tk and
tk+1. Figure 8 shows an example of such an artefact. Even
though the positions of the upper right target vertex differ
only slightly, they lead to different partitions and different
composite mappings. If we consider a unit square and lin-
early move its upper right corner from (1,1) on the diago-
nal to the position (0.005,0.005), Jmin changes linearly as
shown in Figure 9.

In order to avoid visual artefacts, we introduce an artificial
intermediate step c̃ between a and b as shown in Figure 10,
where c̃ is indicated by a red circle. The position of c̃ moves
smoothly from a to c = (a+ b)/2 (the position of the new
step) according to Jmin. Figure 10 shows the movement of c̃.

c⃝ 2013 The Author(s)
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source mean value deformation composite mean value deformation

Figure 11: Comparison of shape deformation using a non-bijective mean value mapping and a bijective composite mean value
mapping with 100 uniform steps. Note how the deformed shape intersects the target polyhedron in the close-up for the direct
mean value deformation.

We see that c̃ moves to c as Jmin becomes less positive. When
the step c is introduced, two additional steps are created (the
two red circles in the second part of the image) which again
move according to Jmin from their original position to the
next intermediate steps.

4.5. Extension to 3D

The concept of composite mean value mappings can be ex-
tended easily to 3D to generate mappings between a source
and a target polyhedron. It is beyond the scope of this paper
to investigate any theoretical guarantees, but our numerical
examples show that a sufficiently large number of steps guar-
antees bijectivity even for extreme deformations.

Figure 11 shows an example, where mean value mappings
are used to deform a simple shape that is embedded in the
source polyhedron. Even though both deformed shapes are
free of self-intersections and are valid meshes in that sense,
note that the result of the mean value deformation leaves the
target polyhedron (see close-up), which evidences that the
mapping is not bijective. In contrast, the composite mean
value mapping with 100 uniform steps keeps the shape in-
side the target polyhedron and we verified numerically that
it is indeed bijective. In this example we used the method of
Winkler et al. [WDAH10] to generate the interpolated poly-
hedra, which is not guaranteed to prevent self-intersections
of the latter, but works well in practice. Otherwise, the inter-
ference algorithm by Harmon et al. [HPSZ11] can be used
to avoid self-intersections.

5. Conclusions

Composite mean value mappings provide an efficient tool
for designing bijective mappings between arbitrary poly-
gons, which in turn can be used for user-controlled image
warping. Barycentric mappings are by no means the only
way to warp images and many other approaches exist, based
for example on radial basis functions [RM95], B-splines

[LCSW95], moving least squares [SMW06], Killing vector
fields [SBCBG11], partial differential equations [JWSH12],
or finite elements [KWSH∗13]. However, to the best of our
knowledge, composite mean value mappings are the only
way so far to guarantee a bijective mapping that is piece-
wise linear along the boundaries of source and target poly-
gon, which might be preferred in certain situations. More-
over, the concept extends straightforwardly to 3D, inheriting
all advantages from the 2D setting.

We admit that the guaranteed bijectivity of composite
mean value mappings depends on the existence of the upper
bound M∗ in (6), which is proven only in the convex set-
ting up to now [RGB12]. It remains future work to establish
similar bounds for the gradients of mean value coordinates
with respect to arbitrary polygons, but all our numerical tests
show that such a bound exists and that bijective mappings
can be designed by using a sufficiently large number of steps.
Actually, this number turns out to be rather small if bijec-
tivity is required only up to pixel accuracy, which in turn
enables applications at interactive speed.

Another interesting question for future research regards
the following observation. The inverse of a barycentric map-
ping is usually not a barycentric mapping itself, but it seems
as if the inverse of an infinite mean value mapping f∞ =
limm→∞ fτm is again an infinite mean value mapping. Fig-
ure 12 shows the result of mapping the star from Figure 4
with a uniform composite mapping fτm to the target poly-
gon and back to the original shape by using another uniform
composite mapping f̄τm : Ω̂→ Ω with the same number of
steps. Computing the maximum distance ∥v− f̄τm( fτm(v))∥
for one million random points v∈Ω reveals that this distance
is on the order of O(1/m), so that f̄τm = f−1

τm as m→∞.

Finally, it will be interesting to study the distortion prop-
erties of composite mean value mappings and to investi-
gate how the quality of a mapping depends on the particular
choices of barycentric coordinates, vertex paths, and parti-
tions.

c⃝ 2013 The Author(s)
c⃝ 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 12: Composing the mapping fτm and the backward
mapping f̄τm converges to the identity as the number of m
uniform steps increases.

Acknowledgements

This work was supported by the SNF under project num-
ber 200021_140583. We thank the anonymous reviewers for
their insightful comments.

References
[ACOL00] ALEXA M., COHEN-OR D., LEVIN D.: As-rigid-

as-possible shape interpolation. In Proceedings of SIGGRAPH
(New Orleans, July 2000), pp. 157–164. 2

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPE H.,
LOUNSBERY M., STUETZLE W.: Multiresolution analysis of
arbitrary meshes. In Proceedings of SIGGRAPH (Los Angeles,
Aug. 1995), pp. 173–182. 2

[FK10] FLOATER M. S., KOSINKA J.: On the injectivity of
Wachspress and mean value mappings between convex polygons.
Advances in Computational Mathematics 32, 2 (Feb. 2010), 163–
174. 2, 4

[FKR05] FLOATER M. S., KÓS G., REIMERS M.: Mean value
coordinates in 3D. Computer Aided Geometric Design 22, 7 (Oct.
2005), 623–631. 2

[Flo03] FLOATER M. S.: Mean value coordinates. Computer
Aided Geometric Design 20, 1 (Mar. 2003), 19–27. 2, 3

[GD01] GAIN J. E., DODGSON N. A.: Preventing self-
intersection under free-form deformation. IEEE Transactions
on Visualization and Computer Graphics 7, 4 (Oct.–Dec. 2001),
289–298. 2

[HF06] HORMANN K., FLOATER M. S.: Mean value coordinates
for arbitrary planar polygons. ACM Transactions on Graphics 25,
4 (Oct. 2006), 1424–1441. 2, 3, 4

[HPSZ11] HARMON D., PANOZZO D., SORKINE O., ZORIN D.:
Interference-aware geometric modeling. ACM Transactions on

Graphics 30, 6 (Dec. 2011), Article 137, 10 pages. Proceedings
of SIGGRAPH Asia. 8

[HS08] HORMANN K., SUKUMAR N.: Maximum entropy coor-
dinates for arbitrary polytopes. Computer Graphics Forum 27, 5
(July 2008), 1513–1520. Proceedings of SGP. 2

[Jac12] JACOBSON A.: Bijective mappings with generalized
barycentric coordinates: a counterexample. Tech. rep., Depart-
ment of Computer Science, ETH Zurich, 2012. 1

[JBPS11] JACOBSON A., BARAN I., POPOVIĆ J., SORKINE O.:
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