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Abstract

Quasi-Monte Carlo (QMC) methods exhibit a faster convergence rate than that of classic Monte Carlo methods.
This feature has made QMC prevalent in image synthesis, where it is frequently used for approximating the value
of spherical integrals (e.g., illumination integral). The common approach for generating QMC sampling patterns
for spherical integration is to resort to unit square low discrepancy sequences and map them to the hemisphere.
However such an approach is suboptimal as these sequences do not account for the spherical topology and their
discrepancy properties on the unit square are impaired by the spherical projection. In this article we present a
strategy for producing high quality QMC sampling patterns for spherical integration by resorting to spherical
Fibonacci point sets. We show that these patterns, when applied to illumination integrals, are very simple to
generate and consistently outperform existing approaches, both in terms of Root Mean Square Error (RMSE) and
image quality. Furthermore, only a single pattern is required to produce an image, thanks to a scrambling scheme

performed directly in the spherical domain.

1. Introduction

Among all the methods which have been proposed to speed
up Monte Carlo integration for rendering, Quasi-Monte
Carlo (QMC) methods play an important role as they allow
improving the convergence rate as well as controlling the er-
ror noise perception. The principle is to use more regularly
distributed sample sets (i.e., with some determinism) than
the crude random sample sets associated with Monte Carlo
integration.

QMC integration is now extensively used in computer
graphics (see e.g., [SEBOS8]). Keller has shown in [Kell2]
that QMC techniques can be applied in a consistent way
to deal with a wide range of problems (anti-aliasing, depth
of field, motion blur, spectral rendering,. ..). However, few
applications have been reported in the literature specifically
addressing hemispherical sampling with a view of comput-
ing the illumination integral. Unlike the unit square sampling
case, no explicit construction of optimal point sets for spher-
ical sampling is known and generally the spherical point sets
are generated by lifting point sets from the unit square to
the unit sphere through an equal-area transform. Although
such point constructions are not proved to be optimal, re-
cent results from the numerical analysis literature suggest
that both (0,2)-sequences and Fibonacci lattices lifted to

© 2013 The Author(s)

Computer Graphics Forum © 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

the sphere are quite close to optimality in terms of discrep-
ancy [ABD12,BD11]. Nevertheless their performance is not
exactly equivalent: several authors have shown that spher-
ical Fibonacci lattices are particularly well-suited to sphere
sampling compared to other low-discrepancy point sets. Fur-
thermore, similar point structures arise spontaneously in na-
ture so as to implement a best packing strategy on the sphere
(e.g., packing of seeds in the sunflowers head [Vog79]), a
clear indication that these structures have intrinsically good
spherical uniformity properties.

In this paper, we introduce theoretical aspects on QMC
spherical integration that, to the authors knowledge, have
never been used in the graphics community. In concrete
terms, we define worst case integration error (w.c.e.), spher-
ical cap discrepancy (s.c.d.) and an inter-samples distance-
based energy metric Ey, which allows to assess the quality
of a spherical samples set for spherical integration.

The second and major contribution of this work is the in-
troduction of the Fibonacci point sets for spherical quadra-
ture, based on previous works [HNO4, SJP06]. We com-
pare the quality of Fibonacci point sets for estimating the
illumination integral with that of state-of-the-art QMC-
compliant point set distributions such as blue noise [dG-
BOD12], Larcher-Pillichshammer point sets [LPO1] and the
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Figure 1: This figure shows how spherical Fibonacci (SF) point sets behave for an incident radiance function covering a wide
range of frequencies and materials of different glossinesses. Direct lighting of different plates with light sources of varying
size using SF (left) and Larcher-Pillichshammer (L-P, right) point sets. The L-P point sets have been projected using the
Lambert cylindrical projection. The Phong shininess coefficient n of each of the plates is 10, 50, 80 and 200 from bottom to top
respectively, while the background is perfectly diffuse. The RMSE of the image rendered using the L-P points is 7.55% higher.
The maximum quadratic error per pixel is 0.39 for SF and 0.71 for L-P.

popular Sobol (0,2)-sequence [Sob67]. We show that the Fi-
bonacci point sets consistently outperform those methods
and that the improvement is, in general, remarkable in terms
of RMSE value and percentage of rays saved for the same
RMSE quality. The noise perception in the resulting images
is also reduced. Furthermore, the generation of the Fibonacci
point sets is much simpler than the other tested methods, and
a single sequence is needed to synthesize an image.

The rest of this paper is structured as follows. In the next
section, we introduce theoretical concepts regarding spheri-
cal integration using QMC and present the related work. It
is followed by a detailed description of the Fibonacci spher-
ical point sets. In section 4, we specify how we have im-
plemented BRDF sampling in the context of QMC integra-
tion and make explicit the interest in generating high quality
spherical distributions for this particular case. Sections 5 and
6 present the benefits of using Fibonacci point sets compared
to a Sobol sequence, blue noise point sets and the Larcher-
Pillichshammer points. We finish with a conclusion and fu-
ture work.

2. Background
2.1. QMC spherical integration

The goal of QMC integration is to find sampling patterns
that yield a better order of convergence than the O(N~!/2)
rate obtained with purely random distributions. In the case
of QMC integration over the unit square [0, 113, it is well-
known that the best theoretical rate of convergence of the
worst case error is O(N~! yIogN) (see e.g., [BDI11]). To
find point set constructions that approximate this optimal
rate of convergence, the star-discrepancy is often used as
a criterion to characterize the uniformity of the point dis-
tribution (the connection between this criterion and the

worst case error is given by the Koksma-Hlawka inequality
[Nie88,BD11]). Moreover, a point set construction is called
a low-discrepancy sequence when its unit square discrep-
ancy convergence rate towards 0 is of order O(N ’l(log N)2).

Unlike the unit square case, QMC rules for numerical in-
tegration over the unit sphere S? in R3 are less known to the
graphics community. Therefore, a brief presentation of im-
portant results on this subject will be given in the following
of this section.

A set of sampling directions {w1 y,...,wnN} defined as
points on the unit sphere S2 is appropriate for Monte Carlo
integration if it is asymprotically uniformly distributed, that
is if
tim &> @) =5 [ f@aew)
im — WiN)=— w w
o N &N T an Jo
is true for every function f(w) on the sphere S2, Q being the

surface measure on S2. Similarly to the unit square case, this
property is equivalent to:

. Card{j:wj,N €eCt QO
lim =
N—oo N 4

(@)

for every spherical cap C with area Q(C) [KNO06]. Informally
speaking, Eq (2) means that a spherical cap of any area has
its fair share of points as N — co. Among all sampling pat-
terns complying with this definition, we are interested in
point sets Py ={w1 n,...,wnN} C S2 such that the worst case
integration error (w.c.e.)

1 & 1
w.c.e. = e(Py) = sup Z f@in)= - fS (@)
i=1

achieves the best rate of convergence as N — co. This is
equivalent to finding the point sets P; which minimize the
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spherical cap discrepancy (s.c.d.) defined as follows:

Card{j: w;Nn€C} Q
s.c.d. := D(Ps;C) = sup o et Q@)
Cces? N 4

where the supremum is extended over all spherical caps
C € §%. The mathematical relationship between w.c.e. and
s.c.d. is more complex than in the unit square case as ex-
plained in [BD11, BSSW12]. Minimizing the s.c.d. is still
equivalent to minimizing the w.c.e. However, both criteria
only follow the same O(N~3/4) rate of convergence towards
0 if f fulfills a specific smoothness criterion. Roughly speak-
ing, it must be at least a Cy continuous function. In such a
case, in application of the Stolarsky’s invariance principle,
the w.c.e. is proportional to the distance-based energy met-
ric Ey [BD11,BSSW12] given by

1

4 1Y
ENP) =| 3 =5 2, ) Jwi-wjl| 3)
j=1i=1

which means that minimizing the w.c.e. is equivalent to max-
imizing the sum of distances term ZN: | Zé\i | lwi — ;| while
keeping the property of asymptotically uniform distribution.
Ep can also be interpreted as an optimal spherical packing
criterion [SK97].

The order of convergence of the w.c.e. can be higher than
O(N—3/*y if the order of continuity of the integrand is higher
than Cop, but this depends on the points construction algo-
rithm since some are more capable of taking advantage of
smooth functions than others as explained in [BSSW12].

The s.c.d. order of convergence cannot be better than
O(N~3/*) but there surely exist point sets for which the or-
der of convergence is better than O(N -3/4 ylogN) [Bec84],
in which case these configurations are said to be low-
discrepancy sequences. Note that this order of convergence
is lower than the O(N ™! (log N)?) rate of low-discrepancy se-
quences in the [0, 1]? unit square.

In contrast with the unit square case, no explicit di-
rect construction of low-discrepancy sequences on the unit
sphere is known. That is why QMC sequences on S2 are
generally produced by lifting a [0, 1] low discrepancy point
set to S? through an equal-area transform. An alternative to
this approach consists in generating the patterns directly on
the sphere according to an extremal energy criterion [SK97].
Among the patterns with good Ey properties, spherical Fi-
bonacci point sets (or equivalently generalized spiral points)
are particularly well-suited to QMC integration over the
sphere as shown in [HNO4], hence our interest in applying
them for illumination integral computation.

2.2. Related work

The use of low discrepancy sequences is widespread in
computer graphics [KPR12]. Their goal is to improve the
convergence rate of the integral estimate by using sam-
ple sets which minimize a discrepancy criterion. Among
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the most popular low-discrepancy sequences is the Sobol’s
(0,2)-sequence [Sob67] which guarantees both minimum
distance and stratification criteria in each successive set of
b™ samples, where b is the base of the sequence. Lower
unit square discrepancy values can be obtained using the
Larcher-Pillichshammer point sets [LPO1], however these
points cannot be generated by an (infinite) sequence. More-
over, Kollig et al. [KK02] showed that both sequences can
be easily scrambled to decorrelate directions for neighbor-
ing pixels, thus avoiding artifacts without sacrificing the dis-
crepancy and stratification properties.

An alternative approach for producing uniform point set
distributions on a unit square is to use a blue noise gen-
erator [LDO8]. This class of point set generators produces
high quality uniform (yet unstructured) distributions which
try to approach the spectral characteristics of Poisson disk
distributions. The goal is to concentrate the noise in high
frequencies where it is less visible. The resulting distribu-
tions exhibit better uniformity properties when compared
to (0,2)-sequences, but this is achieved at a higher compu-
tational cost. Recent works have focused on efficient gen-
eration of high quality blue noise patterns [CYC*12, dG-
BODI12, EPM*11, Fat11], among which the state-of-the-art
is currently given in [dGBOD12].

The unit square-based distributions generated by the
methods described above must be lifted to the S? sphere
using an equal-area projection so as to be used for
(hemi)spherical integration. Such projections preserve the
property of asymptotic distribution uniformity, but not the
samples distance. As discrepancy and w.c.e. directly depend
on the distance between samples (see Eq. (3)), the resulting
sets become suboptimal for (hemi)spherical sampling.

An explicit spherical construction of point sets with small
s.c.d. has been proposed in [LPS86], but recently a bet-
ter order of convergence has been reported by lifting (0,2)-
sequences and Fibonacci lattices from the unit square [0, 1]2
to the S? sphere [ABD12, BD11]. Both resulting sampling
patterns exhibit good discrepancy properties in the spheri-
cal domain. Nevertheless their performance is not exactly
equivalent as shown by other authors [Nye03,Gon10] which
conclude that Fibonacci lattices are more efficient.

Throughout this paper, we will use a spherical Fibonacci
lattice implementation based on [SJP06]. We will show that
this algorithm is simpler and more efficient than the Sobol
(0,2)-sequence [Sob67], the state of the art blue noise [dG-
BOD12] and the Larcher-Pillichshammer point sets [LP01]
when the goal is spherical sampling.

3. Spherical Fibonacci point sets

Our goal in this section is to explain how Fibonacci lat-
tices are generated and why such point constructions are
well-suited to spherical sampling. In the following, we in-
troduce spherical Fibonacci point sets through a lifting pro-
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cedure from the unit square to the unit sphere. We have cho-
sen this procedure since it allows establishing a connection
with traditional QMC point constructions defined over the
unit square. However the same point sets can be equiva-
lently derived on the sphere or on a disk as shown in [SK97]
or [Vog79] respectively.

A Fibonacci lattice in the unit square is a set Q,, of F,
points (x,y) defined as follows [NH94]:

Y
o {f'”]}}os]'dm,
Yi = F,

where F,,_1 and F, are the two last numbers of a sequence
of m + 1 Fibonacci numbers [GKP94] given by the recur-
rence equation Fp, = Fp_1 + Fy o form>1. Fg=0,F; =1,
and {x} = x — | x] denotes the fractional part for non-negative
real numbers x. By directly lifting this lattice to the unit
sphere with the cylindrical Lambert map, we obtain the fol-
lowing point set [Sve94, HNO4]:

8; = arccos(1-2j/Fp)

F,_
Zn{jl'j]‘}
m

where 6; and ¢; are the polar and azimuthal angles respec-
tively of a lattice node w;. As the Fibonacci ratio Fy,/F ;-1
quickly approaches the golden ratio ® = (1 + V3)/2 as m
increases [GKP94], we can write:

};

lim ¢; =2jnd"!
m—o00

due to the periodicity of the spherical coordinates. Hence,
setting F,, = N, the coordinates of an N-point spherical Fi-
bonacci set are given by:

0; arccos(1 —2j/N)
¢; = 2jnd!

}Osj<N

Note that in this case, N needs not be a Fibonacci number
anymore, which allows generating point sets with an arbi-
trary number of points. The resulting point sets are no longer
lattices when projected back in the original (x,y) plane since
@ is irrational. Therefore, from now on, these point sets will
be called spherical Fibonacci (SF) point sets. Letting z; de-
note the z coordinate of point j, we have:

zj=cosf;=1-2j/N

which means that the z coordinates of the lattice nodes are
evenly spaced. Such an arrangement divides the sphere into
equal-area spherical “rings” due to the area-preserving prop-
erty of the Lambert map [Gonl0], each “ring” containing
a single lattice node. Swinbank et al. [SJTP06] slightly im-
proved the point set used in [HNO4] by introducing an offset
of 1/N to the z; coordinates (i.e. half the z coordinate spac-
ing) to achieve a more uniform distribution near the poles.
Then we have:

2j+1
arccos(l -

2jn®!

0;
B;

) }0§j<1v @)

As observed in [Gon10], the same point set can be produced
using @2 = (3— V5)/2 instead of ®~!. The ¢; angles will
then be multiples of the golden angle 71(3 — V/5). More details
on the properties of the spherical Fibonacci point set can be
found in [SJP06,Gon10]. In particular, this point set can also
be generated by projecting a Fermat spiral on a sphere, also
known as the cyclotron spiral. This arrangement can also be
found in nature (e.g., the packing of seeds on the sunflow-
ers head [Vog79]), a clear indication of its near-optimality
w.r.t. the distance based energy metric Ey (Eq. (3)). Other
theoretical approaches proposed in the literature lead to sim-
ilar arrangements (e.g., [SK97]).

In the case of illumination integrals (see Eq. (5)), the in-
tegration domain is not the sphere, but the hemisphere Qj,,
where the vertical axis z is aligned with the surface normal.
By modifying Eq. (4), an N-point hemispherical SF point set
will then be defined as follows:

0;
b;

arccos(z;)
2jnd!

}Osj<N

where the z; = (l - %) are the z-coordinates of the points

on the hemisphere. Such a point set can be very easily gen-
erated using the pseudo-code presented in Alg. 1.

Algorithm 1 The spherical Fibonacci point set algorithm.

1: Ap —n(3- \/5) > Golden angle (step on ¢)
2: p—0 > Initialize ¢
3 Az 1/n > Compute the step on z
4: z—1-Az/2 > Initialize z with offset
5: forall j «— [1:n]do

6: Zje2

7: 0 « arccos(z;)

8: ¢;j < mod (¢,27) > Modulo of ¢
9: 7e27-Az > Give a step on z
10: ¢ —od+Ap > Give a step on ¢
11: end for

Image synthesis involves the computation of many illumi-
nation integrals. Using the same point set for computing all
illumination integrals results in visible patterns in the ren-
dered images. To avoid this problem the sample sets must
be scrambled at each illumination integral evaluation. We
used a scrambling strategy of the SF sampling pattern which
is made directly in the spherical domain by rotating them
about the z-axis with a random angle uniformly distributed
over [0,2x]. This method has proved to be efficient as will
be seen in the results, as no low frequency patterns can be
seen. This method has the advantage of preserving the inter-
samples distances and thus the energy Ex. When using the
Lambert cylindrical projection, a rotation about the z axis on
the sphere is equivalent to a Cranley-Patterson [CP76] rota-
tion along the x axis in unit square.

© 2013 The Author(s)
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4. QMC for illumination integrals

To render an image of a scene, the illumination integral must
be computed at each point of visible surfaces. This integral
gives the reflected radiance L,(w,) at a given visible point
and can be expressed as follows:

Lo(wo) = L Li(wip(w;, wo)(w; -m)dXw;)  (5)

where p(w;,w,) is the BRDF, n is the surface normal at the
shading point and Q;, is the hemisphere of unit radius, the
main axis of which is aligned with n. The incident direc-
tion w; and the direction of observation w, are considered
as points on the unit hemisphere Qj,. A straightforward
application of Eq. (1) would consist in computing an esti-
mate of L,(w,) by averaging samples of the integrand of
Eq. (5) with uniformly-distributed sampling points on ;.
Such an approach would be quite inefficient since the prod-
uct p(w;, w,)(w; - ) is generally close to zero in a large part
of the integration domain. In classic Monte Carlo method, a
common solution is to distribute the samples according to a
pdf proportional to p(w;, w,)(w; -n). In the QMC determin-
istic context, as probabilistic distributions cannot be used,
instead this function is moved into the integration variables
through an appropriate variable substitution. In the follow-
ing, we will show how to reformulate the problem of opti-
mally sampling p(w;, w,)(w; - n) in the context of QMC in-
tegration, starting from a uniform point set distribution.

Eq. (5) can be developed as follows:

2 /2
L(,:f d¢f p(wi, w,)Li(0,¢9)cosfsinfdl  (6)
0 0

where 6 and ¢ are the spherical coordinates of the incident
direction w; w.r.t. the z-axis.

In the case of Phong glossy BRDF:

(max[0, (w; - w,)])"

Wi, Wy) =k
plwi,wo) @in

where w, = 2(w, - N) — w, is the perfect mirror incident di-
rection. A diffuse BRDF can be seen as a special case for
which w, =n and n =1 (its albedo is then 7k).

Considering that the incident radiance function is zero for
incident directions below the tangent plane (i.e. Lj(w;) =0
if (w;-n) < 0), we can take the hemisphere 9(22 centered
about w, as the integration domain. Our coordinate frame
will then be rotated such that its z is axis aligned with w,
and therefore, the polar angle 6 of a point w on 9(22 will be
defined by 8 = arccos(z) with z = (w - w,).

Consequently, by making the variable substitution
z =cos6, Eq. (6) can be written as follows:

27 1
Lo(wy) =k f d¢ f Li(z,¢)7" dz
0 0
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Making the substitution 7/ = Z"*', we have:

k 21 1 , ,
Lo(wy) = mj; d¢j(; Li(z,¢)dz

where L/(z,¢) = Li(Z’ 1+ ) As the integral bounds still
define an hemispherical integration domain, an estimate of
L,(w,) is obtained using Eq (1):

N
2mk
Liz/ ")) @

Zf) ) = <
o(Wo) N+ 1) £

where (z;,¢ ;) are the coordinates of a uniformly-distributed

samples set Py on Q(ZQ Eq. (7) means that incident radiance
function L;() is sampled with a sampling pattern obtained by
morphing the z coordinates of the samples of the uniformly-
distributed set Py with the function f(z) = 1/,

To sum up, the above derivations show how to use a
spherical uniform point set to compute an approximation
of the illumination integral while taking into account the
BRDF shape. Although the original sample set Py under-
goes a morphing operation, the w.c.e. of the estimate given
by Eq. (7) is still strongly dependent on the characteristics
of Py (and in particular on the energy Ey), as will be seen
in the following sections.

5. Tested point sets

In this section, our goal is to compare the properties of the
presented spherical Fibonacci point sets with those of the
sample sets produced by the following algorithms:

e Sobol (0,2)-sequence with random digit scrambling as de-
scribed in [KKO02];

e Periodic blue noise, generated with the state of the art al-
gorithm of de Goes et al. [dGBOD12];

o Larcher-Pillichshammer points [LPO1] with random digit
scrambling as described in [KK02].

Henceforth, we will refer to these three algorithms as
Sobol, BNOT and L-P respectively. Fig. 2 shows different
projections of sets of 512 samples generated using Sobol,
BNOT and L-P, as well as an example of a spherical Fi-
bonacci point set. We used two different techniques for pro-
jecting the unit square point sets to the unit hemisphere:
the well known Lambert cylindrical projection (e.g., see
[ABD12]) and the concentric map of Shirley and Chiu
[SCI7]. Note that these projections do not apply to Fi-
bonacci point sets since they are generated directly in the
sphere. The pattern generated by the Sobol sequence is ap-
parently non-optimal in terms of discrepancy, since the dis-
tance of a sample to its closest neighbour is quite variable.
This can be observed both on the unit square and on the unit
hemisphere projections. On the other hand, the BNOT and
L-P sampling patterns (Fig. 2(b) and (c) respectively), seem
to be more uniformly distributed than the Sobol sequence.
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(0,2)-Sequence Sobol BNOT

Larcher-Pillichshammer

Unit Square

Lambert

Shirley-Chiu
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Spherical Fibonacci
U

() (d

Figure 2: Examples of point sets of size 512 produced by different algorithms. Top row: unit square projection. Second row:
Lambert cylindrical projection. Third row: Shirley-Chiu concentric maps projection. At the right is the Fibonacci point set

generated directly in the spherical domain.
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Figure 3: Properties of the tested point sets. For each metric (energy and minimum distance), the same point set was projected
using the Lambert (left) and Shirley-Chiu (right) projections, except for the Fibonacci point set which is generated directly in

the spherical domain.

As for the spherical Fibonacci point set (Fig. 2(d)), it ex-
hibits superior uniformity properties when compared to all
the other point sets projected on the hemisphere.

A quantitative analysis of these visual impressions can
be made by comparing the different sampling patterns in
terms of the energy metric defined in Eq. (3). Let us re-
call that, as stated in section 2.1, the w.c.e. is proportional
to energy under a Co continuity assumption for the inte-
grand. Fig. 3(a) clearly illustrates that the Fibonacci point
set exhibits a lower energy (Eq. (3)) than the other tested al-
gorithms and is thus expected to yield a lower w.c.e. value.
In the same line of results, Fig. 3(b) shows that the mini-
mum inter-sample distance is consistently larger for the Fi-
bonacci point sets, which is an indication of better unifor-
mity properties. All the tested point sets (except for BNOT
using the Shirley-Chiu projection) yield approximately the

same O(N3/4) rate of decay for Ey, which corresponds to
the optimum rate of convergence for the w.c.e., as explained
in section 2.1. Recall that this convergence rate is obtained
under a C¢ continuity assumption of the integrand, which
is in general not fulfilled for illumination integrals. Never-
theless, as will be seen in the next section, these inconsis-
tencies have marginal effects. In particular, we will show
experimentally that the accuracy of the estimates given by
Eq. (7) strongly depends on the energy Ey of the uniformly-
distributed samples set Py.

6. Results
6.1. General considerations

The results presented in this section have been generated
with the Mitsuba raytracer [Jak10] on a 64-bit machine

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.



R. Marques et al. / Spherical Fibonacci Point Sets for Illumination Integrals

Glossy Component Diffuse Component
Lambert Shirley-Chiu Lambert Shirley-Chiu

~+-Sobol (n*%) -+ -Sobol (n*") -+-Sobol (n"07%) ~4-Sobol (n07%)
~*=BNOT (n %) ~*=BNOT (n%) —=BNOT (n"0%9) —*=BNOT (n°7%)
-6-L-p (n09) ~0-L-p (n0%9) ~6-L-P (17073) -0-L-p (7074
— [y “Fibonacci (n%9) o “~Fibonacci (n"%) g “~Fibonacci (n™%7%)| o “ Fibonacci (n”07)
— S = s .
o - g g - g -
g & g & g
o S = 9 = 8 S
° ° S S .
U ~ 8 N ~
i 9 7 N\ "
samples : samples . * samples - samples |
s -+-Sobol (170%%) -+-Sobol (1709 -+-Sobol (007 -4-Sobol (n0%7)
—=BNOT (n”*¢7) —=BNOT (n07%) ——BNOT (n"*%%) —=BNOT (n"*%)
o-L-p (n07") o-L-P (0053 ~0-L-P (n"06") “0-L-p (n708)
umT “~Fibonacci (n”07") um’} R “~Fibonacci (n™%7") g u “~Fibonacci (n™%%2)| E " “~Fibonacci (n™%%2)|
gE & g D : :
g E. g E. €.
o~ g & & &
2 - 2 . 2 2
] ] ] ]
i 3
samples samples ’ samples " samples
. -+-Sobol (n"5%) -+-Sobol (n"%° -4-Sobol (n~0% -4-Sobol (n 06!
——BNOT (n"%%) —=BNOT (n%%) —=BNOT (n"*%) ~*=BNOT (n"0%%)
= -6-L-P (n050) “0-L-P (n050) ~0-L-P (n"067) ~0-L-P (n"0%%)
@ - Fibonacei (05 e “~ Fibonacci (n~%") e “~ Fibonacci (n~%6%)| o “~Fibonacei (n""%%)
= z - = =
< & E T . € .
8 2 5 E3 E3
@) 2 o L 2 .,
° S ° °
Ny N ~ «

samples samples samples samples

Figure 4: RMSE plots for the three test scenes as a function of the number of samples. The slopes of the RMSE line fits are
displayed in the legend in-between brackets.

equipped with a 2GHz Intel Core 17 processor and a 8-Gb The convergence slope of QMC methods depends on the
RAM. Three different scenes have been used: Cornell Box smoothness properties of the integrands. Therefore, it is
(185K triangles), Room (540K triangles) and Cars (1500K not guaranteed that the theoretical convergence rate for the
triangles). The illumination integral computation has been w.c.e. (O(N~3/%) for Cy continuous functions) can be ob-
performed in the context of final gathering for photon map- tained for highly discontinuous integrands, such as those
ping, using the estimators given in section 4. We have com- commonly met in illumination integrals. Nevertheless, in the
pared the results produced using the different point set con- Cornell Box scene and in the glossy component of the Room
struction strategies which have been presented in section 5. scene, it was possible to report convergence rates close to the
A reference image has been computed using a sampling pat- theoretical O(NV~3/4), which means that the integrand for that
tern produced by a Sobol sequence and a large number of scene fulfills the Cy smoothness condition most of the times.

samples until convergence was achieved. This reference im-
age was then used to evaluate the RMSE of the images pro-
duced with the different point sets. For SF and BNOT scram-
bling is performed on the sphere (as described in section 3),
but for L-P and Sobol sampling patterns it is made on the
plane according to the random digit scrambling method pro-
posed in [KKO02]. We generate two distinct fixed-size sample
sets for the diffuse and glossy components of the BRDF (see
section 4 for details on samples set generation).

A comparison between the convergence rates in Fig. 4
shows that the convergence slope of the SF point set is in
general as good or better than those of the other tested point
sets. Note that when the convergence slope is steeper for all
methods (e.g., diffuse component of the Cornell Box scene)
SF point sets clearly outperform the other tested point sets.
This can be explained by the fact that spherical Fibonacci
point sets are more able to take advantage of smooth inte-
grands. According to [BD11], a convergence rate as high as

6.2. RMSE analysis and convergence slope O(N7?) is possible with SF point sets in the case of very

Fig. 4 shows that for the same number of samples, the spher- smooth integrands. On the other hand, when the rate of decay
ical Fibonacci point sets yield consistently smaller RMSE is close to O(N~1/2) (e.g., the glossy component of the Cars
values than the other tested methods. Indeed, we have not scene in Fig. 4), all the point sets yield similar performances
registered any case where the Fibonacci lattices have been since QMC in general is inefficient for very discontinuous
outperformed in terms of RMSE value. integrands.

© 2013 The Author(s)
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Glossy Component

Diffuse Component

Lambert Shirley-Chiu Lambert Shirley-Chiu

Point Same quality Same quality Same quality Same quality

Scene set RMSE rays needed RMSE rays needed RMSE rays needed RMSE rays needed
c m Sobol  +19.2%  658(+28.5%) +18.1% 667+302%) +24.9%  762+48.8%) +24.2%  T760(+48.5%)
B"me BNOT +152% 6101929  +7.8%  601174%  +259%  785¢s34%  +74%  605¢18.1%
ox L-P +3.4% 544(+6.3%) +3.0% 541(+5.6%) +8.7%  603(+17.8%) +109%  614(+19.9%)
Sobol  +38.7%  799(+56.0%) +30.0%  718(+40.3%) +14.6% 661(+29.1%) +14.8%  662(+29.2%)
Room BNOT +20.9% 665(+29.9%) +36.6%  763(+49.1%) +9.4%  601(+17.5%) +4.8%  569(+11.2%)
L-P +8.5% 557(+8.8%) +24.6%  665(+29.8%) +4.1% 555(+8.5%) +4.5% 558(+9.0%)
Sobol +2.2% 528(+3.1%) +2.1% 531+3.7%) +14.7%  634(+23.9%) +12.2% 607 (+18.5%)
Cars BNOT +2.5% 526(+2.7%) +1.2% 520(+1.6%) +73%  569+11.0%) +6.4% 559(+9.3%)
L-P +0.6% 514(+0.4%) +1.1% 518(+0.5%) +3.5% 535(+4.5%) +4.4% 544+6.3%)

Table 1: Comparison of the results obtained using a Sobol sequence, blue noise and the Larcher-Pillichshammer points,
relative to those obtained using spherical Fibonacci point sets. The glossy and diffuse components are presented separately,
as well as the used projection. For each projection, the first column states the relative RMSE w.r.t. that of spherical Fibonacci,
using 512 sample rays for all methods. The second column shows the number of rays required to achieve the same RMSE as
spherical Fibonacci with 512 rays. In-between brackets is the corresponding percentage.

Lambert

Shirley-Chiu

Reference  Sobol

BNOT L-P

Fibonacci  L-P BNOT Sobol

Reference (x4)

Close up views

Figure 5: Cornell Box scene (indirect radiance component only). The rabbit, the blue box and the back wall material contain
a glossy BRDE while the rest of the objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4.
Right: close up views for all the used methods with 128 and 256 sample rays for the glossy and diffuse components respectively.

6.3. Efficiency and image quality

The benefit of using spherical Fibonacci point sets is thor-
oughly assessed in Tab. 1. The results show that for 512
samples per shading point, the RMSE of L-P, BNOT and
Sobol point sets w.r.t. to that of SF can be up to +8.7%,
+36.6% and +38.7% respectively. Note that this results in
an even higher percentage of saved rays. As an example, for
the same cases pointed out above, L-P needs +17.8% sample
rays, BNOT +49.1% and Sobol +56% to achieve the same
RMSE as spherical Fibonacci with 512 sample rays.

The number of rays needed to close the gap between the
RMSE of SF with 512 rays and that of the other methods de-

pends on the rate of convergence for the given configuration:
scene, sampling method, spherical projection and radiance
component. This can be clearly seen in Tab. 1 for the Room
scene using the L-P points and a Lambert projection. In this
case, the relative RMSE of the glossy component (+8.5%)
is more than twice that of the diffuse component (+4.1%),
using 512 samples. However, both components require ap-
proximately the same number of samples (arround 556) to
achieve the same RMSE than SF with 512 samples. The rea-
son for this is that the glossy component converges faster
than the diffuse component (see legend Fig. 4).

The improvement brought by the use of spherical Fi-
bonacci point sets can be appreciated on the close-up views

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.



R. Marques et al. / Spherical Fibonacci Point Sets for Illumination Integrals

Lambert

Shirley-Chiu

Reference Sobol

Reference (x4)

BNOT

L-P  Fibonacci L-P

BNOT Sobol

Close up views

Figure 6: Room scene (indirect radiance component only). The teapot, the teacup and the fruit-dish materials contain a glossy
BRDE, while the rest of the objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4. Right: close
up views comparison of the error images for all the used methods using 32 and 128 sample rays for the glossy and diffuse

components respectively. The color encodes the error magnitude.

Lambert

Shirley-Chiu

Reference Sobol

BNOT

L-P Fibonacci L-P  BNOT Sobol

Reference (x4)

Close up views

Figure 7: Cars scene. The materials associated with the glasses and the bodyworks of both cars contain a glossy BRDF, while
the rest of the objects have a perfectly diffuse BRDF. Left: reference image multiplied by a factor of 4. Right: close up views
comparison of the error images for all the used methods with 512 sample rays. The color encodes the error magnitude.

of Fig. 5 which show that SF yields less visual noise com-
pared to the other methods. As for the Room scene in Fig. 6,
the error images indicate that SF performs better in criti-
cal areas such as the specular highlights. In the Cars scene
(Fig. 7) on the other hand, the high discontinuity of the in-
cident radiance makes the performance of all methods be
roughly similar (as seen in Tab. 1). Nevertheless, it is still
possible to identify image regions where the incident radi-
ance is smoother, which favors SF point sets as shown on
the top row of the close up views of Fig. 7.

Fig. 1 shows images computed with the SF point sets and
L-P with a Lambert projection. We have compared SF with
L-P since they both provide the smallest RMSE. The scene
is made up of four plates, each one having a different shini-
ness coefficient. It contains seven light sources of variable
size and variable radiance producing a direct incident radi-
ance along the plates of variable frequency. With this scene,
our objective is to show how SF behaves compared to L-P
point sets when the incident light contains structured circu-

© 2013 The Author(s)
© 2013 The Eurographics Association and Blackwell Publishing Ltd.

lar patterns and/or high frequencies that could interfere with
the regular sampling pattern of SF. Despite the regularity of
the SF point sets no regular patterns can be seen thanks to
the used spherical scrambling method.

7. Conclusions

In this paper, we have presented an algorithm for efficient
generation of high quality spherical QMC sequences for ap-
proximating illumination integrals. The advantages of our
approach can be summarized as follows:

Simplicity: The SF point sets algorithm is simpler to imple-
ment than the other tested QMC sample sets.

Compactness: A single sequence is needed to synthesize an
image. This is achieved by exploiting the axial symme-
try of the BRDF lobes, which allows scrambling the point
sets directly on the spherical domain using just a random
axial rotation. This feature might make SF point sets par-
ticularly well-suited to GPU implementations.
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Efficiency: SF point sets outperform L-P, Sobol and blue
noise-based QMC in all the test cases, allowing to save
a very significant amount of sampling rays for the same
image quality.

The main reason for the improvement brought by spheri-
cal Fibonacci point sets is that they better suit the spheri-
cal geometry. The other methods, in contrast, by focusing
on the unit square distribution, introduce boundaries that do
not exist on the sphere. Instead, our approach tries to obtain
the best samples distribution directly on the sphere and then
mask the effect of its regularity on the rendered image by an
appropriate scrambling method.

8. Future work

An obvious research line is to develop adaptive sampling
schemes while keeping the high quality of the energy cri-
terion exhibited by the spherical Fibonacci point sets. As for
increasing the quality of QMC BRDF-based sampling, we
consider that we are already quite close to optimality and
few margin for improvement exists. To go further, one could
resort to non-frequentist approaches, i.e. Bayesian Monte
Carlo [BBL*09], which allow adapting the sampling pat-
terns according to a global covariance function of the inci-
dent radiance samples. Another research line is the reduc-
tion of the perceived error by introducing some correlation
between the random rotation angles assigned to sample sets
used in illumination integrals of neighbour pixels.
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