
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VINICIUS DA COSTA AZEVEDO

Efficient Smoke Simulation
on Curvilinear Grids

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Manuel Menezes de Oliveira Neto
Advisor

Porto Alegre, December 2012

CIP – CATALOGING-IN-PUBLICATION

Azevedo, Vinicius da Costa

Efficient Smoke Simulation
on Curvilinear Grids / Vinicius da Costa Azevedo. – Porto Alegre:
PPGC da UFRGS, 2012.

71 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2012. Advisor: Manuel Menezes de Oliveira Neto.

1. Three-Dimensional Graphics and Realism - Animation.
2. Types of Simulation - Animation. 3. Fluid simulation. 4. Curvi-
linear grids. 5. Overlapping grids. I. Oliveira Neto, Manuel
Menezes de. II. Title.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Luis Lamb
Coordenador do PPGC: Prof. Álvaro Freitas Moreira
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Do, or do not. There is no ’try’.”
— YODA (’THE EMPIRE STRIKES BACK’)

TABLE OF CONTENTS

LIST OF FIGURES . 7

ABSTRACT . 11

1 INTRODUCTION . 13
1.1 Thesis Structure . 17

2 RELATED WORK . 19
2.1 Precise Boundary Conditions . 20
2.2 Adaptive Grid Refinement . 21
2.3 Non-Regular Grids . 21
2.4 Variable Arrangement . 22

3 EFFICIENT SMOKE SIMULATION ON CURVILINEAR GRIDS 25
3.1 Semi-Lagrangian Advection in Curvilinear Grids 25
3.2 Pressure Solving on Curvilinear Grids 28
3.3 Velocity Projection on Curvilinear Grids 29
3.4 Adaptive Path Integrator . 30
3.5 Domain Decomposition with Overlapping Grids 31

4 MULTIGRID ON CURVILINEAR GRIDS AND GRID GENERATION . . 35
4.1 Cell Mapping and Grid Cutting . 36
4.2 Grid Generation Techniques . 38

5 RESULTS . 41
5.1 Results . 41
5.1.1 Variation of the Timestep . 44

6 CONCLUSIONS AND FUTURE WORK 49

REFERENCES . 51

APPENDIX A MATHEMATICAL CONCEPTS 57
A.1 Conservation Equations . 57
A.1.1 Mass Conservation . 58
A.1.2 Momentum Conservation . 58
A.2 Numerical Discretizations . 59
A.2.1 Finite Difference Method . 59
A.2.2 Finite Volume Methods . 61
A.2.3 Ordinary differential equations . 61

A.3 Semi-Lagrangian advection on curvilinear coordinates 62
A.4 Coupling of pressure and velocity equations 63

APÊNDICE B SIMULAÇÃO EFICIENTE DE FUMAÇA EM GRIDS CURVILí-
NEOS . 65

B.1 Trabalhos relacionados . 66
B.2 Navier-Stokes em Grids Curvilíneos . 67
B.2.1 Advecção Semi-Lagrangiana em grids Curvilíneos 68
B.2.2 Resolução da pressão em grids Curvilíneos 68
B.2.3 Projeção da Velocidade em grids Curvilíneos 69
B.3 Decomposição de domínios . 69
B.4 Resultados . 70

LIST OF FIGURES

1.1 Fluid simulation is widely used in animations, films and games: (a)
Smoke simulation; (b) Breaking Dam simulation; (c) Scene from Ter-
minator 3; (d) Scene from Poseidon. 13

1.2 Lagrangian examples of fluid discretization: (a) Water colliding with
cylinder obstacles; (b) Simulation of lava lamp; (c) Water pouring in
glass; (d) Visual appearance of particle-based flow around circular
object. 14

1.3 Eulerian examples of fluid discretization. (a) Ball splashing water
in tank; (b) Smoke around spherical obstacle; (c) Smoke mixed by
a paddle in closed tank; (d) Real-time simulation of smoke around
moving car. 15

1.4 Examples of smoke simulations produced with our technique. (left)
2-D simulation on a channel with multiple obstacles. Note the bound-
ary conditions properly defined, and the vortices formed behind the
obstacles. The simulation plane is inside a box, and a light source
casts shadows of the smoke on the floor. (right) 3-D smoke simulation
in a wind tunnel to visually evaluate a car’s aerodynamics properties. 16

2.1 Space-discretization techniques: (a) regular grid; (b) unstructured
grid; and (c) non-regular structured grid. 20

2.2 Velocity arrangements in staggered grids: (a) Staggered Cartesian.
(b) Collocated Cartesian. (c) Full-staggered Cartesian. (d) Staggered
grid-oriented. 23

3.1 Physical domain Ω (a) and canonical computational domain Ω′ (b). . 26

3.2 Transformation of vector ~uij to ~uξη. (a) ~uij represented on the phys-
ical curvilinear cell; (b) ~uij represented in Cartesian coordinates; (c)
projections of ~uij onto the basis of the curvilinear cell; (d) ~uξη repre-
sented in the computational domain. 27

3.3 (a) The pressure derivative along a cell face normal and the elements
that compose it. (b) Velocity interpolation on the center of a cell
face. Due the staggered velocity scheme, the vertical velocity is inter-
polated from nearby locations (u∗y) to form the interpolated velocity
~u∗l = (ux, ũy). 29

3.4 Updating the x-component of the Cartesian velocity (highlighted ar-
row) at a given cell face l. (a) Pressure derivatives evaluated from
values stored at the centers of the two cells sharing l (red dots). (b)
Pressure derivatives evaluated from interpolated values (solid blue
dots) computed from the pressure values stored at the centers of the
surrounding cells (blue circles). 31

3.5 Conceptual representation of the overlapping grids configuration. A
regular grid discretizes the simulation domain and each object has an
attached body-fitted grid. 32

3.6 Domain decomposition using overlapping grids. An underlying reg-
ular grid delimits the simulation domain. A curvilinear circular grid
(light gray) overlaps it. Interpolation cells are used for grid com-
munication and for setting boundary conditions. Blue dots indicate
curvilinear-grid interpolation cells; red dots denote the regular-grid
interpolation cells; unused cells are marked with ×. 32

4.1 Coarsening of a curvilinear grid, extracted from (HE et al., 1996).
(a) Finest circular grid. (b) Coarse circular grid. (c) Coarse grid
corrected with fine grid information. 36

4.2 Profile of the Stanford bunny defined by a series of points, using the
software Gridgen, by Pointwise, Inc. A 2-D mesh will be obtained by
extruding each point along the direction of its corresponding normal
vector. The user can condensate more points (and in turn, cells) in
regions of expected turbulence. 39

4.3 Bunny normals: grid lines will be generated along the normals. . . . 39
4.4 Example of a bad grid (containing overlapping cells) resulting from

the specification of improper parameter values. Parameters used:
number of steps: 20; ∆s : 0.008; growth rate: 1.02; smoothing pa-
rameter: 0.5. 40

4.5 Bunny grid: 2-D Bunny grid obtained with the specification of correct
parameter values. Parameters used: number of steps: 20; ∆s : 0.008;
growth rate: 1.02; smoothing parameter: 0.9. 40

5.1 Animation pipeline: setup of the scene on Blender. 42
5.2 Animation pipeline: setup of the scene on our simulation application. 42
5.3 Animation pipeline: setup of the scene on Luxrender. 43
5.4 Flow simulation using a cross section of a horizontally-oriented air-

foil using: a regular grid (left), and our overlapping curvilinear grid
approach (right). The use of a regular grid incorrectly leads to the
appearance of high-vorticity regions behind the airfoil. In contrast,
our approach produces a well-behaved air flow. 43

5.5 Comparison similar to the one shown in Figure 5.4, but orienting the
cross section of the air foil at 10 degrees. The use of a regular grid
produces a clearly incorrect result (left). Ou method generates a cor-
rect simulation (right). 44

5.6 2-D simulation of the bunny shape using a regular grid (left) and our
approach (right). 44

5.7 Results produced with regular grids (left) and our approach (right)
using the semi-Lagrangian (top) and a modified MacCormack method
(bottom) for the advection phase. 45

5.8 Cross sections of the pressure fields for one time step of a 3-D simu-
lation using a regular grid (left) and our approach (right). Red means
high pressure. 46

5.9 The frame sequence (side view) is shown for the 3-D simulation of a
car in wind tunnel. 46

5.10 The frame sequence (front view) is shown for the 3-D simulation of
a car in wind tunnel. 46

5.11 2-D curvilinear non-regular grid composed of two semi-circular patches. 47
5.12 2-D curvilinear grid simulation on a curvilinear grid with timestep

∆t = 0.05. (top): advection using a simple Runge-Kutta method.
(bottom) advection using an adaptive Runge-Kutta method. 47

5.13 2-D Regular grid simulation of a flow in a channel with an obstacle
(timestep ∆t = 0.05). Notice that the vortices tend to be "discon-
nected" from the obstacle. The vortices also take more time to be
formed, when comparing to Figure 5.14. 47

5.14 2-D Curvilinear grid simulation of a flow in a channel with an obsta-
cle (timestep ∆t = 0.05). Notice that the vortices tend to "stick"
behind the obstacle. 48

B.1 Técnicas de discretização do espaço: (a) grid regular; (b) grid irregu-
lar não estruturado; and (c) grid irregular estruturado. 67

B.2 Atualizando o componente x da velocidade Cartesiana na face l. (a)
As derivadas das pressões são avaliadas com os valores da pressão no
centro das células que compartilham a face l (pontos vermelhos). (b)
As derivadas das pressões são avaliadas com os valores da pressão
armazenados no centro das células adjacentes (pontos azuis). 70

B.3 Configuração da técnica de grids sobrepostos. Um grid regular dis-
cretiza o domínio de simulação e cada objeto é representado por um
grid curvilíneo. 70

B.4 Exemplos de simulação de fumaça produzidos com a nossa técnica
. (esquerda) Simulação 2-D em um canal com múltiplos obstáculos.
(direita) Simulação 3-D de um um túnel de vento visualizar as pro-
priedades aerodinâmicas de um carro. 71

B.5 Simulação de um escoamento utilizando uma seção transversal de
uma asa: grid regular (esquerda); grid curvilíneo (direita). 71

ABSTRACT

This thesis present an efficient approach for performing smoke simulation on curvi-
linear grids. The solution of the Navier-Stokes equations on curvilinear is made on
three steps: advection, pressure solving and velocity projection. The proposed advec-
tion method is simple, fast and unconditionally-stable. Our solution is able to maintain
a staggered-grid variable arrangement, and includes an efficient solution to enforce mass
conservation.

Compared to approaches based on regular grids traditionally used in computer graph-
ics, our method allows for better representation of boundary conditions, lending to more
realistic results, with just a small increment in computational cost. Moreover, we are able
to condensate cells where interesting artifacts tend to appear, like swirling vortices or tur-
bulence. We demonstrate the effectiveness of our approach, both in 2-D and 3-D, through
a variety of high-quality smoke simulations and animations. These examples show the
integration of our method with overlapping grids and multigrid techniques.

Keywords: Three-Dimensional Graphics and Realism - Animation, Types of Simulation
- Animation, Fluid simulation, Curvilinear grids, Overlapping grids.

13

1 INTRODUCTION

Fluid animation tries to visually mimic the complex behavior of fluids in motion such
as water, smoke, and explosions. These natural events are pervasive in a wide range of
applications in computer graphics. Thus, it is important to reproduce plausible representa-
tions of these phenomena within virtual environments. Over the years, various successful
algorithms have been proposed (Figure 1.1), with the notable presence in films (FEDKIW;
STAM; JENSEN, 2001; ENRIGHT; MARSCHNER; FEDKIW, 2002; RASMUSSEN
et al., 2004; MOLEMAKER et al., 2008), animations (CHENTANEZ et al., 2007; HONG;
SHINAR; FEDKIW, 2007), and interactive games (COHEN; TARIQ; GREEN, 2010;
CHENTANEZ; MULLER, 2011a).

Figure 1.1: Fluid simulation is widely used in animations, films and games: (a) Smoke
simulation; (b) Breaking Dam simulation; (c) Scene from Terminator 3; (d) Scene from
Poseidon.

Despite the existence of many solutions proposed in the last 15 years, faster and more
precise algorithms are needed to meet industry requirements for better and more realistic
representations of fluids. For instance, recently a 100-member team of software devel-
opers, engineers, and artists were hired for a year to develop specific applications for
animating complex fluid phenomena for the film Poseidon (PETERSEN, 2006).

Given a scene configuration and the nature of the fluid flow (e.g., smoke or water), a
simulation of the underlying physical process is used to obtain a consistent and plausible
fluid representation. The simulation makes use of the Navier-Stokes equations, which are
discretizated in both time and space.

14

In computer graphics, there are two popular approaches for fluid representation: La-
grangian (Figure 1.2) and Eulerian (Figure 1.3) methods. Lagrangian methods evaluate
each blob of fluid separately, representing the entire fluid as a particle system. Eulerian
methods, on the other hand, use grids of fixed points distributed on the simulation domain
to evaluate the fluid properties. Eulerian methods produced the most impressive visual
results to date.

Figure 1.2: Lagrangian examples of fluid discretization: (a) Water colliding with cylinder
obstacles; (b) Simulation of lava lamp; (c) Water pouring in glass; (d) Visual appearance
of particle-based flow around circular object.

The quality of Eulerian flow simulations depends on two key factors: the specifi-
cation of precise boundary conditions; and fine resolution in high-vorticity regions of
the simulation domain. The use of regularly-structured simulation grids, as tradition-
ally used in computer graphics (FOSTER; METAXAS, 1997; STAM, 1999; FEDKIW;
STAM; JENSEN, 2001), simplifies the simulation process at the expense of using poorly
defined boundary conditions. Unstructured grids (FELDMAN; O’BRIEN; KLINGNER,
2005; KLINGNER et al., 2006; CHENTANEZ et al., 2007), on the other hand, can pre-
cisely represent boundary conditions. However, since the solver’s accuracy depends on
the meshes not having stretched or twisted simplices, the resulting grids tend to be highly
isotropic. As a result, the need of local refinements to capture vortices often results in
grids that are globally much finer than necessary (WYMAN, 2001).

This thesis presents an efficient approach for creating high-quality flow simulations
based on curvilinear grids – a space discretization commonly used in computational
fluid dynamics (CFD) (CHESSHIRE; HENSHAW, 1990). Such grids, also known as
non-regular structured grids, adapt themselves to the shapes of the objects in the scene,
defining precise boundary conditions. As opposed to unstructured grids, curvilinear ones
maintain a fixed topology. This simplifies the solution of linear systems, and makes the
cost of the flow solver nearly identical to the ones used with regular grids. Moreover, grid
cells can be easily refined near obstacles and in high-vorticity areas.

For graphics applications, fluid simulation needs to be both stable and fast. To meet
these requirements, we adapt existent curvilinear grid methods from CFD. For the mo-

15

Figure 1.3: Eulerian examples of fluid discretization. (a) Ball splashing water in tank;
(b) Smoke around spherical obstacle; (c) Smoke mixed by a paddle in closed tank; (d)
Real-time simulation of smoke around moving car.

mentum equations, we use a fast semi-Lagrangian method based on a domain transfor-
mation scheme. We are also able to maintain the Cartesian staggered arrangement by
introducing a simple and robust mass-conservation method that produces oscillation-free
velocity fields.

The use of curvilinear grids, with support for local refinements, guarantees high-
quality simulation results. Figure 1.4 shows examples of flow simulations created with
our approach. On the left (Figure 1.4a), a 2-D simulation on a channel with multiple
obstacles shows that proper boundary conditions can be maintained, even for complex
shapes. The image on the right (Figure 1.4b) shows a 3-D smoke simulation on a wind
tunnel. These examples illustrate the potential and flexibility of our approach.

The contributions of this thesis include:

• An efficient approach for creating high-quality flow simulations on curvilinear grids
(Chapter 3). Our technique allows for precise definition of boundary conditions,
leading to more realistic simulations and animations than regular-grid-based ap-
proaches. It is also significantly faster than unstructured-grid-based techniques,
while producing results of similar quality;

• A new technique to enforce mass conservation (Section 3.3) that works with a

16

(a)

(b)

Figure 1.4: Examples of smoke simulations produced with our technique. (left) 2-D
simulation on a channel with multiple obstacles. Note the boundary conditions properly
defined, and the vortices formed behind the obstacles. The simulation plane is inside
a box, and a light source casts shadows of the smoke on the floor. (right) 3-D smoke
simulation in a wind tunnel to visually evaluate a car’s aerodynamics properties.

staggered-grid variable arrangement. Our solution is faster than the traditional one
used in CFD, based on D’Yakunov’s method (CONCUS; GOLUB, 1972).

• The introduction to computer graphics graphics of a fast CFD unconditionally-
stable advection algorithm for curvilinear grids (Section 3.1). The algorithm uses
adaptive time steps to generate more accurate results.

17

1.1 Thesis Structure

This thesis is structured as follows: Chapter 2 discusses some of the fluid animation
techniques and methods in computer graphics. Chapter 3 presents our approach for solv-
ing the Navier-Stokes equations on curvilinear overlapping domains. Chapter 4 discusses
our multigrid technique and grid generation methods. Chapter 5 shows our results, com-
paring them to traditional regular grid schemes. Chapter 6 summarizes the thesis and
discusses some ideas for future work.

18

19

2 RELATED WORK

Fluid simulation essentially consists of evaluating the Navier-Stokes equations. In
computer graphics, this is done using one of two popular methods: Lagrangian, and
Eulerian approaches. In the Lagrangian approach, each blob of fluid is evaluated sep-
arately, representing the fluid as a particle system. With the introduction of Smooth
Particle Hydrodynamics (SPH) (MULLER; CHARYPAR; GROSS, 2003), Vortex Par-
ticles (PARK; KIM, 2005) and hybrid Vortex Particles (SELLE; RASMUSSEN; FED-
KIW, 2005), Lagrangian methods became popular in real time applications. The main
advantages of this method is that it adapts instantaneously to the environment, scales with
asymptotic complexity O(n log n) and facilitates the extraction of complex fluid surfaces
from the particle system. Lagrangian methods tend to be less efficient as they approach
the incompressible limit. Thus, they are rarely used for animating smoke. Recent ad-
vances in Lagrangian methods include weakly compressible equation-of-state formula-
tions (BECKER; TESCHNER, 2007), predictive-corrective schemes (SOLENTHALER;
PAJAROLA, 2009) and ghost SPH methods (SCHECHTER; BRIDSON, 2012).

Eulerian methods use grids of fixed points distributed on the domain to evaluate the
fluid properties. Such grids are obtained through successive domain subdivisions (FOS-
TER; METAXAS, 1997; STAM, 1999; FEDKIW; STAM; JENSEN, 2001; ENRIGHT;
MARSCHNER; FEDKIW, 2002). There is a great amount of work on the subject of
Eulerian methods. Fedkiw et al. and Foster and Fedkiw presented methods for high
quality representations of smoke (FEDKIW; STAM; JENSEN, 2001) and liquids (FOS-
TER; FEDKIW, 2001). Enright et al. introduced the particle level-set, which increased
the accuracy of complex water surfaces (ENRIGHT; MARSCHNER; FEDKIW, 2002).
These methods were further extended to handle fire (NGUYEN; FEDKIW; JENSEN,
2002), explosions (FELDMAN; O’BRIEN; ARIKAN, 2003), multiple interactive fluids
(LOSASSO et al., 2006), wrinkled flames and cellular patterns (HONG; SHINAR; FED-
KIW, 2007) and two-way solid-fluid coupling (ROBINSON-MOSHER et al., 2008).

In the context of improving the baseline simulation, Stam introduced to the computer
graphics community the popular stable fluids method (STAM, 1999). Molemaker et al.
used the QUICK advection scheme to improve the quality of low-viscosity animations
(MOLEMAKER et al., 2008). Selle et al. presented the Modified MacCormack method,
a low dissipation unconditionally stable advection scheme (SELLE et al., 2008). Doyub et
al. further improved previous works by adapting the high-order CIP method to computer
graphics environments (KIM; SONG; KO, 2008).

The usual grid layout used in Eulerian simulations consists of a structured regular sub-
division, discretizing the environment in a voxelized fashion (Figure 2.1a). Although reg-
ular subdivision is a common and reliable technique, it produces rough representations for
object geometry, as shown in Figure 2.1a. The resulting incorrect boundaries introduce

20

(a) (b) (c)

Figure 2.1: Space-discretization techniques: (a) regular grid; (b) unstructured grid; and
(c) non-regular structured grid.

noticeable artifacts in the simulations/animations, which do not vanish with increased
grid resolution (FELDMAN; O’BRIEN; KLINGNER, 2005; BATTY; BERTAILS; BRID-
SON, 2007; ELCOTT et al., 2007; WENDT et al., 2007).

2.1 Precise Boundary Conditions

Some authors have attempted to mitigate the artifacts generated by incorrect boundary
specification. Foster and Fedkiw updated tangential velocities using boundary normals
information, constraining velocities to not pass through solid walls (FOSTER; FEDKIW,
2001). Houston et al. improved the accuracy of the previous method using a level set to
represent objects geometry instead of relying on polygon meshes directly (HOUSTON;
BOND; WIEBE, 2003). Rasmussen et al. further elaborated this approach for level set
advection (RASMUSSEN et al., 2004). However, all of the presented methods suffer
from the voxelized artifacts during the simulation, since they do not modify the pressure
system to accommodate complex boundaries.

Batty et al. removed voxelized pressure artifacts using a method based on a kinetic-
energy minimization (BATTY; BERTAILS; BRIDSON, 2007). Boundary cells are able
to be partially filled by object boundaries. Then, the pressure matrix is changed, allowing
the fluid to occupy the partially filled boundary. Robinson-Mosher et al. extended this
work to fully two way coupled fluid/solid simulation, supporting thin and small objects
(ROBINSON-MOSHER; ENGLISH; FEDKIW, 2009).

None of these methods are able to precisely enforce aerodynamical properties, such as
a flow around an airfoil. This happens because the discretization employed in the pressure
system does not take into account filled fluid areas which asymmetrically contribute to in-
ternal forces of a partially occupied fluid cell. Roble et al. minimizes that by modifying
the divergent approximation on boundary cells, calculating it using a finite volume for-
mulation (ROBLE; ZAFAR; FALT, 2005). Mapping and tracking the modified boundary
cells in this method presents a common implementation difficulty, specially for three-
dimensional objects. Moreover, if the grid is not fine enough, the mapped cells normals
may poorly represent the actual object boundary.

Moreover, Roble et al. uses a simplified version of the Immersed Boundary Method
(IBM) (ROBLE; ZAFAR; FALT, 2005), which has been extensively developed in CFD
area. For an extensive review of different Immersed Boundary Methods see (BAN-

21

DRINGA, 2010).

2.2 Adaptive Grid Refinement

In order to capture small scale details of the flow and to better represent boundary
conditions, Losasso et al. optimize the domain cell distribution using octrees (LOSASSO;
GIBOU; FEDKIW, 2004). Losasso et al. further improved the method to better handle
surfaces on T-junctions (LOSASSO; FEDKIW; OSHER, 2005). Houston et al. intro-
duced the Hierarchical Run-Length Encoded (H-RLE) Level Set data structure, which
supports big data sets, exceeding 45 billion voxels (HOUSTON et al., 2006). Doyub et
al. combined an adaptive approach to the Eulerian vortex sheet method, creating complex
surface details, such as thin and wiggling fluids (KIM; SONG; KO, 2009).

Octree-based approaches can improve the use of computational resources, however
its use leads to non-symmetric systems in the pressure equation. To overcome this, the
authors simplify the representation of the pressure gradient (LOSASSO; GIBOU; FED-
KIW, 2004). This drops the projection step to first order accuracy in space, hindering the
overall exactness of the method.

Tall-cell grids (IRVING et al., 2006) combine 2-D and 3-D techniques for simulating
large bodies of water. This approach condensates the cells near the water interface, coars-
ening the grid on regions where the pressure profile is constant. Chentanez and Muller
adapted this technique for real-time environments (CHENTANEZ; MULLER, 2011a).
Tall-cell grids are only useful in scenarios where large bodies of water are present, such
as tanks, rivers and oceans.

2.3 Non-Regular Grids

Non-regular grids consist of domain elements that tightly fit the boundaries of the fluid
obstacles (KIM; CHOI, 2000; FELDMAN; O’BRIEN; KLINGNER, 2005; KLINGNER
et al., 2006; TILCH et al., 2008). This is the standard approach in CFD due to its accuracy.
However, any changes in object shape or in the spatial relationship among objects in the
scene require grid regeneration. Non-regular grids can be classified as unstructured or
structured.

Unstructured grids often discretize the solution domain using triangles (2-D) (Fig-
ure 2.1b) or tetrahedra (3-D). They were introduced to computer graphics by Feldman
et al. (FELDMAN; O’BRIEN; KLINGNER, 2005). In their work, the simulation do-
main is composed by fixed unstructured tetrahedral meshes and regular hexahedral cells,
combining accuracy near obstacles and efficiency in open regions. The work was later
extended to dynamic environments (FELDMAN et al., 2005; KLINGNER et al., 2006;
CHENTANEZ et al., 2007) using a mesh re-generation technique, which can take up to
forty percent of the total simulation time (KLINGNER et al., 2006).

The main advantage of unstructured grids is the ability to discretize highly-complex
geometries, with acute angles and concavities. Also, grid generation is fast and auto-
mated. However, unstructured grids have no discernible organized structure, and node
locations and neighbors need to be specified explicitly. For fluid simulation, this implies
that more sophisticated and robust algorithms are required to solve the resulting system of
equations, causing its solution to be slower than for structured grids. Also, concentrating
cells in high-vorticity regions can be a complex task. This happens because triangle and
tetrahedral elements do not stretch or twist well without affecting the stability and conver-

22

gence of the flow solver, limiting the grid mesh to some level of isotropy. Therefore, it is
often necessary to refine large portions of the grid to achieve local refinements (WYMAN,
2001).

Non-regular structured grids, also known as curvilinear grids, are based on tessel-
lations of an N -dimensional Euclidean space, adaptively contouring objects and filling
the simulation domain without gaps (Figure 2.1c). The structured patterns of these grids
simplify the evaluation of the associated equations. The grid can be re-shaped by stretch-
ing, shearing, or bending without changing its topology. Curvilinear grids are constructed
using quadrilaterals (in 2-D) or hexahedra (in 3-D). Each point in the grid has four near-
est neighbors in 2-D, and six in 3-D. In order to increase the overall solution accuracy
and stability, grid generators use elliptic equations to optimize the shape of the mesh for
orthogonality and uniformity (WYMAN, 2001).

Curvilinear grids have been used in computer graphics to produce visual effects on ob-
jects textures (STAM, 2003), but the grids were limited to Catmull-Clark surfaces. Stam’s
approach is unable to generate arbitrary curvilinear grids to precisely represent boundary
conditions, and cannot support local cell refinements. Due to differences between arbi-
trary curvilinear grids and Catmull-Clark surfaces, a straightforward implementation of
the method in (STAM, 2003) produced velocity oscillations in our simulations. Moreover,
Stam’s algorithm does not use a domain transformation in the advection phase. Thus, a
local search to find the correct cell index of the backtracked particle is needed, negatively
affecting the performance of the algorithm.

Barroso and Celes adapted the approach of (STAM, 1999) to arbitrarily shaped curvi-
linear grids (BARROSO; CELES, 2011). They use Jacobian matrices to transform the grid
into a computational space, thus simplifying the solution of the Navier-Stokes equations.
However, their method is based on collocated grid schemes, which does not support strong
coupling between velocities and pressures (ZANG; STREET; KOSEFF, 1994). Moreover,
Barroso and Celes use a single structured grid to cover all the domain, difficulting the grid
generation procedure and limiting the applicability of the technique.

In this thesis, we exploit the desirable properties of curvilinear grids of correctly rep-
resenting boundary conditions and supporting local refinement to create an efficient flow-
simulation approach. For this, we have developed a new velocity projection technique
that works with a staggered-grid variable arrangement, use a fast unconditionally-stable
advection algorithm and decompose the domain into multiple grids. In order to increase
the applicability of our technique, we used a domain decomposition method (FERZIGER;
PERIC, 1999; HENSHAW, 2005a). Our technique can produce high-quality simulation
results and is considerably faster than approaches based on unstructured grids.

2.4 Variable Arrangement

The common choice of variable arrangement for regular grids is to use the MAC ap-
proach (HARLOW; WELCH, 1965). By storing different variables at different locations,
this staggered-Cartesian-grid scheme (Figure 2.2a) guarantees strong coupling between
pressure and velocity. For curvilinear grids, the choice of variable arrangement is often
subject to discussion. The main argument against the staggered-Cartesian scheme is that
it may not contribute to the flux of a face when the grid lines turn 90 degrees with re-
spect to the orientation of the Cartesian component. Such a situation results in spurious
oscillations in the velocity field as the simulation advances.

Many works use different variables arrangement schemes with curvilinear grids. Colo-

23

cated schemes (ZANG; STREET; KOSEFF, 1994) (Figure 2.2b) store all the variables at
the center of cell - regularizing terms are needed to guarantee the strong coupling of mo-
mentum and pressure equations. These terms may often falsify transient behavior and
make transient flow computations more costly and complicated (WESSELING; SEGAL;
KASSELS, 1999). Full-staggered schemes (Figure 2.2c) store all the velocity compo-
nents midway of pressures variables, but they are much slower since additional variables
need to be computed in the momentum equations. Grid-oriented component schemes
(Figure 2.2d) transform the velocity according to the grid curvature, but this arrangement
introduce non-conservative terms, invalidating the use of weakly-conservative differential
momentum forms (Eq. (3.1)).

(a) (b)

(c) (d)

Figure 2.2: Velocity arrangements in staggered grids: (a) Staggered Cartesian. (b) Collo-
cated Cartesian. (c) Full-staggered Cartesian. (d) Staggered grid-oriented.

As noted in (SHYY; VU, 1991), there is no problem when using staggered Cartesian
oriented velocities as long two conditions do not hold at the same time: grid turns of exact
90 degrees with respect Cartesian components and constant metric terms (no variation in
grid cell spacing). This is a rare case scenario for structured grids, an this scheme was
adopted to preserve the overall method simplicity. Moreover, since our solution uses
pressure derivatives for each Cartesian component (Section 3.2), we can safely exploit
the computational efficiency of the staggered Cartesian arrangement.

24

25

3 EFFICIENT SMOKE SIMULATION ON CURVILINEAR
GRIDS

We use the differential form of the inviscid, incompressible Navier-Stokes equations,
which are written as

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~f (3.1)

and
∇ · ~u = 0, (3.2)

where ~u and p are the velocity and pressure fields, respectively, ρ is the fluid density, and
~f represents additional forces acting on the fluid. Since we are simulating smoke, we
decided to drop the viscosity term. This is a reasonable and common assumption that
has been adopted by other authors (FEDKIW; STAM; JENSEN, 2001; MOLEMAKER
et al., 2008; LENTINE; ZHENG; FEDKIW, 2010). Moreover, advection methods usually
present some level of dissipation, which may further be re-interpreted as viscosity. Equa-
tions (3.1) and (3.2) are called the momentum conservation and the mass conservation
equations.

The traditional way for solving Eqs. (3.1) and (3.2) is using the projection method (CHORIN,
1968), which consists of three main phases: (i) Advection, (ii) Pressure solving; and (iii)
Velocity projection. The advection phase consists in estimating an intermediate value
~u∗(n+1) for the velocity field ~u, at time t(n+1), based on its value ~u(n) in the previous time
step and computing external forces acting on the fluid (e.g., gravity). Pressure solving
then computes a scalar field of pseudo pressure values p(n+1) at time t(n+1) that guaran-
tees mass conservation (i.e., enforces that ∇ · ~u = 0). Finally, the velocity projection
phase couples the two equations by computing ~u(n+1), the actual value of the velocity
field at time t(n+1), from ~u∗(n+1) and p(n+1). Sub-sections 3.1 to 3.3 present the details of
our projection method for curvilinear grids.

3.1 Semi-Lagrangian Advection in Curvilinear Grids

The semi-Lagrangian method (HOLLY; PREISSMAN, 1977; ROBERT, 1981) is a
classic algorithm used in computer graphics (STAM, 1999) for the advection phase in
fluid simulation. It is fast, unconditionally stable, and works well for regular domains.
The method is formulated by calculating the back trajectory of a particle q from a given
point x:

~u∗(n+1)(x) = ~u(n)(xp), (3.3)

where
xp = x− ~v(n)(x)∆t, (3.4)

26

and ~v(n)(x) is the velocity of particle q at position x and time t(n). ~v(n)(x) is interpolated
from the values of ~u(n) stored in the Eulerian grid.

While the semi-Lagrangian method is straightforward in regular grids, it is not di-
rectly applicable to non-regular grids. Efficiently identifying the cells containing the
backtracked positions xp is not trivial, as scales may vary arbitrarily among cells, and
the grid’s curvature may also change. A simple and intuitive solution to this problem
would check in which cells the backtracked positions fall, compare the backtracked po-
sitions against cell faces, incrementally searching for the correct cell index in the local
neighborhood (STAM, 2003). Given the non-regular domain subdivision, this would lead
to an overhead in the advection phase, specially in massive parallel architectures where
conditional branches should be preferably avoided. Moreover, the velocity interpolation
process is also more complex in irregular cells.

CFD researchers (KARPIK; CROCKETT, 1997) transform the (physical-domain) non-
regular grid Ω onto a (computational-domain) canonical regular grid Ω′ (Figure 3.1) to
simplify the advection of densities through a curvilinear grid. The back trajectories are
computed on the canonical grid. The transformations mapping these two domains are
similar to model-deformation techniques used in computer graphics (BARR, 1984). Intu-
itively, they map each cell (a quadrilateral in Figure 3.1 (left)) from the original mesh to
a canonical cell (a unit square in Figure 3.1 (right)). Note that these transformations are
homeomorphisms and vary from cell to cell.

We extend the approach of Karpik and Crockett to dynamically update the interme-
diary velocity field using this domain transformation technique. Thus, we are able to
achieve the same simplicity, stability, and speed of the standard semi-Lagrangian method
traditionally used on regular grids.

(a) (b)

Figure 3.1: Physical domain Ω (a) and canonical computational domain Ω′ (b).

The velocity vector ~u can be expressed in the Cartesian frame of reference as

~u = xi + yj + zk = ~uijk, (3.5)

where (i, j,k) are canonical unit vectors in the X , Y , and Z axis directions. Alternately,
~u can be represented as

~u = u1g
1 + u2g

2 + u3g
3 = ~uξητ , (3.6)

where vectors gi form a contravariant basis, aligned to the grid lines (ξ, η, τ) in the phys-
ical domain:

g1 = (
∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ
), g2 = (

∂x

∂η
,
∂y

∂η
,
∂z

∂η
), g3 = (

∂x

∂τ
,
∂y

∂τ
,
∂z

∂τ
). (3.7)

27

Since we are interested to represent ~u in the computational domain Ω′ with canonical cells
(i.e., orthonormal cells with spacings equal to one), the arbitrary unit basis is defined as

g(1) =
1

h1

g1, g(2) =
1

h2

g2, g(3) =
1

h3

g3, (3.8)

where the hi terms are the scale factors, given by the lengths of {gi}:

hi = ((gi)T · gi)
1
2 . (3.9)

Thus, a transformation that maps a vector defined in an arbitrary unit basis to the
canonical Cartesian basis (i, j,k) is defined by x

y
z

 =

 g
(1)
x g

(2)
x g

(3)
x

g
(1)
y g

(2)
y g

(3)
y

g
(1)
z g

(2)
z g

(3)
z


 u1

u2

u3

 , (3.10)

and it is valid only if the 3x3 matrix (Tcp) shown in Eq. (3.10) is non-singular, i.e., the
vectors {gi} are linearly independent (which is always the case for grids of interest). Con-
verting from the Cartesian to an arbitrary unit basis is obtaining by inverting Eq. (3.10):

~uξητ = T−1
cp ~uijk. (3.11)

is used.
We illustrate the transformation process for two dimensions in Figure 3.2. First,

the vector ~uij on the physical domain (Figure 3.2a) is expressed in the Cartesian basis
(Figure 3.2b). Then, ~uij is decomposed in an arbitrary basis (Figure 3.2c) by applying
Eq. (3.11). Each new component (u1 and u2) can be seen as the projection of ~uij onto the
vectors tangent to the grid lines (g2 and g1, respectively). The resulting vector ~uξη is the
representation of ~uij in the computational domain (Figure 3.2d).

(a) (b) (c) (d)

Figure 3.2: Transformation of vector ~uij to ~uξη. (a) ~uij represented on the physical curvi-
linear cell; (b) ~uij represented in Cartesian coordinates; (c) projections of ~uij onto the
basis of the curvilinear cell; (d) ~uξη represented in the computational domain.

To evaluate the Semi-Lagrangian algorithm in the computational grid, we only need
to transform the velocity from the physical domain to the computational domain (the
mathematical proof is given in Appendix A.3). In the computational domain, we use
Eq. (3.4) with ~vn = ~unξη to obtain the position xξητ . Then, the intermediary velocity field
estimated at xξητ is used as the new intermediate velocity field ~u∗(n+1)

ij (Eq. (3.3)). Notice
that the transformed velocity is only used in the back-trajectory step; the interpolation
at xξητ uses velocities defined in Cartesian coordinates. This allows us to directly adapt
higher-order methods, such as the modified MacCormack (SELLE et al., 2008). The
complete curvilinear-grid semi-Lagrangian method is summarized in Algorithm 1.

28

Algorithm 1 Curvilinear-grid semi-Lagrangian method
/* Cartesian velocities (ijk basis) stored at the centers of the faces of the physical grid, in a
staggered way */
for all grid cells in the physical domain do

/* At the center of each cell face, obtain the full velocity vector by interpolating the other
components */
ũijk ← interpolateVelocityField(~unijk, x)
/* Transform the full velocity vector to the ξητ basis */
ũξητ ← transformToComputationalGrid(ũijk)
/* Compute xp, in the previous time step */
xξητ ← findPreviousPosition (x, ũξητ ,∆t)
/* Estimate the intermediate velocity field u∗(n+1)

ijk */

u
∗(n+1)
ijk (x)← interpolateVelocityField(~unijk, xξητ)

end for

3.2 Pressure Solving on Curvilinear Grids

In computer graphics, the standard way of representing mass conservation for incom-
pressible fluids is by enforcing that the divergence of the velocity field is zero (Eq. (3.2)).
However, the integral form: ∫

V

∇ · ~u dV =

∫
S

~u · ~n dS = 0, (3.12)

is more convenient for our solution, as it simplifies the representation of divergence and
gradient operators on general coordinate systems. Moreover, if we choose to solve all
the equations using the differential representation (i.e. mass conservation as ∇ · ~u = 0),
additional non-conservative terms, called Christoffel Symbols, are needed to account for
the non-straight space axis deformations (KOSHIZUKA; OKA; KONDO, 1990).

In Eq. (3.12), V and S denote the volume and the faces of the cell under evaluation,
respectively. Using the projection method to couple momentum (Eq. (3.1)) and mass
conservation (Eq. (3.12)) equations yields∫

S

~u(n+1) · ~n dS =

∫
S

~u∗(n+1) · ~n dS −∆t

∫
S

∂p(n+1)

∂~n
dS = 0, (3.13)

where ~n represents the faces’ corresponding unit normal vectors.
The pressure field that guarantees mass conservation is obtained by solving∫

S

∂p(n+1)

∂~n
dS =

∫
S
~u∗(n+1) · ~n dS

∆t
. (3.14)

The pressure derivatives on the left-hand side of Eq. (3.14) are discretized as

∫
S

∂p(n+1)

∂~n
dS ≈

(p(n+1)
c − p(n+1)

adj)
(
~̂
ζc · ~nl)
||~ζc||

Al, (3.15)

where pc is the pressure evaluated in the current cell Cc, and padj is the pressure evaluated
in the adjacent cell Cadj that shares face l with Cc. Al is l’s area, and ~ζc is the vector

29

(a) Pressure derivative along cell face normal (b) Velocity interpolation

Figure 3.3: (a) The pressure derivative along a cell face normal and the elements that
compose it. (b) Velocity interpolation on the center of a cell face. Due the staggered
velocity scheme, the vertical velocity is interpolated from nearby locations (u∗y) to form
the interpolated velocity ~u∗l = (ux, ũy).

which connects the centers of cells Cc and Cadj . Figure 3.3a show the representation of
the pressure derivative along the normal of a cell face.

In this discretization, we dropped the cross-derivative terms that affect each flux of
the cell faces. Fully evaluating the original system would yield a 9-point Laplace-matrix
discretization for 2-D and a 27-point Laplace-matrix for 3-D. The same approach was
adopted in (SHYY; VU, 1991), where the authors point out that dropping these terms
does not affect the accuracy of the solution. A detailed derivation of the pressure system
is given by Appendix A.4.

Finally, we discretize the cell fluxes on the right-hand side of Eq. (3.14) as∫
S

~u∗(n+1) · ~n dS ≈
∑

l ∈ faces

(~u
∗(n+1)
l · ~nl)Al, (3.16)

where the intermediate velocity ~u∗(n+1)
l is evaluated at the center of the cell face l. The

components of ~u∗(n+1)
l that are not known a-priori are interpolated from the cell’s neigh-

bors in the same fashion as in regular grids. The interpolation process is illustrated in
Figure 3.3b.

3.3 Velocity Projection on Curvilinear Grids

When substituting in Eq. (3.13) the pressure field obtained with the solution of Eq. (3.14),
one obtains the fluxes (across the cells’ faces) that satisfy the incompressibility constraint.
Since we only store the Cartesian components of the velocity in the center of each cell
face, we need to transform back the projected fluxes to velocity components. Shyy and
Vu (SHYY; VU, 1991) recover the velocity components using an iterative scheme based
on D’Yakunov’s method (CONCUS; GOLUB, 1972). Although accurate, such method
tends to be slow, making it less attractive for use with grids containing a large number of

30

cells.
We introduce a novel and efficient approach for updating (projecting) the Cartesian

components of the velocity field on staggered curvilinear grids. Our solution is faster,
simpler, and easier to implement than D’Yakunov’s method. It consists of correcting
the unprojected velocity field directly by evaluating pressure derivatives in all Cartesian
directions. Using the chain rule, we can write:

~ux = ~u∗x −∆t
∂p

∂x
= ~u∗x −∆t(

∂p

∂ξ

∂ξ

∂x
+
∂p̃

∂η

∂η

∂x
+
∂p̃

∂τ

∂τ

∂x
)i,

~uy = ~u∗y −∆t
∂p

∂y
= ~u∗y −∆t(

∂p

∂η

∂η

∂y
+
∂p̃

∂ξ

∂ξ

∂y
+
∂p̃

∂τ

∂τ

∂y
)j,

~uz = ~u∗z −∆t
∂p

∂z
= ~u∗z −∆t(

∂p

∂τ

∂τ

∂z
+
∂p̃

∂ξ

∂ξ

∂z
+
∂p̃

∂η

∂η

∂z
)k,

(3.17)

where (ξ, η, τ) are the grid lines in the physical domain (Section 3.1). The 2-D version of
these equations just drop the third term (in τ) inside the parenthesis.

Recall that in the Cartesian-staggered arrangement, each cell face l stores a single
Cartesian velocity component, and Eq. (3.17) is used to update all of them. Here, we
describe the procedure for updating the velocity component along the x direction (high-
lighted arrows in Figs. 3.4a and 3.4b); updating other components is similar.

For a given cell face l, the term ∂p
∂ξ

is computed directly from the pressure values
stored at the centers of the two cells sharing l (red dots in the Figure 3.4a). Computing
the term ∂p

∂η
, however, requires pressure values at the vertices (end points) of l, which

are not readly available (solid blue dots in Figure 3.4b). Each such value is interpolated
from the pressure values stored at the centers of all cells sharing the corresponding vertex
(shown as small blue circles in Figure 3.4b). Intuitively, we compensate the lack "de-
interpolation" of the Cartesian velocity components traditionally used in CFD with a few
additional interpolations on the pressure field.

Our approach has some desirable properties: (i) for regular grids, it reverts back to the
standard MAC formulation; (ii) for any orthogonal grid, ∂x

∂ξ
+ ∂y

∂η
= 1. The first property

allows our method to be used on regular grids without any adaptation. The second, shows
that the contribution of the pressure correction will be physically consistent to orthogonal
grids. All simulations (both 2-D and 3-D) shown in the thesis and accompanying video
were produced using our projection technique.

3.4 Adaptive Path Integrator

The proposed non-regular semi-Lagrangian method has a CFL restriction. Since it
estimates the particle trajectory by evaluating local metrics, it can incorrectly estimate
the backtracked particle path if the CFL condition is bigger than 1 (BARROSO; CELES,
2011). To alleviate this condition, we adopt a multi-step adaptive Runge-Kutta integrator,
which enforces that the local CFL condition for the advection step is always less than
1. Thus, the adaptive path integrator time-step δt is defined as a function of the global
time-step ∆t as

δt = min(κ,∆t), (3.18)

with
κ = min(

h1

|~ux|
,
h2

|~uy|
,
h3

|~uz|
) (3.19)

where h1, h2 and h3 are the local cell scale factors defined in Eq. (3.9).

31

(a) The ∂p
∂ξ pressure derivatives (b) The ∂p

∂η pressure derivatives

Figure 3.4: Updating the x-component of the Cartesian velocity (highlighted arrow) at
a given cell face l. (a) Pressure derivatives evaluated from values stored at the centers
of the two cells sharing l (red dots). (b) Pressure derivatives evaluated from interpolated
values (solid blue dots) computed from the pressure values stored at the centers of the
surrounding cells (blue circles).

Then we integrate the trajectory of the particle using δt until it reaches the same
amount of time expressed by ∆t, using the Runge-Kutta half-step method (Eq. (A.33)).
Since curvilinear grids have cells with different sizes, the number of steps required for
different cells may vary along the grid.

3.5 Domain Decomposition with Overlapping Grids

In order to efficiently support multiple objects with independent and dynamic rigid-
body motions, we decompose the simulation domain using overlapping grids (BRANDT,
1977; CHESSHIRE; HENSHAW, 1990). Each object is represented by a curvilinear grid
that tightly fits its boundary and condensates cells in regions where higher vorticity is
expected. Such grids are then superimposed on a regular one that delimits the simu-
lation domain. A conceptual representation of out overlapping grids setup is shown in
Figure 3.5. This approach lends to good refinement, allowing for optimal use of compu-
tational resources.

Dobashi et al. (DOBASHI et al., 2008) use overlapping grids to produce flow anima-
tions. Thus, conceptually, our ovelapping-grid solution is similar to theirs. However, they
use regular grids both for the background and for the superimposed obstacles. As such,
boundary conditions cannot be properly represented and the resulting simulations share
the same limitations as the conventional regular-grid ones.

We start evaluating the advection phase on the background grid, and interpolate the
intermediary velocity values (i.e., ~u∗(n+1) in Eq. (3.3)) at the boundaries of the curvilinear
grids. The advection phase then proceeds inside the curvilinear grids, and the resulting
intermediary velocity field is interpolated back to the background grid. The new pressure
field is obtained using a multigrid solver (Chapter 4). After the pressure-solving step,
each grid is then projected independently.

32

Figure 3.5: Conceptual representation of the overlapping grids configuration. A regular
grid discretizes the simulation domain and each object has an attached body-fitted grid.

Figure 3.6: Domain decomposition using overlapping grids. An underlying regular grid
delimits the simulation domain. A curvilinear circular grid (light gray) overlaps it. In-
terpolation cells are used for grid communication and for setting boundary conditions.
Blue dots indicate curvilinear-grid interpolation cells; red dots denote the regular-grid
interpolation cells; unused cells are marked with ×.

The use of overlapping grids requires the simulation to transfer flow information be-
tween the different grids . For this, we set a band of cells in which both grids slightly
overlap. This guarantees that the interpolation points evaluate fluid properties only where
they are correctly solved. We classify each cell of both regular and curvilinear grids as
either discretization, interpolation or unused (Figure 3.6). Interpolation cells are the ones
at the edges of the overlapping bands. Their purpose is to sample the values stored in cells
of the grid they overlap with, providing the actual mechanism for exchanging information

33

between grids. We adopted Dirichlet boundary conditions, which are based on explicit
specification of boundary values. Given an interpolation band, its outer edge consists of
curvilinear-grid interpolation cells, while the inner edge is made of regular-grid interpo-
lation cells. Figure 3.6 indicates curvilinear-grid interpolation cells with blue dots, and
regular-grid interpolation cells with red dots. Unused cells are regular-grid cells that over-
lap with the objects’ grids, except for the ones in the overlapping band, and are ignored
by the flow solver. They are indicated with an × in Figure 3.6. All remaining cells are
discretization ones. These, along with the interpolation cells, are on which the simulation
is performed.

The optimal size of the overlapping band depends on the used interpolation scheme,
and on the sizes of the grid cells. Although more sophisticate interpolation schemes
can be used, according to our experience a band with 3 to 4 cells produces good results
with linear interpolation. Better results are obtained by refining the curvilinear cells in the
overlapping band so that the area of such a cell is at most half of the area of the underlying
regular cell.

In this Chapter we presented the details associated with the three steps of our projec-
tion method for curvilinear grids. In Section 3.1, an efficient algorithm for advection for
curvilinear grids was described. In Section 3.2, we presented the formulation used in the
pressure system step. In Section 3.3, we presented the details of our projection method,
which supports Cartersian staggered variable arrangement. Finally, in Section 3.5 we de-
scribed the domain decomposition technique, which facilitates the grid generation and
increases the applicability of our method.

34

35

4 MULTIGRID ON CURVILINEAR GRIDS AND GRID GEN-
ERATION

In the following subsections we will give a detailed description of the Multigrid algo-
rithm, grid generation techniques, cell mapping and grid cutting, adaptive path integrator
algorithm.

The multigrid method is a fast algorithm for solving linear systems (BRIGGS; HEN-
SON; MCCORMICK, 2000). Due its capacity to solve linear system with estimatedO(n)
computational complexity, it is widely employed in computer graphics applications (CO-
HEN; TARIQ; GREEN, 2010; MCADAMS; SIFAKIS; TERAN, 2010; CHENTANEZ;
MULLER, 2011b).

For regular grids, the matrix coefficients (operators) of the linear system are copied
from the finest to the coarsest levels. On curvilinear grids, however, the coarsening pro-
cess degenerates the shape of the discretized object (Figure 4.1). Thus, simply copying
the values of the matrix coefficients affects the method’s convergence. To improve it, we
use the scheme described in (HE et al., 1996). In such a scheme, the areas and volumes
of the coarse-grid cells are defined as the sum of the corresponding cells in the finest grid,
and the coarse operators are defined by the area-mean of each operator in the finest grid.
Thus, the coarse grid areas Ac and volumes Vc are defined by:

Ac =
∑

i ∈ finest

Aif ,

Vc =
∑

i ∈ finest

V i
f ,

(4.1)

where the Aif and V i
f are the correspondent fine grid areas and volumes, respectively. The

coarse grid operator Cc is the area mean of each fine cell operator Ci
f :

Cc =
1

Ac

∑
i ∈ finest

Ci
fA

i
f , (4.2)

since the Poisson matrix is defined as function of the cell areas (Eq. (3.15)).
Our multigrid implementation uses the incomplete multigrid method (ICMG) (HI-

NATSU; FERZIGER, 1991) with Dirichlet boundary conditions. ICMG constrains the
communication between different domains to the finest level; it contrasts with the com-
plete multigrid method (CCMG) which exchanges information among all grid levels.
CCMG is harder to implement, due the nature of the coarsening operator that may gen-
erate complex interpolation configurations which require special treatment (HENSHAW,
2005b).

36

Figure 4.1: Coarsening of a curvilinear grid, extracted from (HE et al., 1996). (a) Finest
circular grid. (b) Coarse circular grid. (c) Coarse grid corrected with fine grid information.

Exchanging interpolated pressure information between overlapping domains may in-
troduce discontinuities in the resulting pressure fields, most notably when the interpola-
tion direction is going from the foreground to the background grid. Thus, at each iteration
of the pressure solver, we use Henshaw’s approach (HENSHAW, 2005b), which con-
sists of applying additional Gauss-Seidel iterations on neighborhoods of the background
boundary cells. This process smooths out the high-frequency error modes that may appear
due the interpolation process.

Since different grids on the simulation domain may converge at different rates, we
dynamically adjust the number of smoothing iterations (ν) for each grid based on its
residual error. We compare the residual ratios between the foreground and background
grids resbg/resfg to σ1/ν , since it allows larger values of ν to change more easily. The
residual ratio σ is defined within lower (σ−) and upper (σ+) boundaries. Numerical ex-
perimentation of (HENSHAW, 2005b) defined (σ−, σ+) = (1

2
, 2).

Algorithm 2 summarizes all the steps performed on our multigrid algorithm.

4.1 Cell Mapping and Grid Cutting

Given a position expressed in world coordinates, finding the cell that contains it on
the regular background grid is a straightforward process. This can be expressed by

[ijk] =
vpos − vbg
dxbg

, (4.3)

where i, j, k are the background cells indexes, vpos is the position vector in world coordi-
nates, vbg is the origin of the background grid expressed in the world coordinate system,
and dxbg is the background grid spacing. This formula only holds for regularly-spaced
grids with constant curvature. The process of finding the cell on curvilinear grids that
contains a point in world coordinates can become complex.

In our solution, interpolation is only needed for boundary cells of the background grid
(Section 3.5). Therefore, we mapped background boundary cells to their closest respec-
tive foreground grid cells. In this context, "closest" is defined as the distance between the
foreground and background grid cell centers. Since it is more efficient to find a correspon-
dent cell in the background grid, we iterate through a band of outer foreground grid cells,
looking for their correspondent in the background grid, using Eq. (4.3). We summarize
the cell mapping process in the Algorithm 3.

37

Algorithm 2 Multigrid on overlapping domains
while resbg + resfg < resmax do

perform a full V-Cycle on the background grid
resbg ← calculateResidual(backgroundGrid)
/* Interpolate pressures from the background to the foreground overlapped grid */
for all cells on the boundary of the foreground grid do
pfg ← interpolatePressureField(pbg, xfg)

end for
perform ν full V-Cycles on the foreground grid
resfg ← calculateResidual(foregroundGrid)
/* Interpolate pressures from the foreground overlapped to the background grid */
for all boundary cells on the background grid do
pbg ← interpolatePressureField(pfg, xbg)

end for
/* Remove high frequencies that may appear due interpolation.*/
perform smoothBoundaryCells(backgroundGrid, numSmooths)
/* Adjust the number of sub-smooths on the foreground grid*/
if resbg/resfg < σ

1/ν
− do

ν ← min(1, ν − 1) /* Decrease number of sub-smooths */
else if resbg/resfg > σ

1/ν
+ do

ν ← max(ν + 1, nummax) /* Increase number of sub-smooths */
end if

end while

Algorithm 3 Foreground grid cells mapping
/* Verify if the foreground grid has moved relative to background grid */
if hasChanged(posfg − posbg) do

for nOuterCells within an outer band of the foreground grid do
/* Find by Eq. (4.3) the background grid index correpondent to the foreground grid cell

center*/
[ibg jbg kbg]← findBgGridIndex(cellCenterfg)
/* If the distances between the cells centers are the smallest encountered so far*/
if cellCenterfg − cellCenterbg < distancesMap(ibg, jbg, kbg) do

distancesMap(ibg, jbg, kbg)← cellCenterfg − cellCenterbg
/* Map the foreground grid cell to the background grid cell*/
cellsMap(ibg, jbg, kbg)← indexfg

end if
end for

end if

38

The nOuterCells parameter in Algorithm 3 is defined empirically, and vary with back-
ground and foreground grid configurations. It depends on the foreground grid shape and
the aspect ratio between foreground and background grid cells.

The cells from the background grid which remained inside the boundary overlapped
interior grid cells must be removed (black cells on Figure 3.6). Considering that the
boundary cells are always connected - a boundary cell will always have at least a neigh-
bor that is also a boundary cell - we use simple line filling algorithm to remove unused
cells. We notice that there are better strategies that can be implemented to remove the
background unused cells. For example, one could use OpenGL to rasterize the grids and
identify unused cells. A similar method was employed in (CRANE; LLAMAS; TARIQ,
2007).

4.2 Grid Generation Techniques

Since our method supports overlapped grids, the process of grid generation is greatly
simplified (WYMAN, 2001). In this section, we will present the steps used to generate
a 2-D grid corresponding to a profile of the Stanford bunny, using the extrusion of the
normal vectors. For this example, we use Gridgen by Pointwise Inc. (POINTWISE,
2012), but other software grid generation software could have been used instead.

Since Gridgen works with parametric lines, we had to export the bunny geometry to
a NURBS representation. We used 3D Studio Max for object modeling and exported the
geometry to IGES format (IGES, 2006). All imported objects in Gridgen are initially
categorized as database entities. The user must convert these entities into connectors,
upon which grid points can be defined. The number of points present on the connector
(Figure 4.2) define the number of cells along one dimension of the grid. This enables
concentration of points in regions of higher turbulence or vorticity.

To generate the grid with Gridgen, the extrude normals command is used (Figure 4.3).
The user can configure parameters to manipulate the extrusion process: the number of
steps define the amount of cells which will follow the normal extrusion path; initial ∆s
is the initial cell size along the normal direction; the growth rate defines the scaling pa-
rameter that will be incrementally applied to the initial size and the smoothing parameters
define the relaxation configuration which prevents self-overlapping. The cell extrusion
configuration can generate cells which overlap (Figure 4.4), depending on the set of pa-
rameters. Thus, if an invalid grid is generated, the user must provide a different configu-
ration, and re-run the extrude normals command (Figure 4.5).

We summarize the creation of grids based on the extrusion of object normals using
Gridgen in the following steps:

• Import the parametric line/surface object representation into Gridgen (input is a
NURBS representation);

• Select the object and convert it from database entities to connectors;

• Select the object connector and specify the number of points in the base dimension;

• Select the object connector and use the Create→Extrude→Normal command.

• Configure number of steps, initial ∆s, growth rate and smoothing parameters that
will be used in the extrusion process.

39

Figure 4.2: Profile of the Stanford bunny defined by a series of points, using the software
Gridgen, by Pointwise, Inc. A 2-D mesh will be obtained by extruding each point along
the direction of its corresponding normal vector. The user can condensate more points
(and in turn, cells) in regions of expected turbulence.

Figure 4.3: Bunny normals: grid lines will be generated along the normals.

• Extrude normals. If some overlapping occurs, reconfigure the parameters of the last
step and re-run the extrusion command.

40

Figure 4.4: Example of a bad grid (containing overlapping cells) resulting from the
specification of improper parameter values. Parameters used: number of steps: 20; ∆s :
0.008; growth rate: 1.02; smoothing parameter: 0.5.

Figure 4.5: Bunny grid: 2-D Bunny grid obtained with the specification of correct pa-
rameter values. Parameters used: number of steps: 20; ∆s : 0.008; growth rate: 1.02;
smoothing parameter: 0.9.

41

5 RESULTS

We have implemented the techniques described in this thesis using C++. For the
pressure-solving step, we have both a GPU and a CPU implementations. The GPU
implementation, based on CUDA, uses the conjugate gradient solver of the CUSP li-
braries (BELL; GARLAND, 2012). The CPU version uses multigrid and currently is
available only for 2-D. As support libraries, we adopted Thrust (BELL; HOBEROCK,
2012) for facilitating the implementation of parallel algorithms, NVIDIA’s PhysX SDK
(NVIDIA, 2012a) for simulating rigid body dynamics, Cg Toolkit (NVIDIA, 2012b) for
loading and manipulating shaders, and the physically based ray tracer (PBRT) (PHARR;
HUMPHREYS, 2012) for visualizing the results.

To maintain a cohesive workspace for the code, a namespace called "Chimera" was
created. Within this namespace, three subprojects were developed: Chimera Core - re-
sponsible for the low-level configuration of libraries and definitions; Chimera Math -
containing the mathematical framework and support functions that are needed for solving
the underlying equations of fluid flows; and Chimera Foundation - responsible several
auxiliary functions which are responsible for grid loading, rendering utilities, resource
management, etc. Since the nature of interaction is inherently different between two and
three dimensions, two distinct projects were created: Chimera 2D and Chimera 3D.

We render our scenes using PBRT combined with the Luxrender frontend (LUXREN-
DER, 2012). Our animation pipeline is the following: first, we setup the scene in 3Ds
Max or Blender (Figure 5.1). The grids are generated, exported and loaded into our ap-
plication. Then, the scene is setup for simulation: boundary conditions, smoke sources
and solver parameters are set (Figure 5.2). The simulation is performed and its output is
saved. Finally, the output is loaded into Luxrender (Figure 5.3) and the rendering process
continues.

5.1 Results

This section presents the results obtained with our technique, comparing it with tradi-
tional regular grids. We did not compare the results of our approach with the ones obtained
with standard variational boundary condition method (BATTY; BERTAILS; BRIDSON,
2007), because this method is not able to maintain the correct aerodynamic properties
explored in our scenes. Although unstructured grids (KLINGNER et al., 2006) can also
correctly represent boundary conditions, they are inherently much slower than our ap-
proach and, as such, have not been included in this comparison.

Figures 5.4 and 5.5 demonstrate the ability of our approach to represent proper bound-
ary conditions. They compare our simulation results against the ones obtained using a
regular grid for a cross section of an airfoil. This is a quite sensitive example due to

42

Figure 5.1: Animation pipeline: setup of the scene on Blender.

Figure 5.2: Animation pipeline: setup of the scene on our simulation application.

obstacle’s fine aerodynamics properties. Figure 5.4 shows the simulation results for a
horizontally-oriented airfoil at a given moment. The image on the left was obtained us-
ing a regular grid. Note how the poorly-enforced boundary conditions resulting from the
object’s discretization incorrectly generates high-vorticity regions behind the airfoil. In
contrast, the results of our simulation, seen on the right, show a well-behaved stream of
smoke.

Figure 5.5 shows a similar comparison with the airfoil oriented at 10 degrees. Again,
the discretization of the object’s boundary due to the use of a regular grid leads to a com-
pletely incorrect simulation (left). Our results can be seen on the right. The accompanying
video shows that in our simulation the air flow over the airfoil has higher speed than the
flow under it, which is required to produce lifting. This is not observed, however, in the
regular-grid simulation.

43

Figure 5.3: Animation pipeline: setup of the scene on Luxrender.

Figure 5.4: Flow simulation using a cross section of a horizontally-oriented airfoil using:
a regular grid (left), and our overlapping curvilinear grid approach (right). The use of a
regular grid incorrectly leads to the appearance of high-vorticity regions behind the airfoil.
In contrast, our approach produces a well-behaved air flow.

Figure 5.6 provides another comparison of our method and the use of regular grids.
The regular discretization of the bunny profile lends to incorrect simulation results. Our
approach generates correct ones, despite the shapes of the individual cells in the bunny’s
curvilinear grid be highly irregular.

Figure 5.7 compares our approach (right) with the use of a regular grid (left) us-
ing two advection techniques: semi-Lagrangian (top row) and a modified MacCormack
method (SELLE et al., 2008) (bottom row). In both cases, our approach produces more
dense vortices. The differences in the results produced by our method and by the regular-
grid one are due to the use of improper boundary conditions in the regular-grid solution.

Figure 5.9 and Figure 5.10 show various frames of a 3-D smoke simulation in a wind
tunnel for visual inspection of a car’s aerodynamics properties. Note how the use of
appropriate boundary conditions lends to a smooth flow over the car, as well as to the
formation of vortices behind it, due to changes in the pressure field. A cross section of
the pressure field for a given time step of another simulation is shown in Figure 5.8. In
this color-coded representation, red means high pressure. The image on the left depicts
the simulation result obtained with a regular grid. Note how the discretization of the car

44

Figure 5.5: Comparison similar to the one shown in Figure 5.4, but orienting the cross
section of the air foil at 10 degrees. The use of a regular grid produces a clearly incorrect
result (left). Ou method generates a correct simulation (right).

Figure 5.6: 2-D simulation of the bunny shape using a regular grid (left) and our approach
(right).

surface incorrectly lends to coarse representation of the pressure field. The pressure field
computed with our approach is shown on the right and provides a much more detailed
result.

Table 1 compares the performance of our method with the regular-grid approach. The
reported times correspond to one simulation step. Measurements were performed on an
Intel core i7-2600 3.40 GHZ CPU with 8 GB of RAM and a GeForce GTX 460 with 1
GB of RAM. For the 2-D examples, both techniques use multigrid implementations. The
numbers show that the performance of our approach is comparable to the regular grid
approach. The quality of our results, on the other hand, is clearly superior.

5.1.1 Variation of the Timestep

The CFL condition is non-uniform for curvilinear grids, due non-regular grid cell
spacings that may appear with grid deformations. We generated a single-block curvilinear
grid (Figure 5.11) composed by two semi-circular grids to test the behavior of our solution

Example Total time (s) Number of cells
Regular Curvilinear Regular Curvilinear

Circular obstacle 2-D 0.033 0.057 20,667 19,206
Bunny obstacle 2-D 0.032 0.048 20,667 17,061

Bunny & Circular 2-D 0.052 0.066 20,667 23,463
Wind tunnel 3-D 3.242 3.654 1,365,525 1,365,525

Table 5.1: Performance comparison between our approach and the regular-grid one.

45

Regular Grid Our Approach
se

m
i-

L
ag

ra
ng

ia
n

M
ac

C
or

m
ac

k

Figure 5.7: Results produced with regular grids (left) and our approach (right) using the
semi-Lagrangian (top) and a modified MacCormack method (bottom) for the advection
phase.

when higher time-steps are used. For this grid, the local CFL ∆t/dx, with ∆t = 0.05,
varies along grid cell sizes: the minimum CFL is 3.9370 while the maximum is 7.8125.

When we use a bigger time-step without ensuring that the local CFL is one (Sec-
tion 3.4) on curvilinear grids, artifacts tend to appear in regions with increased grid de-
formation (Figure 5.12 (top)). However, if the multi-step adaptive Runge-Kutta path in-
tegrator is used, these artifacts vanish completely, as one can see in Figure 5.12 (bottom).
This method also improves the accuracy of the simulation on regular grids.

The velocity dissipation of the semi-Lagrangian algorithm decreases with the cells
spacing size (MOLEMAKER et al., 2008). This dissipation can be re-interpreted as vis-
cosity, and increased viscosity induces, to some extent, more vorticity to the flow (EL-
COTT et al., 2007; SELLE et al., 2008). On curvilinear grids, a non-uniform artificial
dissipation is present on the flow, since cell sizes and spacing varies along the domain.

When we increased the timestep ∆t in our simulations, the experimental results shows
that the non-uniform artificial dissipation often induces a more complex flow near obsta-
cles. The simulation on curvilinear grids tends to "stick" vortices into objects’ boundaries
(Figure 5.14), without having disappearing features shown on regular grids (Figure 5.13).

This chapter presented some of the results obtained with our method. We could con-
clude that our method is able to maintain interesting properties of the fluid flow, such as
conservation of aerodynamical properties (Figure 5.4 and Figure 5.5), ability to handle
complex grid configurations (Figure 5.6), correct representation of boundary conditions
and denser vortices (Figure 5.7), complex 3-D flows (Figure 5.9 and Figure 5.10) and
more precise pressure fields (Figure 5.8).

46

Regular Grid Our Approach

Figure 5.8: Cross sections of the pressure fields for one time step of a 3-D simulation
using a regular grid (left) and our approach (right). Red means high pressure.

Figure 5.9: The frame sequence (side view) is shown for the 3-D simulation of a car in
wind tunnel.

Figure 5.10: The frame sequence (front view) is shown for the 3-D simulation of a car in
wind tunnel.

47

Figure 5.11: 2-D curvilinear non-regular grid composed of two semi-circular patches.

Figure 5.12: 2-D curvilinear grid simulation on a curvilinear grid with timestep
∆t = 0.05. (top): advection using a simple Runge-Kutta method. (bottom) advection
using an adaptive Runge-Kutta method.

Figure 5.13: 2-D Regular grid simulation of a flow in a channel with an obstacle (timestep
∆t = 0.05). Notice that the vortices tend to be "disconnected" from the obstacle. The
vortices also take more time to be formed, when comparing to Figure 5.14.

48

Figure 5.14: 2-D Curvilinear grid simulation of a flow in a channel with an obstacle
(timestep ∆t = 0.05). Notice that the vortices tend to "stick" behind the obstacle.

49

6 CONCLUSIONS AND FUTURE WORK

This thesis presented an efficient approach for creating high-quality flow simulations
based on curvilinear grids. Our method is based on techniques originally developed
for CFD, and has several desirable properties, including: (i) it allows good definition
of boundary conditions, lending to realistic simulations and animations; and (ii) since
curvilinear grids are topologically equivalent to regular ones, the cost of the flow solver
is nearly identical to the one required to operate on regular grids. Thus, we obtain high-
quality results with a relatively low increment in computational cost.

In Chapter 2 we presented a study of the state-of-art fluid animation methods used
in computer graphics. The Lagrangian and Eulerian viewpoints were presented, along
with the most significant works described so far. Moreover, we discussed the methods
proposed by CG researchers to improve the quality of the flow near obstacles and to
support local refinement in regular grids. Unstructured grids appeared as an alternate
solution for the space discretization of Eulerian simulations. Finally, an outline of the
emerging curvilinear grid techniques for animating flows was presented.

Chapter 3 presented our new method for solving the Navier-Stokes equations in curvi-
linear grids. It enforces mass and momentum conservation by the projection method,
subdividing the solution in three steps: advection, pressure solving and velocity projec-
tion. On the advection phase, we transformed the physical grid into a computational one,
using the velocity expressed in an arbitrary basis to update the trajectory of the particle
that calculates the intermediary velocity field. The pressure solving step was formulated
based on the integral form of the equations, maintaining the simplicity of the linear sys-
tem of equations. The velocity projection step was designed to work with the traditional
Cartesian staggered-grid variable arrangement. Our projection step is faster than the tradi-
tional solution used in CFD, based on D’Yakunov’s method (CONCUS; GOLUB, 1972).
Finally, we presented our domain decomposition method, which enables a larger applica-
bility of our technique.

Chapter 4 presented the details of the multigrid method for solving linear system of
equations on curvilinear grids. Our multigrid approach combines features for several
existing techniques, yielding a simple and efficient implementation. We also presented
our grid generation method. Since we enable overlapping-grid configurations, our grid
generation process is simple and robust. Chapter 5 discussed implementation details and
some results obtained with the proposed method. We have demonstrated the effectiveness
of our approach through a series of 2-D and 3-D simulations and animations, comparing
our method with traditional regular grid approaches.

Our technique could be used to improve the method by Zhu et al. (ZHU; YANG; FAN,
2010) of combining SPH to Eulerian grids. As additional directions for future work, our
technique can be extended to handle dynamic environments, supporting rotations and

50

translations, such as (DOBASHI et al., 2008). Moreover, we believe that adapting the
techniques described in (LENTINE; ZHENG; FEDKIW, 2010) or (PFAFF et al., 2010) to
work with curvilinear grids would greatly enhance the visual aspects of the flows handled
by these techniques.

51

REFERENCES

ABRAMOWITZ, M.; STEGUN, I. A. Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. New York: Dover, 1972.

BANDRINGA, H. Immersed boundary methods. 2010. Dissertação (Mestrado em
Ciência da Computação) — University of Groningen.

BARR, A. H. Global and local deformations of solid primitives. SIGGRAPH Comput.
Graph., New York, NY, USA, v.18, p.21–30, Jan 1984.

BARROSO, V. B. R. B.; CELES, W. Fluid Animation on Arbitrarily-Shaped Structured
Grids. In: SBC - PROCEEDINGS OF SBGAMES, 2011. . . . [S.l.: s.n.], 2011.

BATTY, C.; BERTAILS, F.; BRIDSON, R. A fast variational framework for accurate
solid-fluid coupling. ACM Trans. Graph., New York, NY, USA, v.26, n.3, p.100, 2007.

BECKER, M.; TESCHNER, M. Weakly compressible SPH for free surface flows. In:
ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION,
2007., 2007, Aire-la-Ville, Switzerland, Switzerland. Proceedings. . . Eurographics As-
sociation, 2007. p.209–217.

BELL, N.; GARLAND, M. CUSP - Generic Parallel Algorithms for Sparse Matrix
and Graph Computations. http://code.google.com/p/cusp-library/. Last access, Nov.
2012.

BELL, N.; HOBEROCK, J. Thrust - Code at the speed of light.
http://code.google.com/p/thrust/. Last access, Nov. 2012.

BIRD R.B., S. W. E.; LIGHTFOOT, E. N. Transport phenomena. New York: Wiley,
1962.

BRANDT, A. Multi-Level Adaptive Solutions to Boundary-Value Problems. Mathemat-
ics of Computation, [S.l.], v.31, n.138, p.333–390, Apr. 1977.

BRIGGS, W. L.; HENSON, V. E.; MCCORMICK, S. F. A multigrid tutorial: second
edition. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2000.

BUTCHER, J. The numerical analysis of ordinary differential equations: runge-kutta
and general linear methods. New York: Wiler-Interscience, 1982.

52

CHENTANEZ, N. et al. Liquid simulation on lattice-based tetrahedral meshes. In: ACM
SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION, 2007.,
2007, Aire-la-Ville, Switzerland, Switzerland. Proceedings. . . Eurographics Association,
2007. p.219–228. (SCA ’07).

CHENTANEZ, N.; MULLER, M. Real-time Eulerian water simulation using a restricted
tall cell grid. ACM Trans. Graph., New York, NY, USA, v.30, n.4, p.82:1–82:10,
July 2011.

CHENTANEZ, N.; MULLER, M. A multigrid fluid pressure solver handling separating
solid boundary conditions. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON
COMPUTER ANIMATION, 2011., 2011, New York, NY, USA. Proceedings. . . ACM,
2011. p.83–90. (SCA ’11).

CHESSHIRE, G.; HENSHAW, W. Composite overlapping meshes for the solution of
partial differential equations. Journal of Computational Physics, [S.l.], v.90, n.1, p.1 –
64, 1990.

CHORIN, A. J. Numerical Solutions of the Navier-Stokes Equations. Mathematics of
computation, [S.l.], v.22, n.104, p.745–762, October 1968.

COHEN, J. M.; TARIQ, S.; GREEN, S. Interactive fluid-particle simulation using trans-
lating Eulerian grids. In: ACM SIGGRAPH I3D, 2010. Proceedings. . . ACM, 2010.
p.15–22.

CONCUS, P.; GOLUB, G. H. Use of fast direct methods for the efficient numerical
solution of nonseparable elliptic equations. Stanford, CA, USA: [s.n.], 1972.

CRANE, K.; LLAMAS, I.; TARIQ, S. Chapter 30. Real-Time Simulation and Rendering
of 3D Fluids. NGUYEN, H. GPU Gems 3. [S.l.]: Addison-Wesley Professional, 2007.

DOBASHI, Y. et al. A Fast Simulation Method Using Overlapping Grids for Interactions
between Smoke and Rigid Objects. Computer Graphics Forum, [S.l.], v.27, n.2, p.477–
486, 2008.

ELCOTT, S. et al. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph.,
New York, NY, USA, v.26, n.1, p.4, 2007.

ENRIGHT, D.; MARSCHNER, S.; FEDKIW, R. Animation and rendering of complex
water surfaces. ACM Trans. Graph., New York, NY, USA, v.21, n.3, p.736–744, 2002.

FEDKIW, R.; STAM, J.; JENSEN, H. W. Visual simulation of smoke. In: SIG-
GRAPH’01, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.15–22.

FELDMAN, B. E. et al. Fluids in deforming meshes. In: ACM SIG-
GRAPH/EUROGRAPHICS SCA, 2005., 2005. Proceedings. . . [S.l.: s.n.], 2005.
p.255–259.

FELDMAN, B. E.; O’BRIEN, J. F.; ARIKAN, O. Animating suspended particle explo-
sions. ACM Trans. Graph., New York, NY, USA, v.22, n.3, p.708–715, July 2003.

FELDMAN, B. E.; O’BRIEN, J. F.; KLINGNER, B. M. Animating gases with hybrid
meshes. ACM Trans. Graph., New York, NY, USA, v.24, n.3, p.904–909, 2005.

53

FERZIGER, J. H.; PERIC, M. Computational methods for fluid dynamics; 2nd ed.
Berlin: Springer, 1999.

FOSTER, N.; FEDKIW, R. Practical animation of liquids. In: COMPUTER GRAPHICS
AND INTERACTIVE TECHNIQUES, 28., 2001, New York, NY, USA. Proceedings. . .
ACM, 2001. p.23–30. (SIGGRAPH ’01).

FOSTER, N.; METAXAS, D. Modeling the motion of a hot, turbulent gas. In: SIG-
GRAPH’97, 1997. Proceedings. . . [S.l.: s.n.], 1997. p.181–188.

FOX, R.; MCDONALD, A. Introduction to fluid mechanics. New York: Wiley, 1982.

HARLOW, F. H.; WELCH, J. E. Numerical Calculation of Time-Dependent Viscous In-
compressible Flow of Fluid with Free Surface. Physics of Fluids, [S.l.], v.8, n.12, p.2182–
2189, 1965.

HE, P. et al. Multigrid calculation of fluid flows in complex 3D geometries using curvi-
linear grids. Computers Fluids, [S.l.], v.25, n.4, p.395 – 419, 1996.

HENSHAW, W. Adaptive Mesh Refinement on Overlapping Grids. In: PLEWA, T.;
LINDE, T.; GREGORY WEIRS, V. (Ed.). Adaptive Mesh Refinement - Theory and
Applications. [S.l.]: Springer Berlin Heidelberg, 2005. p.59–71. (Lecture Notes in Com-
putational Science and Engineering, v.41).

HENSHAW, W. D. On Multigrid for Overlapping Grids. SIAM J. Sci. Comput.,
Philadelphia, PA, USA, v.26, n.5, p.1547–1572, May 2005.

HINATSU, M.; FERZIGER, J. H. Numerical computation of unsteady incompressible
flow in complex geometry using a composite multigrid technique. International Journal
for Numerical Methods in Fluids, [S.l.], v.13, n.8, p.971–997, 1991.

HOLLY, F. M. J.; PREISSMAN, A. Accurate Calculation of Transport in Two Dimen-
sions. Journal of Hydraulic Engineering, [S.l.], v.103, n.11, p.1259–1277, Novem-
ber 1977.

HONG, J.-M.; SHINAR, T.; FEDKIW, R. Wrinkled flames and cellular patterns. ACM
Trans. Graph., New York, NY, USA, v.26, n.3, July 2007.

HOUSTON, B.; BOND, C.; WIEBE, M. A unified approach for modeling complex oc-
clusions in fluid simulations. In: SIGGRAPH 2003 CONFERENCE ON SKETCHES &
APPLICATIONS, 2003. Proceedings. . . ACM Press, 2003.

HOUSTON, B. et al. Hierarchical RLE level set: a compact and versatile deformable
surface representation. ACM Trans. Graph., New York, NY, USA, v.25, n.1, p.151–175,
Jan. 2006.

IGES. Initial Graphics Exchange Specification. IGES 5.3.
http://www.uspro.org/documents/IGES5-3_forDownload.pdf. Last access, Nov. 2012.

IRVING, G. et al. Efficient simulation of large bodies of water by coupling two and three
dimensional techniques. In: ACM SIGGRAPH 2006 PAPERS, 2006, New York, NY,
USA. . . . ACM, 2006. p.805–811. (SIGGRAPH ’06).

54

ISERLES, A. A First Course in the Numerical Analysis of Differential Equations.
Cambridge: Cambridge University Press, 1996.

KARPIK, S. R.; CROCKETT, S. R. Semi-Lagrangian Algorithm for Two-Dimensional
Advection-Diffusion Equation on Curvilinear Coordinate Meshes. Journal of Hydraulic
Engineering, [S.l.], v.123, p.389–401, May 1997.

KIM, D.; CHOI, H. A second-order time-accurate finite volume method for unsteady
incompressible flow on hybrid unstructured grids. J. Comput. Phys., San Diego, CA,
USA, v.162, p.411–428, 2000.

KIM, D.; SONG, O.-y.; KO, H.-S. A Semi-Lagrangian CIP Fluid Solver without Dimen-
sional Splitting. Computer Graphics Forum, [S.l.], v.27, n.2, p.467–475, 2008.

KIM, D.; SONG, O.-y.; KO, H.-S. Stretching and wiggling liquids. In: ACM SIGGRAPH
ASIA 2009 PAPERS, 2009, New York, NY, USA. . . . ACM, 2009. p.120:1–120:7. (SIG-
GRAPH Asia ’09).

KLINGNER, B. M. et al. Fluid animation with dynamic meshes. ACM Trans. Graph.,
New York, NY, USA, v.25, n.3, p.820–825, 2006.

KOSHIZUKA, S.; OKA, Y.; KONDO, S. A staggered differencing technique on
boundary-ditted curvilinear grids for incompressible flows along curvilinear or slant
walls. Computational Mechanics, [S.l.], v.7, p.123–136, 1990.

LENTINE, M.; ZHENG, W.; FEDKIW, R. A novel algorithm for incompressible flow
using only a coarse grid projection. ACM Trans. Graph., New York, NY, USA, v.29,
p.114:1–114:9, July 2010.

LOSASSO, F. et al. Multiple interacting liquids. In: ACM SIGGRAPH 2006 PAPERS,
2006, New York, NY, USA. . . . ACM, 2006. p.812–819. (SIGGRAPH ’06).

LOSASSO, F.; FEDKIW, R.; OSHER, S. Spatially adaptive techniques for level set meth-
ods and incompressible flow. Computers and Fluids, [S.l.], v.35, p.2006, 2005.

LOSASSO, F.; GIBOU, F.; FEDKIW, R. Simulating water and smoke with an octree data
structure. ACM Trans. Graph., New York, NY, USA, v.23, n.3, p.457–462, Aug. 2004.

LUXRENDER. Luxrender - GPL Based renderer. http://www.luxrender.net/. Last ac-
cess, Nov. 2012.

MCADAMS, A.; SIFAKIS, E.; TERAN, J. A parallel multigrid Poisson solver for flu-
ids simulation on large grids. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM
ON COMPUTER ANIMATION, 2010., 2010, Aire-la-Ville, Switzerland, Switzerland.
Proceedings. . . Eurographics Association, 2010. p.65–74. (SCA ’10).

MOLEMAKER, J. et al. Low viscosity flow simulations for animation. In: ACM SIG-
GRAPH/EUROGRAPHICS SCA, 2008., 2008. Proceedings. . . [S.l.: s.n.], 2008. p.9–18.

MOSTOW, D. J. Terminator 3: rise of the machines. 2003.

55

MULLER, M.; CHARYPAR, D.; GROSS, M. Particle-based fluid simulation for inter-
active applications. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COM-
PUTER ANIMATION, 2003., 2003, Aire-la-Ville, Switzerland, Switzerland. Proceed-
ings. . . Eurographics Association, 2003. p.154–159.

MULLER, M. et al. Particle-based fluid-fluid interaction. In: ACM SIG-
GRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION, 2005.,
2005, New York, NY, USA. Proceedings. . . ACM, 2005. p.237–244.

NGUYEN, D. Q.; FEDKIW, R.; JENSEN, H. W. Physically based modeling and anima-
tion of fire. ACM Trans. Graph., New York, NY, USA, v.21, n.3, p.721–728, July 2002.

NVIDIA. NVIDIA’s PhysX SDK Download. https://developer.nvidia.com/physx-
downloads. Last access, Nov. 2012.

NVIDIA. NVIDIA’s Cg Toolkit download. https://developer.nvidia.com/cg-toolkit. Last
access, Nov. 2012.

PARK, S. I.; KIM, M. J. Vortex fluid for gaseous phenomena. In: ACM SIG-
GRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION, 2005.,
2005, New York, NY, USA. Proceedings. . . ACM, 2005. p.261–270. (SCA ’05).

PETERSEN, D. W. Poseidon. 2006.

PFAFF, T. et al. Scalable fluid simulation using anisotropic turbulence particles. In: ACM
SIGGRAPH ASIA 2010 PAPERS, 2010, New York, NY, USA. . . . ACM, 2010. p.174:1–
174:8. (SIGGRAPH ASIA ’10).

PHARR, M.; HUMPHREYS, G. Physically based rendering - From theory to imple-
mentation. http://www.pbrt.org/. Last access, Nov. 2012.

POINTWISE. Pointwise Gridgen - Reliable CFD Meshing Software.
http://www.pointwise.com/gridgen/. Last access, Nov. 2012.

RASMUSSEN, N. et al. Directable photorealistic liquids. In: ACM SIG-
GRAPH/EUROGRAPHICS SYMPOSIUM ON COMPUTER ANIMATION, 2004.,
2004, Aire-la-Ville, Switzerland, Switzerland. Proceedings. . . Eurographics Association,
2004. p.193–202. (SCA ’04).

ROBERT, A. A stable numerical integration scheme for the primitive meteorological
equations. Atmosphere-Ocean, [S.l.], v.19, n.1, p.35–46, 1981.

ROBINSON-MOSHER, A.; ENGLISH, R. E.; FEDKIW, R. Accurate tangential veloci-
ties for solid fluid coupling. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON
COMPUTER ANIMATION, 2009., 2009, New York, NY, USA. Proceedings. . . ACM,
2009. p.227–236. (SCA ’09).

ROBINSON-MOSHER, A. et al. Two-way coupling of fluids to rigid and deformable
solids and shells. ACM Trans. Graph., New York, NY, USA, v.27, n.3, p.46:1–46:9,
Aug. 2008.

ROBLE, D.; ZAFAR, N. b.; FALT, H. Cartesian grid fluid simulation with irregular
boundary voxels. In: ACM SIGGRAPH 2005 SKETCHES, 2005, New York, NY, USA.
. . . ACM, 2005. (SIGGRAPH ’05).

56

SCHECHTER, H.; BRIDSON, R. Ghost SPH for animating water. ACM Trans. Graph.,
New York, NY, USA, v.31, n.4, p.61:1–61:8, July 2012.

SEDOV, L. A course on continuum mechanics. Groningen: Walters-Noordhoft, 1972.

SELLE, A. et al. An Unconditionally Stable MacCormack Method. J. Sci. Comput., New
York, NY, USA, v.35, p.350–371, June 2008.

SELLE, A.; RASMUSSEN, N.; FEDKIW, R. A vortex particle method for smoke, water
and explosions. In: ACM SIGGRAPH 2005 PAPERS, 2005, New York, NY, USA. . . .
ACM, 2005. p.910–914. (SIGGRAPH ’05).

SHYY, W.; VU, T. C. On the adoption of velocity variable and grid system for fluid flow
computation in curvilinear coordinates. Journal of Computational Physics, [S.l.], v.92,
n.1, p.82 – 105, 1991.

SOLENTHALER, B.; PAJAROLA, R. Predictive-corrective incompressible SPH. In:
ACM SIGGRAPH PAPERS, 2009., 2009, New York, NY, USA. Proceedings. . . ACM,
2009. p.1–6.

STAM, J. Stable fluids. In: SIGGRAPH’99, 1999. Proceedings. . . [S.l.: s.n.], 1999.
p.121–128.

STAM, J. Flows on surfaces of arbitrary topology. ACM Trans. Graph., New York, NY,
USA, v.22, n.3, p.724–731, July 2003.

TILCH, R. et al. Combination of Body-Fitted and Embedded Grids for External Vehicle
Aerodynamics. In: ENGINEERING COMPUTATIONS 25, NO. 1, 2008. Proceedings. . .
[S.l.: s.n.], 2008. p.280–41.

TRUESDELL, C. A first course in rational continuum mechanics. London: Academic
Press, 1977.

WENDT, J. D. et al. Finite volume flow simulations on arbitrary domains. Graph. Mod-
els, San Diego, CA, USA, v.69, p.19–32, January 2007.

WESSELING, P.; SEGAL, A.; KASSELS, C. G. M. Computing flows on general three-
dimensional nonsmooth staggered grids. J. Comput. Phys., San Diego, CA, USA, v.149,
p.333–362, March 1999.

WYMAN, N. State of the Art in Grid Generation. CFD Review.
http://www.cfdreview.com/article.pl?sid=01/04/28/2131215. Last access, Sept. 2012.

ZANG, Y.; STREET, R. L.; KOSEFF, J. R. A Non-staggered Grid, Fractional Step
Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Co-
ordinates. Journal of Computational Physics, [S.l.], v.114, n.1, p.18 – 33, 1994.

ZHU, B.; YANG, X.; FAN, Y. Creating and Preserving Vortical Details in SPH Fluid.
Computer Graphics Forum, [S.l.], v.29, n.7, p.2207–2214, 2010.

57

APPENDIX A MATHEMATICAL CONCEPTS

This Appendix introduces some mathematical concepts and notations that are relevant
for the technique developed in this thesis.

A.1 Conservation Equations

This section provides a brief review of the momentum and mass conservation equa-
tions for fluid flow. It is based on classic Newtonian continuum mechanics and conser-
vation laws. Continuum mechanics deals with the analysis of the kinematics and the
mechanical behavior of materials modeled as a continuous mass rather than as discrete
particles.

Conservation laws state that a particular measurable property of an isolated physical
system does not change as the system evolves. The following demonstrations are based
on (FERZIGER; PERIC, 1999). To formulate that is no creation or destruction of mass
within a system (mass conservation law), one can write

dm

dt
= 0. (A.1)

Another example can be observed in Newton’s second law of motion (momentum
conservation law), which states that momentum is the sum of all forces acting on the
system

d(m~u)

dt
=
∑

~f. (A.2)

Conservation laws can be derived by considering a given quantity of matter or control
mass (CM) and its extensive properties, such as mass, momentum and energy. This ap-
proach is successfully adopted in the study of dynamics of solid bodies. However, for the
dynamics of fluid flows it is difficult to follow a parcel of matter and it is more convenient
to define the conservation laws within a control volume (CV).

To use the mass and momentum conservation laws into within a control volume, the
fundamental variables will be considered as intensive rather than extensive properties;
the former are independent of the amount of matter considered. Examples are density ρ
(mass per unit volume) and velocity ~u (momentum per unit volume). If φ is any conserved
intensive property the relation to its corresponding extensive property Φ is expressed as

Φ =

∫
ΩCM

ρφ dΩ (A.3)

Using this definition, the control volume equation or Reynolds transport theorem for

58

a fixed CV is defined by

d

dt
Φ =

d

dt

∫
ΩCM

ρφ dΩ =
d

dt

∫
ΩCV

ρφ dΩ +

∫
SCV

ρφ~u · ~ndS, (A.4)

where ΩCV is the CV volume, SCV is the surface enclosing the control volume, ~n the
orthogonal unit vector relative to the control volume surface directed outwards and ~u is the
fluid velocity. This equation states that a variation of Φ is given by the sum of the variation
of φ integrated on the control volume (first term of Eq. (A.4)), and the ratio of which φ is
entering or leaving the CV (second term of Eq. (A.4). The detailed derivation of Eq. (A.4)
is given in various textbooks (BIRD R.B.; LIGHTFOOT, 1962; FOX; MCDONALD,
1982) and will not be repeated here. The mass and momentum conservation equations in
their integral forms will be derived from Eq. (A.4).

A.1.1 Mass Conservation

The mass conservation law states that there is no creation or destruction of mass within
a system (Eq. (A.1)). Considering this, the integral form of the mass conservation equa-
tion follows directly from the control volume Eq. (A.4), by setting its left-hand side to
zero and making φ = 1:

∂

∂t

∫
Ω

ρ dΩ +

∫
S

ρ~u · ~n dS = 0. (A.5)

Applying the Gauss’ divergence theorem to the convection term, we can transform the
surface integral into a volume integral

∂

∂t

∫
Ω

ρ dΩ +

∫
Ω

ρ~u dΩ = 0. (A.6)

To obtain the differential coordinate-free form of the continuity equation, we set Ω → 0,
yielding

∂ρ

∂t
+ div (ρ~u) = 0. (A.7)

With the discretization of the divergence operator we can transform this form to a specific
coordinate system (SEDOV, 1972; TRUESDELL, 1977). If we assume that the fluids are
incompressible, i.e., there is no variation on the density ρ, Eq. (A.6) and Eq. (A.7) become∫

S

~u · ~n dS = 0, (A.8)

∇ · ~u = 0. (A.9)

A.1.2 Momentum Conservation

Assuming the same principle used in the mass conservation law, φ = ~u and the control
volume Eq. (A.4), we have for a fixed fluid-containing volume of space:

∂

∂t

∫
Ω

ρ~u dΩ +

∫
S

ρ~u~u · ~n dS =
∑

~f. (A.10)

The forces acting on a control volume can be of two distinct types: surface forces (pres-
sure, normal and shear stresses, surface tension, etc), and body forces (gravity, centrifugal

59

and Coriolis forces, etc). Surface forces act directly on a CV surface, e.g., the shear force
due to wind blowing above the ocean. Body forces are forces that act in the whole CV,
like gravity. Representing surface forces by T and the body forces by b, the integral form
of the conservation equation for the momentum becomes

∂

∂t

∫
Ω

ρ~u dΩ +

∫
S

ρ~u~u · ~n dS =

∫
S

T · ~n dS +

∫
Ω

ρb dΩ. (A.11)

For Newtonian fluids, whose the rate of stress (internal forces) and the strain rate
(deformation) is linear, the stress tensor T can be written by

T = −(p +
2

3
µdiv ~u) + 2µD, (A.12)

where D is
D =

1

2
[grad ~u+ (grad ~u)T]. (A.13)

Making use of the index notation, is useful to define the shear stress tensor due to
viscous forces as

τij = 2µD− 2

3
µδijdiv ~u, (A.14)

where δij is the Kroenecker delta.
The differential coordinate free-form of the Eq. (A.11) is given by:

∂(ρ~u)

∂t
+ div (ρ~u~u) = div T + ρb. (A.15)

A.2 Numerical Discretizations

A.2.1 Finite Difference Method

The finite difference method (FDM) is the most popular method for solving the Navier-
Stokes equations in computer graphics. Its natural choice relies on the fact that it is the
easiest method for simple Cartesian structured grids. With some effort, the FDM method
can be used with non-regular structured grids; however, apparently, FDM has never been
used with unstructured grids.

The starting point to solve the equations are the differential forms, e.g.the momentum
conservation the differential form is represented by Eq. (A.15). It can be discretized
relative to the ith Cartesian component as

∂(ρui)

∂t
+ div (ρui~u) = div ti + ρbi, (A.16)

where

ti = µgrad ui + µ(grad ~u)T · ii − (p+
2

3
µdiv ~u)ii = τij − pii. (A.17)

Here ti is the ith vector from tensor T, bi is the ith component of the body force vector
and ii is the Cartesian unit vector in the direction of the coordinate xi. It is convenient to
separate all the stress due to shear forces into a shear tensor (τij).

Eq. (A.16) is in strongly conservative form, since all terms have the form of the di-
vergence of a vector or tensor (FERZIGER; PERIC, 1999). The usual form used in finite

60

difference methods is the chain-rule conservative form, that represents the divergent op-
erator in Eq. (A.16) as

div (ρui~u) = ui div (ρ~u) + ρ~u · grad ui. (A.18)

Thus, using Eq. (A.18) into Eq. (A.15), it follows that:

∂(ρui)

∂t
+ ρ~u · grad ui = div ti + ρbi. (A.19)

Assuming that the only body force that acts in the fluid is the gravity, using the stress
tensor and applying the gradient and divergence operators in Cartesian coordinate systems
we have

∂(ρui)

∂t
+
∂(ρujui)

∂xj
=
∂τij
∂xj
− ∂p

∂xi
+ ρgi. (A.20)

Most of finite difference methods use Eq. (A.20) as the starting point. The basic
concept of the finite difference method is to consider each grid point as the origin of a
local coordinate system. The grid lines of the same family may not intersect, otherwise the
same subspace would be mapped by different grid points. With this, the finite difference
approximations are borrowed directly from the definition of derivatives:(

∂φ

∂x

)
xi

= lim
∆x→0

φ(xi + ∆x)− φ(xi)

∆x
(A.21)

There are three basic approaches to discretize Eq. (A.21): Taylor Series expansion,
polynomial fitting and compact schemes. We are going to present only Taylor Series
expansion, since it is the most used method in context of computer graphics. Any con-
tinuous differentiable function φ(x) can, in the the vicinity of xi, can be expressed as a
Taylor Series (ABRAMOWITZ; STEGUN, 1972):

φ(x) = φ(xi) + (x− xi)
(
∂φ
∂x

)
i
+ (x−xi)2

2!

(
∂2φ
∂x2

)
i
+

(x−xi)3
3!

(
∂3φ
∂x3

)
i
+ ...+ (x−xi)n

n!

(
∂nφ
∂xn

)
i
+H,

(A.22)

where H means "higher order terms". Therefore, we can approximate the 1-D derivative
of Eq. (A.21) at xi using the next point xi+1 by(

∂φ

∂x

)
xi

=
φ(xi+1)− φ(x)

xi+1 − xi
− xi+1 − xi

2

(
∂2φ

∂x2

)
i

+H. (A.23)

Another expression can be derived for Eq. (A.21) using the previous point xi−1:(
∂φ

∂x

)
xi

=
φ(xi+1)− φ(x)

xi+1 − xi
− xi+1 − xi

2

(
∂2φ

∂x2

)
i

+H. (A.24)

Still another expression can be obtained by using both xi−1 and xi+1:(
∂φ

∂x

)
xi

=
φ(xi+1)− φ(x)i−1

xi+1 − xi−1

− (xi+1 − xi)2 − (xi − xi−1)2

2(xi+1 − xi−1

(
∂2φ

∂x2

)
i

+H. (A.25)

These three different approaches for discretizing Eq. (A.21) are known, respectively,
as forward- (FDS), backward- (BDS) and central-difference (CDS) schemes and they are
used to compute first derivatives. Analogously, the second derivatives of φ(x) can be
written with these schemes. However, since our method only uses first derivatives, we
will not present these discretization schemes here. For further information, wee refer the
reader to (FOX; MCDONALD, 1982; FERZIGER; PERIC, 1999).

61

A.2.2 Finite Volume Methods

The finite volume method (FVM) use the integral form of the conservation equations
as its starting point (Eq. (A.11)). The spatial domain is subdivided into a finite number of
control volumes (CVs) and the equations are applied to each CV. Since the method only
defines the computational volume boundaries, it is suitable for any type of non-regular
grids and it is not directly related to any coordinate system. The disadvantage of FVM
with respect to FDM is that is difficult to generate higher order approximations. This is
due the fact that FVM requires three levels of approximations: interpolation, differentia-
tion and integration.

In order to obtain an algebraic equation for a particular CV, the surface and volume
integrals must be approximated. The surface integrals that relate the net flux of a given
quantity through a CV boundary is∫

S

f dS =
∑
k

∫
Sk

f dS, (A.26)

where k denotes the iteration of all CV’s surfaces and f is the component of the flux
vector in the direction normal to a CV face. The simplest second order approximation to
the integral of one surface is the mid-point rule∫

Sk

f dS = fkSk ≈ fkSk, (A.27)

where fk is the value of the function at the surface center and Sk is the surface area. If the
value fk is not known, it can be interpolated from nearby cell face centers or from other
locations where the variables are available.

We can also use the mid-point rule to approximate second order volume integrals,
yielding ∫

Ω

q dΩ = q∆Ω ≈ qpV, (A.28)

where qp is the value of the function at the CV center and V is the CV volume.

A.2.3 Ordinary differential equations

An ordinary differential equation (ODE) is an equation containing a function of one
independent variable and its derivatives. In the context of our fluid solver, we will use a
first order ODE to integrate a particle position in the space with respect to time. Given an
initial condition, this can be expressed by(

dx(t)
dt

)
t

= f(t, x(t)) with initial condition x(t0) = x0. (A.29)

The basic problem is the find the position x after a short time ∆t. The solution obtained
can be regarded as a new initial condition, and the solution can be subsequently advanced
in time. Integrating Eq. (A.29) we have

xn+1 − xn =

∫ tn+1

tn

f(t, x(t)) dt. (A.30)

We can integrate Eq. (A.30) using the current value of xn as initial point with

xn+1 = xn + f(tn, x
n) ∆t, (A.31)

62

which is known as the explicit or forward Euler method. This method is very simple to
implement and is widely used in many physical simulators. We can also approximate the
integral of Eq. (A.30) by the final point x(n+1), yielding

xn+1 = xn + f(tn+1, x
n+1) ∆t, (A.32)

which is known as the implicit or backward Euler method. This second method yields
a system of linear equations, but is more stable than the first one. Euler methods have the
discretization error of orderO(∆t), which means that the error linearly decreases with ∆t
(BUTCHER, 1982; ISERLES, 1996).

For the equations that we want to solve, Euler methods are not precise enough. When
used in momentum equations they often generate spiraling artifacts which can be seen in
the simulation. Therefore, we adopted a higher-order Runge-Kutta method, which eval-
uates multiple points between tn and tn+1. This approximation is able to solve Eq. (A.30)
with O(∆t2) error. The Runge-Kutta half-step method is represented as

x∗
n+ 1

2
= xn + f(tn, x

n)
∆t

2
,

xn+1 = xn + f(tn+ 1
2
, x∗

n+ 1
2
) ∆t.

(A.33)

In this method, an intermediary step is performed to evaluate the velocity at x∗
n+ 1

2

. Then,
this intermediary velocity is used to integrate Eq. (A.30) with a simple explicit Euler
method (Eq. (A.31)). The Runge-Kutta half-step method is easy to use and is self-starting
- it requires no data other than the initial condition provided by the problem formulation.

A.3 Semi-Lagrangian advection on curvilinear coordinates

In order to show that the velocity in Semi-Lagrangian algorithm works by substituting
the transformed velocity in the back-trajectory step, we define the covariant basis vectors
as

g1 =
g2 × g3

ϑ
g2 =

g3 × g1

ϑ
g3 =

g1 × g2

ϑ
, (A.34)

with ϑ = g1 · (g2 × g3) the volume defined by the three contravariant basis. Assuming
that the velocity on the physical domain is given by ~v = dx/dt, we can use the chain rule
is used to express it on the computational domain in a contravariant basis as

~v =
∂ξ

∂x

dx

dt
+
∂η

∂y

dy

dt
+
∂τ

∂z

dz

dt
= g1

dx

dt
+ g2

dy

dt
+ g3

dz

dt
. (A.35)

Expressing the velocity using the unit covariant basis

h1u
1g(1) + h2u

2g(2) + h3u
3g(3) = g1

dx

dt
+ g2

dy

dt
+ g3

dz

dt
. (A.36)

The unit covariant basis can be canceled using the Eq. (3.8), leaving

h1u
1 + h2u

2 + h3u
3 =

dx

dt
+
dy

dt
+
dz

dt
. (A.37)

The method could be directly evaluated using Eq. (A.37), however it is more convenient
to work on contravariant basis. To transform to contravariant basis, the notion of physical
vectors is used

u(i) = hiu
i =

1

hi
ui. (A.38)

63

Using physical vectors to transform Eq. (A.37) into contravariant basis lends to

dx

dt
=

u(1)

h1

+
u(2)

h2

+
u(3)

h3

. (A.39)

A.4 Coupling of pressure and velocity equations

To show that our pressure method is consistent and generates divergence free flows,
we substitute Eq. (3.17) in Eq. (3.13), yielding∫

S

[~u∗ −∆t(
∂p

∂x

∂x

∂ξ
+
∂p

∂y

∂y

∂η
) dS] · ~n = 0 (A.40)

Discretizing the equation for single cartesian oriented components, for the cell (i, j),
yields

Ai+ 1
2
,j

[
~u∗
i+ 1

2
,j
−∆t

(
pi+1,j − pi,j

∆d

∂x

∂ξ
+ P̃i+ 1

2
,j

)]
· ~ni+ 1

2
,j+

Ai− 1
2
,j

[
~u∗
i− 1

2
,j
−∆t

(
pi,j − pi−1,j

∆d

∂x

∂ξ
+ P̃i− 1

2
,j

)]
· ~ni− 1

2
,j+

Ai,j+ 1
2

[
~u∗
i,j+ 1

2
−∆t

(
pi,j+1 − pi,j

∆d

∂y

∂η
+ P̃i,j+ 1

2

)]
· ~ni,j+ 1

2
+

Ai,j− 1
2

[
~u∗
i,j− 1

2
−∆t

(
pi+1,j − pi,j

∆d

∂y

∂η
+ P̃i,j− 1

2

)]
· ~ni,j− 1

2
= 0,

(A.41)

where each P̃ is represented by

P̃i+ 1
2
,j =

p̃i+ 1
2
,j+ 1

2
− p̃i+ 1

2
,j− 1

2

∆d

∂x

∂η

P̃i− 1
2
,j =

p̃i− 1
2
,j+ 1

2
− p̃i− 1

2
,j− 1

2

∆d

∂x

∂η

P̃i,j+ 1
2

=
p̃i+ 1

2
,j+ 1

2
− p̃i− 1

2
,j+ 1

2

∆d

∂y

∂ξ

P̃i,j− 1
2

=
p̃i+ 1

2
,j− 1

2
− p̃i− 1

2
,j− 1

2

∆d

∂y

∂ξ
.

(A.42)

In (SHYY; VU, 1991), the authors note that the off-diagonal pressure contributions
(P̃) present in Eq. (A.41) can be disregarded in the pressure solving step, without affecting
the overall method solution. This simplification can only affect the convergence rate of
the solution. Therefore, we discard the (P̃) pressures in the pressure solving system. In
2D, the simplified pressure system is

Ai+ 1
2
,j

(
pi+1,j − pi,j

∆d

∂x

∂ξ

)
· ~ni+ 1

2
,j + Ai− 1

2
,j

(
pi,j − pi−1,j

∆d

∂x

∂ξ

)
· ~ni− 1

2
,j+

Ai,j+ 1
2

(
pi,j+1 − pi,j

∆d

∂y

∂η

)
· ~ni,j+ 1

2
+ Ai,j− 1

2

(
pi+1,j − pi,j

∆d

∂y

∂η

)
· ~ni,j− 1

2
=

~u∗
i+ 1

2
,j
· ~ni+ 1

2
,j + ~u∗

i− 1
2
,j
· ~ni− 1

2
,j + ~u∗

i,j+ 1
2
· ~ni,j+ 1

2
+ ~u∗

i,j− 1
2
· ~ni,j− 1

2

(A.43)

64

65

APÊNDICE B SIMULAÇÃO EFICIENTE DE FUMAÇA EM
GRIDS CURVILÍNEOS

Resumo da Dissertação em Português

A qualidade da simulação de fluidos depende de dois fatores importantes: a definição
precisa de condições de contorno dos objetos no domínio; e discretização fina em regiões
de vorticidade no domínio de simulação. Grids estruturados regulares são empregados
tradicionalmente em computação gráfica (FOSTER; METAXAS, 1997; STAM, 1999;
FEDKIW; STAM; JENSEN, 2001), simplificando o processo de simulação ao mesmo
tempo que não representam adequadamente as condições de contorno. Com a finalidade
de mitigar essa situação, varias técnicas foram propostas para melhorar a representação
das condições de contorno (LOSASSO; GIBOU; FEDKIW, 2004; ROBLE; ZAFAR;
FALT, 2005; BATTY; BERTAILS; BRIDSON, 2007). Enquanto essas técnicas melhoram
significativamente os resultados antes obtidos, essas ainda sofrem de limitações inerentes.
Grids não estruturados podem representar adequadamente as condições de contorno. No
entanto, já que a precisão dos métodos utilizados em grids não estruturados depende de
malhas com simplexos isotrópicos, é difícil condensar células em regiões de alta vortici-
dade para capturar detalhes precisos (WYMAN, 2001).

Nessa tese, nós apresentamos uma abordagem eficiente para criar animações de grande
qualidade baseando-se no conceito de grids curvilíneos - uma discretização espacial co-
mumente utilizada na Dinâmica de Fluidos Computacional (DFC). Grids curvilíneos tam-
bém são conhecidos como grids não regulares estruturados e adaptam-se as formas dos
objetos na cena definindo condições de contorno precisamente. Ao contrário de grids não
estruturados, grids curvilíneos tem uma topologia bem definida. Essa característica faz
que a solução dos sistemas lineares presentes na processo seja simplificada e o custo da
resolução das equações seja quase idêntico aos grids regulares tradicionais. Além disso,
as células podem ser facilmente condensadas em regiões de alta vorticidade.

Apesar da literatura da DFC apresentar várias técnicas para resolver as equações
de Navier-Stokes em grids curvilíneos (CHESSHIRE; HENSHAW, 1990; HENSHAW,
2005b), nenhuma é capaz de ser prontamente utilizada em ambientes de computação grá-
fica. O nosso método proposto se adapta aos ambientes de computação gráfica e combina
em uma única solução eficiente as melhores características de métodos encontrados na
DFC: formulação simples, avaliação eficiente, estabilidade incondicional, representação
precisa das condições de contorno, suporte ao arranjo descentralizado com coordenadas
Cartesianas e suporte a grids sobrepostos.

Para aplicações em computação gráfica, as simulações de fluidos necessitam ser ráp-

66

idas e estáveis. Para suprir esses requerimentos, nós introduzimos um método Semi-
Lagrangiano de advecção incondicionalmente estável baseado em uma transformação de
domínio. Além disso, o método proposto é capaz de adotar o arranjo Cartesiano de-
scentralizado através de um novo método da projeção que é simples, robusto e garante a
conservação de massa, produzindo campos de velocidades que são livres de oscilações.

A técnica proposta tem custo linear no numero de células do grid e é fácil de imple-
mentar. O pipeline é similar ao algoritmo padrão utilizado em grids regulares (STAM,
1999). O passo da projeção requer apenas algumas multiplicações de matrizes adicionais
para a transformação de domínio; o passo da projeção requer apenas um ajuste nos coe-
ficientes da matriz de Poisson; e o passo da projeção utiliza interpolações adicionais no
campo de pressão.

As contribuições dessa dissertação incluem:

• Uma nova técnica para conservação de massa em grids curvilíneos, utilizando o
arranjo descentralizado de variáveis. Nossa solução é mais rápida que o método
tradicional utilizado na DFC, baseado no método de D’Yakunov;

• Um algoritmo rápido e incondicionalmente estável para a advecção em grids curvilí-
neos;

• Uma abordagem eficiente para criar animações de alta qualidade em grids curvilí-
neos. Nossa técnica possibilita a definição precisa de condições de contorno, ob-
tendo resultados mais precisos do que as técnicas tradicionais baseadas em grids
regulares. É também significativamente mais rápida que as técnicas baseadas em
grids não estruturados, enquanto produz resultados de qualidade similar.

B.1 Trabalhos relacionados

A simulação de fluidos consiste na avaliação das equações de Navier-Stokes. Existem
duas abordagens diferentes para a discretização do espaço: abordagens Lagrangiana e
Euleriana. Métodos Lagrangianos avaliam cada parcela do fluido separadamente, rep-
resentando todo o fluido como um sistema de partículas. Métodos Eulerianos utilizam
grids de pontos fixos distribuídos no domínio de simulação para avaliar as propriedades
do fluido. Métodos baseados em sistemas de partículas podem simplificar o processo de
simulação, porém os grids são mais eficientes e garantem uma melhor conservação de
massa.

A configuração usual de grids consiste em uma subdivisão regular do espaço, dis-
cretizando o ambiente de maneira voxelizada. Essa abordagem produz representações
grosseiras para a geometria do objeto, como mostrado na Figura B.1a. As definições
incorretas de geometria introduzem artefatos nas simulações/animações que não desa-
parecem nem com o refinamento do grid (FELDMAN; O’BRIEN; KLINGNER, 2005;
BATTY; BERTAILS; BRIDSON, 2007; ELCOTT et al., 2007; WENDT et al., 2007).
Vários trabalhos (FOSTER; FEDKIW, 2001; HOUSTON; BOND; WIEBE, 2003; RAS-
MUSSEN et al., 2004; ROBLE; ZAFAR; FALT, 2005; BATTY; BERTAILS; BRIDSON,
2007) tentar minimizar esses artefatos em grids regulares utilizando informações adi-
cionais como as normais dos objetos, porém eles não são capazes de produzir resultados
fisicamente corretos.

Grids não regulares consistem em malhas que contornam precisamente as geometrias
dos objetos (KIM; CHOI, 2000; FELDMAN; O’BRIEN; KLINGNER, 2005; KLINGNER

67

(a) (b) (c)

Figura B.1: Técnicas de discretização do espaço: (a) grid regular; (b) grid irregular não
estruturado; and (c) grid irregular estruturado.

et al., 2006; TILCH et al., 2008). Essa é uma abordagem comum na DFC, devido a sua
precisão. Os grids não regulares podem ser classificados em não-estruturados e estrutu-
rados. Os grids não-estruturados discretizam o domínio utilizando triângulos (2-D) ou
tetraedros (3-D) (Figura B.1b). Esse método foi introduzido na computação gráfica por
Feldman et al. (FELDMAN; O’BRIEN; KLINGNER, 2005) e foi amplamente utilizado e
estendido ao longo dos anos (FELDMAN et al., 2005; KLINGNER et al., 2006; CHEN-
TANEZ et al., 2007).

A grande vantagem dos grids não estruturados é que a geração da malha é automática
e capaz de gerar malhas para geometrias complexas, com ângulos agudos e concavidades.
Como esses grids não têm uma estrutura definida, os algoritmos de solução de sistemas
lineares devem ser mais sofisticados e robustos, tornando o método ineficiente em com-
paração com grids estruturados.

Grids estruturados não-regulares, também conhecidos como grids curvilíneos, são
baseados em subdivisões regulares de um espaço Euclidiano que adaptam-se às geome-
trias dos objetos, preenchendo o domínio sem deixar fendas (Figura B.1c). A sua estrutura
regular faz com que o custo seja muito similar ao custo de simulação dos grids regulares
tradicionais.

Nós exploramos as propriedades desejáveis dos grids curvilíneos para criar uma abor-
dagem eficiente para simular fluidos. Para isso, nós desenvolvemos uma nova técnica de
projeção que funciona em grids descentralizados Cartesianos. Nossa abordagem também
utiliza-se de uma transformação de domínio para o passo da advecção. Para dar suporte a
cenas dinâmicas, a sobreposição de grids que representam os objetos e o grid que repre-
senta o domínio é utilizada. Essa abordagem simplifica ainda mais o processo de geração
automática de grids estruturados, já que apenas uma pequena faixa de células ao redor
dos objetos é necessária.

B.2 Navier-Stokes em Grids Curvilíneos

A forma diferencial, invíscida e incompressível das equações de Navier-Stokes é es-
crita como

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~f (B.1)

e
∇ · ~u = 0, (B.2)

68

onde ~u e p são os campos de velocidade e pressão, respectivamente, ρ é a densidade
do fluido, e ~f representa as forças de corpo que atuam no fluido. As Equações (B.1) e
(B.2) são conhecidas como as equações de conservação de momentum e conservação de
massa. A forma tradicional de resolver ambas as equações (B.1) e (B.2) é através do
método da projeção (CHORIN, 1968), no qual consiste em três fases: (i) advecção, (ii)
resolução da pressão, e (iii) projeção da velocidade. Stam [1999] introduziu esse método
a computação gráfica, e apresenta uma descrição completa do algoritmo.

B.2.1 Advecção Semi-Lagrangiana em grids Curvilíneos

Nessa tese, estendemos a abordagem de Karpik et al. (KARPIK; CROCKETT, 1997)
para atualizar dinamicamente o campo de velocidades utilizando uma técnica de transfor-
mação de domínio. Essa técnica baseia-se em transformar o grid não-regular (domínio
físico) para um grid canônico regular (domínio computacional). Com isso, a avaliação
do algoritmo Semi-Lagrangiano é feita no grid canônico utilizando-se a formulação tradi-
cional. A equação que expressa a transformação de velocidades do domínio físico para o
domínio computacional é dada por

~uξητ = T−1
cp ~uijk, (B.3)

onde ~uijk é a velocidade no domínio físico, ~uξητ é a velocidade no domínio computacional.
A matriz de transformação T−1

cp é x
y
z

 =

 g
(1)
x g

(2)
x g

(3)
x

g
(1)
y g

(2)
y g

(3)
y

g
(1)
z g

(2)
z g

(3)
z


 u1

u2

u3

 , (B.4)

sendo que g(i)
x ,g

(i)
y ,g

(i)
z são os elementos das bases contravariantes do grid. O Algoritmo 4

sumariza a técnica de advecção em grids curvilíneos.

Algorithm 4 Algoritmo Semi-Lagrangiano para Grids Curvilíneos
/* Velocidades Cartesianas (eixos ijk) armazenadas nos centros das faces do grid */
para todas as células do grid no domínio físico faça

/* Interpolar os componentes não conhecidos da velocidade no centro da face*/
ũijk ← interpolaVelocidade(~unijk, x)
/* Transformar a velocidade para o domínio computacional (eixos ξητ) utilizando Eq. B.3*/
ũξητ ← transformarParaDominioComputacional(ũijk)
/* Calcular a posição xp no passo de tempo anterior */
xξητ ← encontrarPosiçãoAnterior (x, ũξητ ,∆t)
/* Estimar o campo de velocidades u∗(n+1)

ijk na posição anterior*/

u
∗(n+1)
ijk (x)← interpolaVelocidade(~unijk, xξητ)

fim para

B.2.2 Resolução da pressão em grids Curvilíneos

Na computação gráfica, a forma tradicional de representar a conservação de massa
para fluidos incompressíveis é garantindo que o divergente do campo de velocidades seja
igual a zero (Eq. (B.2)). No entanto, a sua forma integral∫

V

∇ · ~u dV =

∫
S

~u · ~n dS = 0, (B.5)

69

é mais conveniente para nossa solução, já que simplifica a representação dos operadores
de divergente e gradiente em sistemas de coordenadas genéricos. Na Eq. (3.12), V e
S denotam o volume e a área das células que estão sendo avaliadas, respectivamente.
Usando o método da projeção para acoplar a conservação de momentum (Eq. (B.1)) e
massa (Eq. (B.5)), tem-se∫

S

~u(n+1) · ~n dS =

∫
S

~u∗(n+1) · ~n dS −∆t

∫
S

∂p(n+1)

∂~n
dS = 0, (B.6)

onde ~n representa as normais unitárias das faces avaliadas. Por fim, o campo de pressões
que garante a conservação de massa é obtido por∫

S

∂p(n+1)

∂~n
dS =

∫
S
~u∗(n+1) · ~n dS

∆t
. (B.7)

B.2.3 Projeção da Velocidade em grids Curvilíneos

Substituindo-se o o campo de pressões obtido com a solução de Eq. (B.7) em Eq. (B.6),
obtemos os fluxos que satisfazem a conservação de massa em cada célula. Como armazen-
amos apenas as componentes Cartesianas das velocidades nos centros de cada face, pre-
cisamos transformar os fluxos projetados para atualizar os componentes de velocidade.
Shyy and Vu (SHYY; VU, 1991) recuperam os componentes de velocidade através de
um algoritmo iterativo baseado no método de D’Yakunov (CONCUS; GOLUB, 1972).
Apesar desse método ser preciso, ele é ineficiente, sofrendo restrições para grids com um
número grande de células.

Portanto, nós criamos um método novo para projetar as velocidades em grids descen-
tralizados Cartesianos. Nossa solução é mais rápida, simples e mais fácil de implementar
que o método de D’Yakunov. O método proposto consiste em corrigir as velocidades
não projetadas avaliando as derivadas das pressões em todas as direções Cartesianas.
Usando a regra da cadeia, podemos escrever

~ux = ~u∗x −∆t
∂p

∂x
= ~u∗x −∆t(

∂p

∂ξ

∂ξ

∂x
+
∂p̃

∂η

∂η

∂x
+
∂p̃

∂τ

∂τ

∂x
)i,

~uy = ~u∗y −∆t
∂p

∂y
= ~u∗y −∆t(

∂p

∂η

∂η

∂y
+
∂p̃

∂ξ

∂ξ

∂y
+
∂p̃

∂τ

∂τ

∂y
)j,

~uz = ~u∗z −∆t
∂p

∂z
= ~u∗z −∆t(

∂p

∂τ

∂τ

∂z
+
∂p̃

∂ξ

∂ξ

∂z
+
∂p̃

∂η

∂η

∂z
)k,

(B.8)

onde (ξ, η, τ) são as linhas do grid no domínio físico. A versão 2-D dessas equações ape-
nas omite o terceiro termo (τ) dentro dos parênteses. A Figura B.2 mostra a atualização
de cada componente Cartesiana para uma célula no grid curvilíneo.

B.3 Decomposição de domínios

Para suportar de maneira eficiente cenas com múltiplos objetos, nós decompomos
o domínio de simulação utilizando a técnica de grids sobrepostos (BRANDT, 1977;
CHESSHIRE; HENSHAW, 1990). Cada objeto é representado separadamente por um
grid curvilíneo que discretiza-o precisamente. Esses grids são sobrepostos em um grid
regular de fundo, que delimita o domínio de simulação. A Figura B.3 ilustra conceitual-
mente a técnica de decomposição de domínios.

70

(a) Derivada da pressão ∂p
∂ξ (b) Derivada da pressão ∂p

∂η

Figura B.2: Atualizando o componente x da velocidade Cartesiana na face l. (a) As
derivadas das pressões são avaliadas com os valores da pressão no centro das células que
compartilham a face l (pontos vermelhos). (b) As derivadas das pressões são avaliadas
com os valores da pressão armazenados no centro das células adjacentes (pontos azuis).

Figura B.3: Configuração da técnica de grids sobrepostos. Um grid regular discretiza o
domínio de simulação e cada objeto é representado por um grid curvilíneo.

Inicialmente, a advecção é realizada no grid de fundo; as velocidades intermediárias
obtidas são interpoladas nas bordas dos grids curvilíneos. O passo de advecção é realizado
nos grids curvilíneos; o resultado é interpolado de volta para o grid regular de fundo. O
passo de resolução da pressão é similar, porém empregamos um algoritmo de multigrid
para resolução do sistema linear. O passo da projeção é feito separadamente para todos
os grids.

B.4 Resultados

A Figura B.4 (esquerda) mostra uma simulação 2-D em um canal com múltiplos ob-
stáculos. Esse exemplo ilustra a qualidade dos nossos resultados e a flexibilidade da téc-
nica de discretizar domínios compostos. A Figura B.4 (direita) mostra uma simulação 3-D
de fumaça em um túnel de vento, para inspeção visual das propriedades aerodinâmicas de

71

um carro.
A Figura B.5 demonstra a capacidade da nossa abordagem de representar as condições

de contorno de forma correta. Nesse exemplo, comparamos os resultados obtidos com os
grids regulares (direita) e grids curvilíneos (direita) para uma seção transversal de uma
asa. Note que no primeiro caso, as condições de contorno estão incorretas, gerando uma
região de alta turbulência na parte posterior da asa. Nos nossos resultados, a fumaça
apresenta um comportamento bem definido, sem turbulências aparentes.

Figura B.4: Exemplos de simulação de fumaça produzidos com a nossa técnica . (es-
querda) Simulação 2-D em um canal com múltiplos obstáculos. (direita) Simulação 3-D
de um um túnel de vento visualizar as propriedades aerodinâmicas de um carro.

Figura B.5: Simulação de um escoamento utilizando uma seção transversal de uma asa:
grid regular (esquerda); grid curvilíneo (direita).

