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Abstract

Robust automated vortex detection algorithms are needed to facilitate the exploration of large-scale turbulent fluid
flow simulations. Unfortunately, robust non-local vortex detection algorithms are computationally intractable for
such large data sets and local algorithms, while computationally tractable, lack robustness. We argue that the
deficiencies inherent to the local definitions occur because of two fundamental issues: the lack of a rigorous
definition of a vortex and the fact that a vortex is an intrinsically non-local phenomenon. As a first step toward
addressing this problem, we demonstrate the use of machine learning techniques to enhance the robustness of local
vortex detection algorithms. We motivate the presence of an expert-in-the-loop using empirical results based on
machine learning techniques. We employ adaptive boosting (AdaBoost) to combine a suite of widely-used, local
vortex detection algorithms, which we term weak classifiers, into a robust compound classifier. Fundamentally,
the training phase of the algorithm, in which an expert manually labels small, spatially contiguous regions of
the data, incorporates non-local information into the resulting compound classifier. We demonstrate the efficacy
of our approach by applying the compound classifier to two computational fluid dynamics data sets. Our results
demonstrate that the compound classifier has a reduced misclassification rate relative to the component classifiers.

Categories and Subject Descriptors (according to ACM CCS): 1.2.6 [Artificial intelligence]: Learning—Parameter

learning; 1.4.6 [Artificial intelligence]: Segmentation—Edge and feature detection

1. Introduction

As computer power continues to increase, the complexity
of simulations, both in terms of the physics modeled and
the simulation size, also increases. Future exascale com-
puting systems will generate increasingly larger simulation
datasets [Rep09]. Even now, data is being produced at a rate
that far exceeds the ability of application scientists to ana-
lyze it. What is lacking are the tools needed to facilitate data
analysis and visualization of the resulting massive quantities
of data.

One potential toolset, feature detection, is already an im-
portant strategy for domain experts who deal with terascale
and petascale data. Fundamentally, feature detection oper-
ates as a data compression technique by reducing the amount
of data that needs to be analyzed to a set of feature descrip-
tors or a feature catalog. There are two distinct paradigms
that can be employed to identify a feature [TMJ*02]: local
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and global (non-local). The local approach, or point clas-
sification, operates on a small neighborhood of the data and
performs a binary classification as to whether a discrete point
belongs to a feature (e.g., shocks in flow data). The collec-
tion of identified data points can then be aggregated to form
the feature. In contrast, a global approach identifies a feature
by an aggregate classification strategy and requires informa-
tion from nonlocal regions of the dataset (e.g., streamlines in
flow data). For certain feature types, the global approach can
be more discriminating; however, this increased discrimina-
tion comes with an increased cost and, for exascale data, the
resulting cost may be prohibitive. To reiterate, local, field-
type methods are appropriate for use with exascale data be-
cause only local data is needed thus resulting in superior per-
formance and a lower memory footprint.

We conceptualize the underlying problem in feature de-
tection as a lack of robustness and attempt to address it via
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the application of machine learning methodologies. Our hy-
pothesis is that the performance of these local methods can
be improved via the inclusion of domain expertise, i.e., an
expert-in-the-loop. Our goal is to to produce a robust fea-
ture detection strategy by judiciously combining a selection
of local feature detection algorithms into a single compound
classifier using the method of adaptive boosting (AdaBoost)
[FS97]. The resulting compound classifier remains a local
field-type classifier, thereby making it appropriate for exas-
cale data applications. Ideally, it combines the best of all lo-
cal classifiers and converges asymptotically to the ideal clas-
sifier. The key aspect of our method is the use of an expert-
in-the-loop to capture ground truth; an endeavor easier said
than accomplished. Our approach is to exploit domain ex-
pertise to create training data for the boosting algorithm.

Methods from machine learning have not been widely
adopted by the visualization community and it is our hy-
pothesis that their utilization will suggest new directions of
research in feature detection. Our paper is structured as fol-
lows. We first describe (Section 2) methods of vortex detec-
tion that rely on the underlying physics. We also describe
how vortices are detected manually and explain the difficul-
ties that beset automatic detection. In Section 3, we make
a case for expert-in-the-loop and argue for the creation of
a compound classifier and describe the AdaBoost algorithm
adapted to detecting vortical features. Section 4 discuss re-
sults of detecting vortices in a specific data set (the tapered
cylinder flow). We compare the performance of the com-
pound classifier against that of other classifiers and show that
it performs as well as the best realizable support vector ma-
chine, while being more computationally attractive. Finally,
in Section 5 we provide closing summary and point to the
future.

2. Vortices in Fluid Flow: Physics-Based Feature
Detection

In many fluid dynamics applications, vortices are the fea-
tures of interest. This is particularly true for computational
fluid dynamics (CFD) simulations of turbulent flow, which
produce copious quantities of data [WMO09]. Unfortunately,
there is no consensus on a formal, rigorous definition of
vortex [CBAOS5, SBV*11]. In fact, as noted by Cucitore et
al. [CQBY9], the simpler techniques are based on quantities
that are “intuitively related to a vortical motion.” One highly
intuitive description of a vortex is based on the notion of
swirling fluid motion. Robinson [Rob91] describes a vortex
in terms of its instantaneous streamlines as:

A vortex exists when instantaneous streamlines
mapped onto a plane normal to the vortex core
exhibit a roughly circular or spiral pattern, when
viewed form a reference frame moving with the
center of the vortex.

However appealing this description may be, it is self referen-
tial. That is, to find a vortex, you must first know where it is

located, how it is oriented, and how fast and what direction
it is moving. Nevertheless, this definition does illustrate the
inherently global nature of a vortex.

In spite of the lack of a formal definition, numerous vor-
tex detection algorithms, both local and global in nature,
have been proposed in the literature. Each of the various
algorithms has an associated implicit vortex definition that
forms the basis for the algorithm. Global methods are gen-
erally based on some notion of coherence of particle trajec-
tories. Local algorithms are typically based on some mea-
sure, either direct or indirect, of local rotation in the fluid. In
practice, local algorithms typically require thresholding of
some sort to produce useful results [DD00, KM98, CBAOS].
False positives, in which the presence of a vortex is indi-
cated where none exists, are fairly common [HK99,JMTO02b,
CBAOS5, Kol07], as well as situations in which different de-
tectors fail to agree on the region that constitutes given vor-
tex [CBAOS].

2.1. Manual Vortex Detection

We now describe a process, illustrated in Figure 1, by which
an expert can manually extract a vortex. This inherently
global approach is based on the definition of a vortex given
by Robinson [Rob91], i.e., we look for coherence exhib-
ited by closed or spiraling streamlines in a reference frame
moving with the vortex. Given a candidate region that con-
tains a vortex, the expert iteratively adjusts seed locations
for streamlines and the translational velocity of the reference
frame to generate streamlines that exhibit coherence.

The first step is to isolate a region or block of the flow
field in which a vortex can be easily located. In the example
shown here, we employ an isosurface of A, to identify a re-
gion of the domain containing a vortex. The next step is to
introduce a seed line and iteratively adjust its position while,
at the same time, imposing a uniform translational velocity
until a set of closed or spiraling streamlines are obtained.
It should be noted that, since a vortex may have a variable
translational velocity along its axis. Therefore, a single ve-
locity may not accurately capture the motion of the selected
region. Here, we limit the length of the selected region par-
allel to the vortex axis in order to ensure the appropriateness
of the assumption of a uniform translation velocity. In prac-
tice, this is how the vast majority of interactive visualization
is done. The expert adjusts threshold values to produce an
isosurface that “looks reasonable” or places seed points to
produce streamlines that pass through a region in which a
vortex is expected to reside.

Because our point-picking interface is restricted to se-
lecting points in a plane, we employ a simple geometric
primitive to select three-dimensional regions. We project the
three-dimensional points onto the view plane of the screen
and mark those points that are contained within an elliptical
region inscribed in a rectangle. For this approach to be ef-
fective, the axis of the vortex must be more-or-less aligned
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Figure 1: Schematic of expert-user process for extracting vortices using streamlines in reference frame moving with the vortex.
The key is the selection of the seed line orientation and the reference frame velocity. Unfortunately, this approach requires
significant user input and is not appropriate in an automated context.

with the view plane normal. This places a restriction on the
length of the vortex can be used as training data. The next
step is to mark the points that are contained with the vortex
region using selection tool with binary flag (0 — no, 1 — yes).
We also have the capability to change the view and select or
de-select individual nodes for fine tuning of the labels.

2.2. Automated Vortex Detection

Due to difficulties associated with the selection of appropri-
ate seed points and a translational velocity, the streamline
tracing described above is not useful in an automated vor-
tex detection context. Several other global techniques have
been reported in the literature. Cucitore e al. [CQB99] de-
scribed a Galilean-invariant method based on the observa-
tion that two particles inside a vortical structure maintain
the same relative separation even as they follow different tra-
jectories. More recently, several researchers have exploited
finite-time Lyapunov exponents (FTLE) [HalO1] to charac-
terize Lagrangian coherent structures, again relying on the
notion of coherence to define a flow structure. Examples in-
clude the work of Garth et al. [GGT07], who employ di-
rect volume rendering to visualize the field, and Sadlo and
Peikert [SPO7], who utilize hierarchical mesh refinement to
more efficiently compute ridges in the FTLE field. Among
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the most sophisticated vortex detection algorithms is the one
described by Haller [HalO5] that provides an objective defi-
nition of a vortex based on the stability of fluid trajectories in
unsteady, incompressible flows based on the M criterion. In
this context, objective means that the definition is indepen-
dent of the reference frame, which can be rotating, e.g., such
as turbomachinery applications. However, as noted earlier,
these global techniques are computationally expensive and
not a viable approach for routine use with large data.

Local techniques based on a identifying a local mini-
mum in pressure [BS94] or a local maximum in vortic-
ity [SKA99] along with techniques based on normalized he-
licity [LDS90], which is a measure of the alignment of the
vorticity and velocity vectors, have been used with only lim-
ited success. Topology-based methods [BT93, SH95, RP98,
PR99, IMT02a, RSVP02, WSTHO7] seek to exploit the fact
that there is a critical point in the velocity field at the vortex
core in the plane containing the swirling motion. By their
very nature, these local methods provide a description of
a vortex in terms of its core line or core region [JMTO02a].
However, the utility of these critical-point-based techniques
is somewhat limited since they are also not Galilean invari-
ant.

An important class of vortex detection methods is based
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on the velocity gradient tensor J. It should be noted that sev-
eral of the topology-based methods could also be classified
in this manner; however, they also depend on the velocity
field and are not Galilean invariant while methods that de-
pend solely on the velocity gradient tensor are. In the dis-
cussion that follows, we make reference to the rate of strain
tensor S and the rate of rotation tensor Q, which are defined
in terms of the velocity gradient tensor as:

T
I+ - J-Jr
2 2

In some cases, e.g. two-dimensional steady flow, several of
these methods reduce to the same approach. This is not the
case, however, in more complex three-dimensional flows.
Unfortunately, as reported in the literature [HK99, CQB99,
DDO00, JIMT02b, CBAO5], none of these vortex detection
schemes is foolproof.

S

The Q-criterion [HWMS88] is based on the observation

2 2 .
that, in regions where Q = M > 0, rotation exceeds

strain and, in conjunction with a pressure minimum, indi-
cates the presence of a vortex. The A-criterion [CPC90] as-
sumes that a vortex occurs in a region in which the eigen-
values of J include a complex conjugate pair. Here A =
(%)3 + (442)2 > 0, where R = 79”9-”2”’-’5-”, indicates the
presence of complex eigenvalues. However, relatively large
regions of the flow can satisfy this criterion. As noted by
Chakraborty et al. [CBAOS], the Q > 0 criterion is more
restrictive than A > 0. A related approach developed by
Zhou et al. [ZABK99] utilized the imaginary part of the
complex conjugate pair of eigenvalues when A > 0 to es-
timate the “swirling strength” of the vortex.

The A,-method [JH95] defines a vortex to be a connected
region in which A; < 0, where 1| < A, < A3 are the eigen-
values of $2 4+ Q2. The key relationship is this approach, i.e.,
the equality of the Hessian of the pressure and the quantity
$% + Q2 is derived from the incompressible Navier-Stokes
equations under the assumption that the unsteady straining
is negligible. Although rigorously derived, the A,-method
is based on the assumption that a vortex is located in a re-
gion in which a rotation-induced pressure minimum occurs.
Cucitore et al. [CQB99] demonstrate that the A>-method is
strongly related to the Q-criterion because it can be recast
in terms of local straining and rotation. They also provide a
derivation of the Hessian of the pressure that is appropriate
for compressible flows.

Practical implementations of these methods typically in-
clude some type of thresholding [KM98]. Both Dubief and
Delcayre [DDO00] and Chakraborty et al. [CBAO5] consider
the problem of determining the thresholds for the different
methods. Chakraborty et al. provide guidelines for determin-
ing equivalent thresholds based on dimensional consistency
of the various terms appearing in expressions A, Q, and A,.
However, they do not address the issue of what constitutes
an effective threshold.

Another related vortex identification algorithm has been
proposed by Graftieaux et al. [GMGO1]. Let P be a fixed
point in the measurement domain. A dimensionless scalar
function I'; at P is defined as

1 (PM AUy)-z
S Jues |[PM]]- | Un||

where S is a two-dimensional plane containing P, M lies in
the plane S and z is the unit-vector normal to the measure-
ment plane. Further, 6); represents the angle between the
velocity vector Uy, and the radius vector PM. It can be then
shown that |I"; |is unity at the location of vortex center. Also
proposed is a way to determine the vortex boundary through
the use of another measure, I';, which is essentially a locally
computed function depending only on Q and 4.

_ L [PMA(Uy—T0p)] -z

S Jues [|PM]|- U — Up|
where Up = (1/S) [¢UdS. Further, the region with |Q/u| >
1 is identified as the vortical region where Q is the rotation
rate corresponding to the anti-symmetric part of the velocity

gradient tensor J at point P and U is the eigenvalue of the
symmetrical part of this tensor.

T (P) ds = é / sin(6h)dS
S

L (P)

2.3. The Case for the Expert-in-the-Loop

As discussed above, local vortex detection techniques are
needed for application to exascale data. However, in the con-
text of an automated vortex detection framework, the fun-
damental limitations associated with these techniques nega-
tively impact their robustness. We now make two assertions
regarding their lack of robustness:

o The ambiguities discussed above occur because the local
detectors cannot capture the inherently global nature of a
vortex [CQB99].

e In most cases, the false positives are manifestations of
the fact that the underlying vortex definitions for the local
detectors represent necessary rather than sufficient condi-
tions for the existence of a vortex. The existence of false
negatives can be attributed to improper threshold selec-
tion.

This set of circumstances presents a conundrum for vor-
tex detection in exascale data — global techniques are pro-
hibitively expensive and local techniques are unreliable.

One approach that has been employed in an attempt to
mitigate this problem is to use combinations of local detec-
tion methods [BS95, TGK*04, SRE05, BMI*07] to exploit
the favorable characteristics of each technique. For exam-
ple, Burger et al. [BMI*07] express local binary feature de-
tectors as fuzzy-sets that can be combined using linking and
brushing in an interactive visual framework. Although the
underlying strategy of this class of approaches is to combine
the results of different detection algorithms, they do not rely
on a rigorous framework that produces a systematic combi-
nation of these local classifiers.
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The motivation for our work stems from the conviction
that machine learning methods provide such a framework.
Machine learning uses an expert-in-the-loop to produce a
global vortex detector by augmenting the information pro-
vided by the local feature detectors. The underlying hypoth-
esis is that an expert in fluid dynamics can—by labeling a
limited subset of the data (as vortex or not-a-vortex)—help
produce a reliable vortex detector. In our model, the expert-
in-the-loop enhances the robustness that is lacking in the
local vortex definitions by providing non-local information.
The ability of the machine learning method to predict vor-
tices in new regions crucially depends on both expert infor-
mation and local feature detectors. The global vortex feature
detector obtained via this process is also likely to be more
robust than merely reliance on local detectors. To include an
expert-in-the-loop, we need to define a set of expert labels
as training data as illustrated in Figure 1. The resulting la-
bel set is then used as ground truth for the machine learning
algorithm.

We have repeatedly emphasized the expected improved
robustnesses of the compound feature detector produced
by our approach. In an attempt to characterize robustness,
we have elected to study the Type 1 and Type 2 errors of
the local, physics-based feature detectors and the machine
learning-driven global feature detector. Using an expert to la-
bel regions in addition to those provided for training allows
us to evaluate the performance of the compound classifier.
As we shall show, the compound feature detector exhibits
improved performance in terms of a lower error rate with
a smaller number of false positives for an approximately
equivalent number of true positives on two datasets. Further-
more, it also illustrates the ability of the machine learning-
driven method to generalize based on expert labels—another
important feature of a robust feature detector.

3. Machine Learning for Vortex Detection

Before embarking on machine learning approaches to con-
struct a compound or integrated feature detector, it is instruc-
tive to examine the scatter plot of the individual feature de-
tectors with expert-in-the-loop labels added in order to get
a clear picture of the intrinsic discrimination or classifica-
tion problems ahead of us. A visualization of the intrinsic
patterns of the data is of great help in this setting because
the added expert labels clearly depict which subsets of pat-
terns are difficult to separate. Since there are four individual
feature detectors and additional measures (pressure, density,
velocity, energy and cell edge), we resort to linear and non-
linear dimensionality reduction methods to display the data
in a lower dimensional space.

3.1. Nonlinear Dimensionality Reduction - Making a
Case for Combining Weak Clasifers

Principal component analysis (PCA) is the leading approach
to global and linear dimensionality reduction. We add lin-
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ear discriminant analysis (LDA) and multidimensional scal-
ing (MDS) [TdLOO] as well since they are widely used. In
contrast to PCA and LDA are the nonlinear dimensional-
ity reduction methods using manifold learning. The most
popular manifold learning methods are local linear embed-
ding (LLE) [SR00], ISOMAP [TdLO0O] and Laplacian Eigen-
maps [BNO3]. All three methods get going by first construct-
ing a graph of nearest neighbors in feature space. Regardless
of whether we only use the four physics-based feature detec-
tors or augment them with measures such as energy, velocity
etc., the approach remains the same. The methods construct
a nearest neighbor graph using Euclidean distances between
the feature vectors and then determine lower dimensional
coordinates which are consistent with the nearest neighbor
distances. Since the methods produce very different visual-
izations (as seen in Figure 2), a few comments on the need
to use all methods is in order.

Dimensionality reduction, in our context, is being used to
visualize the feature scatter plot. Over-reliance on a single
dimensionality reduction method may lull us into compla-
cency w.r.t. the discriminative ability of the feature set. How-
ever, if the lower dimensional scatter plots obtained from
different methods provide a similar perspective, we would
be somewhat justified in reaching a conclusion on the limi-
tations of the features. On the other hand given the lack of
a clear discriminating boundary between the true positives
and negatives in any of the plots, one is lead to believe that a
competent vortex detector can only be found through a care-
ful and larger choice of new features.

We executed all six dimensionality reduction methods
twice. First we used only the four physical feature detectors
and next we added a five-dimensional measurement vector
(three momentum components energy, and minimum edge
length of a cell). The main reason for this seeming dupli-
cation is to check the overlay of the mesh points (vortex
and non-vortex) with and without augmentation of other
measures. These measures indicate the physical state and
also provide a measure of the sample density pertaining to
the sampling (edge length). From Figure 2, the overall pic-
ture emerging from dimensionality reduction is quite clear
and pinpoints the intrinsic difficulties faced by any method
(physics, machine learning or otherwise). While there is sep-
aration between a reasonable fraction of vortex and non-
vortex nodes, there are dominant clusters where the two sets
appear overlaid. This is highly suggestive that we have not
yet discovered robust features capable of systematically sep-
arating vortices from non-vortices. Despite the fact that the
expert-in-the-loop (presumably) has little difficulty labeling
nodes as belonging to either of the two categories, the avail-
able feature detectors clearly fall somewhat short. Since we
cannot reverse engineer (at the present time) the processes
in the expert’s brain, this work clearly shows that there is
room for more, different (and discriminative) features in
this domain. A difference in performance between physics-
based features and the expert indicates room for improve-
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Figure 2: Dimensionality reduction on four and nine fea-
tures (including four physical feature detectors A,, Q, I'; and
A. Blue marks correct identification of a vortex by all four
classifiers, while red marks false identification by any one
of them. There is no clear demarcation between these two
classes.

ment. If we cannot directly translate what the expert is doing
into new physics-based features, there is room for machine
learning to help improve the correlations between expert la-
bels and the underlying physics. This work therefore shows
that an integration of the different features (using supervised
learning) should be beneficial since the added expert-in-the-
loop information helps us construct a compound feature de-
tector that outperforms the individual physics-based feature
detectors. Note that the benefit of the expert information
when applied separately to each feature detector is rather low
(since there’s just a single threshold to be tuned) whereas an
integrated feature detector is likely to benefit more due to
our ability to tune the weighted combination. Consequently,
while the holy grail of the best feature remains in our future,
leveraging expert-physics correlations to produce an inte-
grated feature detector is likely to reap immediate dividends.

It should also be noted that the manual approach outlined in
Section 2.1 is not appropriate for very large-scale data sets.

3.2. Vortex Classification via Machine Learning

A compound classifier as a composite detector: Once we
possess a set of expert-in-the-loop labeled data with a subset
of mesh points classified as either vortex or non-vortex, ma-
chine learning methods can be pressed into service. Instead
of the previously existing situation of competing physics-
based feature detectors (Q, Az, A and I'), we can now con-
template their integration into a composite feature detector
which has the potential to retain all of the advantages of
the individual detectors. This is the principal advantage of
using machine learning methods in general since they af-
ford the possibility of combining expert- and physics-based
information to create a composite feature detector. From a
larger perspective, our focus on boosting strategies in this
work should be seen as a successful deployment of one ma-
chine learning approach. The potential for a larger machine
learning study in this domain still remains.

We use a boosting framework—widely used in recent
years in machine learning applications—as it combines ef-
ficient scaling with adaptive tuning of feature weights and
parameters. These aspects are expected to become more im-
portant as we scale to larger datasets and more physics-
based feature detectors. The physics-based detectors are
now considered to be weak classifiers in our boosting frame-
work. Boosting leads to an integration which is facilitated
by the additional information provided by the expert-in-the-
loop who serves as a calibration target for the compound
classifier. Furthermore, the expert labels provided allow for
the composite feature detector (and each individual fea-
ture detector) to be evaluated in terms of their statistical
performance—actual vortices detected (true positives) and
non-vortex mesh points accurately labeled (true negatives).
Without expert-in-the-loop labels, not only is there no infor-
mation available to construct a composite feature detector
(compound classifier), there is also no information regard-
ing the generalization performance of the feature detectors
(individual or composite).

A generalized composite detector: The ability of the
composite feature detector to generalize well from a given
set of expert-in-the-loop labeled data is one of the corner-
stones of a successful machine learning approach. That is,
we seek a composite feature detector which leverages the
correlations between expert labels and physics-based fea-
ture detectors to obtain improved performance on unseen
data. In the worst case, the integrated classifier merely re-
gurgitates the training set labels while performing no better
than chance on an unseen test set. This is the well known
phenomenon of overfitting—the situation in which the many
parameters of the integrated classifier have been too finely
tuned to the expert-in-the-loop labels without really com-
ing to grips with the regularities of the individual feature
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detectors. At the other end of the spectrum, we expect the
compound classifier to outperform the individual feature de-
tectors. Based on these considerations, we require the com-
posite feature detector to use the expert-in-the-loop labels
to provide adequate performance (in terms of true positives
and true negatives) especially when compared to the indi-
vidual feature detectors. The overall statistical performance
can be summarized using standard sensitivity and specificity
measures (which codify the rates at which true vortices are
detected and non-vortices labeled as such).

Boosting vs. SVM: Machine learning methods are simi-
lar to standard regression based learning approaches in that
we seek a weighted combination of feature detectors (w’ f
where w is a weight vector and f the vectorized set of feature
detectors) which maximizes performance relative to a fixed
(training set) target. In a classification task, the targets are
binary labels (vortex or non-vortex) and for this reason, ma-
chine learning methods typically eschew minimizing the ¢,
norm of the error (the mismatch between the predicted and
true labels). Once the optimum function has been learned
based on the training set, it is put to task to predict the labels
of the incoming data. Regardless of whether boosting or sup-
port vector machines (SVMs)—to pick two recent popular
methodologies—are used, training is accomplished by min-
imizing a suitable convex objective function. The objective
function itself is chosen from foundational principles. For
example, the SVM attempts to maximize the margin (the
shortest distance in feature space) between the two classes
whereas logistic regression replaces the £, norm (f — w’ f)?
(where ¢ is the expert-in-the-loop label) of standard regres-
sion with an objective tailored to binary labels. Boosting
methods use a different objective function geared toward
adaptation to incoming features using tuned thresholds that
maximize performance.

When we seek to build a compound classifier using ma-
chine learning, the plethora of available methods can be be-
wildering. From our perspective (which takes scalability into
account), boosting methods (such as AdaBoost [FS97]) af-
ford the best tradeoff between simplicity and performance.
While support vector machines have and continue to be
highly successful, they do not scale as well as boosting meth-
ods. The SVM is a maximum margin classifier which uses
convex quadratic programming to determine the optimum
composite feature detector. Given the large mesh sizes in the
simulation data, an approach (like the SVM) which scales
quadratically in terms of training set sample size is usually
not preferred. While more efficient primal domain SVM op-
timization algorithms are now available, they are difficult
to implement and have not yet seen wide deployment. In
contrast, AdaBoost which also minimizes a convex objec-
tive function is much more efficient in this setting, is easy to
implement and has seen wide deployment.
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3.3. AdaBoost — Creating a Compound Classifier

In this section, we describe the AdaBoost algorithm which
results in a compound classifier. In this framework, each of
the physics-based feature detectors (Q, A, A and I') are re-
conceptualized as weak binary classifiers. The term “weak”
denotes the inability of the physics-based feature detectors
(which work point-wise) to benefit from incorporating in-
formation from a large subset of the data. The performance
of the compound classifier on unseen data is expected to
exceed or match at least any of the point-wise weak clas-
sifiers. AdaBoost [FS97], short for adaptive boosting, is a
meta-algorithm that can be used in conjunction with other
machine learning algorithms to improve their performance.

As illustrated in Algorithm 1, AdaBoost repeatedly uses
different classifiers in an iteration sequence r = 1,...,7T. At
each time step, a distribution of weights w; is updated that
essentially indicates the importance of chosen examples in
the data towards the classification of a specific feature. In
each iteration, the weights for each incorrectly classified ex-
ample are increased (or alternatively, the weights for each
correctly classified example are decreased), so that the new
classifier focuses more on those examples. AdaBoost forms
a conglomerate hypothesis (H;), by adding up the learners
trained in each step. In the z-th iteration, it reevaluates the
penalty on the data samples according to the extent to which
they are "wrongly" classified by the aggregated hypothesis
H,_ so far. The new hypothesis is selected to have a better
accuracy on the "wrongly classified" samples.

The algorithm receives pairs of data samples and labels
as inputs: (x1,y1),..., (xn,yn) Where y; = £1 is the label of
data. In our experiments, the feature vectors {x;} are en-
coded in R?*, of which the dimensions are 0,27,A,7 re-
spectively. The version of AdaBoost used in this work ag-
gregates weak learners by minimizing an exponential loss
penalty function. Other versions of AdaBoost use logistic
or L, regression and we plan to examine the (minor) differ-
ences between these method in future work. Each physics-
based feature detector is turned into a weak classifier via
a one-level decision tree (also called decision stump) since
more sophisticated decision trees don’t offer significant ad-
vantages. In the #-th iteration, a physics-based feature detec-
tor i(k) € {1,2,3,4} is randomly chosen, based on which the
weak learner /; is expressed as

hy(x) = Isign(x'®) — by)

where b; is the threshold value of the decision stump. The
parameter /; = %1 controls the sign of the weak learner /4.

3.4. Benefits and Challenges

The paucity of individual feature detectors combined by
AdaBoost into an integrated composite is a concern at the
present time. AdaBoost (and other machine learning meth-
ods) tend to perform better when there is a healthy diversity
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Algorithm 1 AdaBoost algorithm

1. Obtain samples (x1,y1), ..., (xn,ys) where y; = —1,1 for
non-vortex and vortex samples respectively

2. Initialize weights wy ;= 1 fori=1,....n

3. Fort=1,...,T:

a. Get weak hypothesis A, : {x;} — {—1,1}

b. Select h; that minimizes the weighted error & =
Xiwi ,ilh, ()i

c. Choose oy = %ln(lg—le’)

wriexp(—ouyihy (xi))
Z

d. Update the weights w1 ; = where

Z; normalizes wy | .

4. Final hypothesis: Hr (x) = sign(X._; az/ (x))

of individual feature detectors to be pooled. In our case, we
have four feature detectors (Q, A, A and I') which are all
based on an understanding of the underlying physical mech-
anisms of vortex formation. Furthermore, these feature de-
tectors are computed at each voxel (i) considering only the
local neighborhood of each voxel, (ii) the relative location of
the voxel and its neighborhood in the flow field (e.g., bound-
ary layer, downstream), and (iii) ignoring any considerations
of feature scale.

However, once we have established the effectiveness and
relative improvement of a suitable machine learning-based
composite feature detector, it is quite straightforward to in-
clude new feature detectors in future work. We would merely
turn the new feature detectors into weak learners as ex-
plained above and then insert the new weak learners into
AdaBoost. Especially since there is a paucity at the present
time of machine learning-based feature integration, we feel
that a straight-up integrated feature detector (using the most
popular four physics-based features) is the necessary first
step toward building more sophisticated integrators in the
future. Finally, AdaBoost can be used in conjunction with
other classifiers including decision trees where the weights
are continuously changed.

4. Results

The goal of our effort is to demonstrate that robust classifi-
cation of the domain into vortical and non-vortical regions
is facilitated by the combination of several localized weak
classifiers using the methods of Section ??. We now describe
the performance of the compound classifier relative to that
of the weak physics-based classifiers for two different CFD
data sets. The importance and role of collecting and using
training data will also be emphasized.

4.1. Tapered Cylinder

We first apply our method to the tapered cylinder
data set [DCJ91], which describes an unsteady, three-
dimensional, incompressible, laminar, viscous flow around a

cylinder that is perpendicular to the primary flow direction.
Because of the tapering of the cylinder, the vortex shedding
frequency varies along the length of the cylinder. Therefore,
the vortices are inclined with respect to the axis of the cylin-
der. This data set was chosen, in part, because the orienta-
tion of the vortices would simplify the labeling process and
demonstrate the efficacy of the compound classifier which
was created by combining physics-based weak classifiers as
described in Section ??.

We now compare the performance of a compound classi-
fier obtained by integrating four calibrated feature detectors,
A2, O, A, and Iy, relative to the individual detectors. First,
our domain expert (co-author Thompson) labeled vortices
in several spatio-temporal regions, i.e., for different spatial
blocks in several time steps. Each individual detector was
then calibrated by varying its threshold and selecting the
value that produces the “best match” with the expert labels
(high sensitivity and specificity; see below). We chose 1000
samples for training (chosen such that the number of vortex
and non-vortex samples were roughly balanced) and 3200
samples for validation from this collection of expert-labeled
data and generated the compound classifier. In the discus-
sion below, we describe the performance of the compound
classifier and the four physics-based classifiers using the fol-
lowing error measures:

ER = (Pr+Np)/(P+N) errorrate
TP = Pr/(P+N) true positive rate
FN = Ng/(P+N) false negative rate
FP = Pr/(P+N) false positive rate
TN = Nr/(P+N) true negative rate
SPC = Nr/N specificity
SEN = Pr/P sensitivity

where P and N are the number of positive (vortex) and neg-
ative (non-vortex) expert labels, respectively, Pr and Ny are
the number of correctly labeled positive and negative nodes,
respectively, and Pr and Nr are the number of incorrectly
labeled positive and negative nodes, respectively. It should
be noted that these measures are defined here somewhat dif-
ferently from other popularly used definitions. Typically, the
denominator is taken to be the total number of true or neg-
ative samples; our definitions employ the total number of
samples both positive and negative. Further, there is a degree
of redundancy among the various measures.

Figure 3 illustrates the performance of the different clas-
sifiers in terms of these error measures. It is significant that
the compound classifier shows improvement relative to the
physics-based classifiers in almost every category and per-
forms no worse in the remaining categories. In particular,
the error rate decreases by approximately 50% while both
the specificity and sensitivity are increased. The compound
classifier is successful because it reduces both the false pos-
itive rate and the false negative rate.

We next investigated the relative performance of the clas-
sifiers on a block of data containing a single vortex by com-
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Compound Classifisr

Figure 3: Tapered cylinder - Multi-block comparison: The
results clearly show that integration of the feature detectors
leads to a lower error rate and better classification perfor-
mance.

paring the nodes selected by the various classifiers with the
expert labels and streamlines generated using the procedure
described in Section 2.1. In Figure 4, the spheres repre-
sent nodes that were marked as being contained within a
vortex. Compared to the four weak, physics-based learners,
the compound classifier does a much better job reproduc-
ing the expert labels. These results also illustrate how the
compound classifier does a good job of reducing the in-
stances of false positives. The false positives occur for the
weak classifiers because of thresholding. Recall that a cali-
brated global threshold is employed for each physics-based
weak classifier. In this particular block, the global threshold
clearly overestimates the extent of the vortex. Figure 5 quan-
titatively illustrates this behavior. The error rate is decreased
by approximately 40% primarily due to a reduction in the
false positive rate.

These results demonstrate conclusively that the machine
learning-based compound classifier reduced the misclassi-
fication of nodes in comparison to four of the more popu-
lar physics-based vortex detectors. Further, they demonstrate
that the accuracy of the visualization, as measured by agree-
ment with set of expert labels that is taken as ground truth,
is also enhanced.

4.2. Rearward Facing Step

The second case considered is the unsteady, incompress-
ible, turbulent flow over a rearward facing step, which is
shown schematically in Figure 6. The flow enters the do-
main from the lower left in the positive x direction, encoun-
ters the step, and separates. The flow conditions were chosen
to match the experimental data obtained by Driver and Seeg-
miller [DS85]. Details concerning the numerical simulation
are reported in Alam, et al. [AWT]; two of the co-authors
of this paper are also co-authors on the cited paper. Expert
labels were again generated using the technique described
in Section 2.1. This case was chosen because, unlike the ta-
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(b)’ compound classifier

i

(O Iy

Figure 4: Tapered cylinder: The nodes marked by the com-
pound classifier show good agreement with the expert labels
relative to the calibrated physics-based classifiers.

2 r2 a a Compound Classifier

Figure 5: Tapered cylinder - Single block comparison: The
results clearly show that integration of the feature detectors
leads to lower error rates with a reduced number of false
positives.
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pered cylinder, the vortices do not have easily determined
orientations and present more of a challenge to the labeling
procedure.

Y
X

<

Figure 6: Schematic of computational domain for rearward
facing step with an isosurface of instantaneous velocity
shaded by instantaneous pressure.

Figure 7 illustrates the performance of the resulting com-
pound classifier versus the physics-based classifiers across
multiple blocks. There were 5000 training samples and 5000
validation samples. As before, the error rate was signifi-
cantly decreased, again because of a reduction in the rate
of false positives and the corresponding increase the number
of true negatives. There is a slight reduction in the sensitivity
in comparison with the results of A,; although it is mitigated
by an increase in the specificity. We attribute this behavior
to the choice of training data. Based on our experiences, we
have concluded that the choice of training data plays a signif-
icant role in determining the performance of the algorithm.
We plan to investigate this topic in more detail in our future
efforts.

The efficacy of the compound classifier is demonstrated
for a block containing a single vortex 8. Again, the nodes
marked by the compound classifier show very good agree-
ment with the expert labels. Figure 9 shows a comparison
between classifiers for the single block data. The compound
classifier shows a decrease in the false positive rate relative
to the physics-based classifiers at the expense of a decrease
in the true positive rate. This results in a decrease in the sen-
sitivity, which is mitigated by an increase in the specificity
because of the increase in the identification of true negatives.
In general, these results exhibit the same trends as the multi-
block evaluation shown in Figure 7 especially pertaining to
the reduction of false positives.

Although the rearward facing step flow field is consider-
ably more complex than the flow around the tapered cylin-

» r2 a a ‘Compound Classifier

Figure 7: Rearward facing step: The results clearly show that
integration of the feature detectors leads to a lower error rate
and better classification performance (multi-block compari-
son).

(a) expert labels (b) compound classifier

(©) A A

(e)Q ®H I
Figure 8: Rearward facing step: The nodes marked by the

compound classifier show good agreement with the expert
labels relative to the calibrated physics-based classifiers.
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T

Compound Classifier

Figure 9: Rearward facing step: The results clearly show that
integration of the feature detectors leads to a lower error rate
and better classification performance (single-block compar-
ison).

der, the results were qualitatively similar. In general, the
compound classifier produces a lower error rate by reducing
the number of false positives and false negatives; however,
the number of true positives is also reduced.

4.3. Discussion

Given our experience with these two data sets, we assert that
a statistical approach to feature detection will bear fruit. Al-
though, the A, classifier is often preferred, its performance
is very dependent on the choice of threshold, which in fact
should vary from block to block throughout the entire do-
main. The boosting framework that we espouse seeks to find
a globally optimal operating point and chooses from a suite
of weak physics-based classifiers. This classifier is conser-
vative in nature in that it seeks to reduce the false positive
rate at the expense of true positive rate thus often producing
a lower sensitivity. False positives are often the bane of the
weak classifiers as shear layers, etc., can also be identified
as vortices. A working antidote for the poorer true positive
rate of the compound classifier to seek a better balance in
the training data between the number of positive and nega-
tive labels. We do not include a comprehensive study per-
taining to the choice of this ratio in this work. However, we
do duly note its influence on the performance of the com-
pound classifier. A final point for discussion is that, since
the compound classifier operated from a global perspective,
some blocks will fare more poorly than others in terms of the
true positive rates. However, on the average, the compound
classifier delivers more robust performance by reducing the
error rate across all blocks as indicated in Figures 3 and 7.

5. Conclusion

We presented a machine-learning based enhancement to
vortex visualization techniques for complex flow fields. To
our knowledge, this represents the first application of ma-
chine learning to feature detection in flow visualization.

submitted to Eurographics Conference on Visualization (EuroVis) (2013)

This algorithm combines several different vortex detection
algorithms, which we term weak classifiers, using a semi-
supervised, adaptive boosting algorithm (AdaBoost). Then,
based on expert labeling, we computed a set of weights to
be applied to each of the weak classifiers in order to produce
a compound classifier. We used two computational fluid dy-
namics data sets, the tapered cylinder flow [DCJ91], which
is characterized by vortices that are perpendicular to the pri-
mary flow, and the flow over a reward-facing step [AWT],
which is characterized by a lack of preferential alignment
of the vortices, for training and validating the compound
classifier. In both cases, the compound classifier showed a
quantitatively more accurate classification with with fewer
misclassifications. In general, the compound classifier tends
to be more conservative than the calibrated physics-based
detectors. In most cases, the compound classifier produces
fewer false positives and false negatives; however, there is
generally a decrease in the number of true positives.

Not surprisingly, there are several opportunities for further
research.

o Using additional feature types: We are currently using
only four classifiers. We specifically remarked about the
difficulty this issue poses to the construction of a very suc-
cessful compound classifier. It is our hypothesis that the
use of additional physically derived quantities will boost
the performance of our classifier.

e Selection of training data: One issue we did not address
extensively here is the composition of the training/testing
data. There is no doubt that the manner in which this data
is selected will influence the results as we remarked ear-
lier. These effects need to quantified so that the perfor-
mance of the compound classifier will be optimized.

e Label variability due to multiple experts: In the results
reported here, a single expert (co-author Thompson) per-
formed all of the vortex labeling. In the future, we want
to investigate the performance of the compound classifier
with respect to the labeling strategies of different experts.
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