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Abstract

In rigid body simulation, one must distinguish between contacts (so-called unilateral constraints) and articula-
tions (bilateral constraints). For contacts and friction, iterative solution methods have proven most useful for
interactive applications, often in combination with Shock-Propagation in cases with strong interactions between
contacts (such as stacks), prioritizing performance and plausibility over accuracy. For articulation constraints,
direct solution methods are preferred, because one can rely on a factorization with linear time complexity for
tree-like systems, even in ill-conditioned cases caused by large mass-ratios or high complexity. Despite recent
advances, combining the advantages of direct and iterative solution methods wrt. performance has proven diffi-
cult and the intricacy of articulations in interactive applications is often limited by the convergence speed of the
iterative solution method in the presence of closed kinematic loops (i.e. auxiliary constraints) and contacts.

We identify common performance bottlenecks in the dynamic simulation of unilateral and bilateral constraints
and are able to present a simulation method, that scales well in the number of constraints even in ill-conditioned
cases with frictional contacts, collisions and closed loops in the kinematic graph. For cases where many joints are
connected to a single body, we propose a technique to increase the sparsity of the positive definite linear system.
A solution to these bottlenecks is presented in this paper to make the simulation of a wider range of mechanisms
possible in real-time without extensive parameter tuning.

Categories and Subject Descriptors (according to ACM CCS): 1.6.8 [Simulation and Modeling]: Types of

Simulation—Animation

1. Introduction

This paper is concerned with the robust and efficient simula-
tion of articulated rigid bodies with contacts and collisions.
Our goal is to achieve real-time performance, as required by
applications like training simulators and video games.

State-of-the-art physics libraries show excellent perfor-
mance for scenes with vast amounts of contacts and col-
lisions with friction. However, with respect to articulation
constraints one is often limited to mechanisms with moder-
ate complexity for performance reasons. Heavy large-scale
dynamics are commonly simulated off-line and embedded
kinematically to save computation time in a real-time simu-
lation. For mechanisms with many components, such as the
walking machine in Figure 6b (Strandbeest [Jan13]), how-
ever, this might not be a viable strategy if dynamic response
to user interaction is desired.

Resolving bilateral constraints emerging from joint con-
nections of articulated bodies can be achieved by solving lin-
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ear systems involving a typically sparse matrix, the so-called
system matrix A (derived in Section 3). Direct methods have
proven to be superior to iterative methods in many practical
applications involving the solution of large scale linear sys-
tems [BBKOS5] and these observations also apply to many of
the cases discussed in this paper. However, we identified four
common performance bottlenecks when using direct meth-
ods for articulation constraints. The major contribution of
this paper is a novel solution method that addresses these
bottlenecks. Moreover, it integrates seamlessly with the pop-
ular Gauss-Seidel Propagation approach for collisions and
contacts, such that the dynamic real-time simulation of com-
plex articulated bodies with collisions and contacts becomes
practical without extensive parameter tuning.

Bottleneck #1: Redundant constraints

Redundant constraints (see Figure 1a) often appear in sys-
tems with loops in the kinematic graph and lead to a sin-
gular system matrix. A popular solution is to identify loop
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Figure 1: Illustration of cases leading to the four perfor-
mance bottlenecks addressed in this paper. (a) A 1-DOF
hinge joint is modeled with 2 spherical joints comprising 6
formal constraints which, by redundancy reduce to 5 actual
constraints. Arrows indicate the two redundant constraints
(red) and the remaining DOF (yellow). (b) Many joints con-
nected to a single dynamic body cause a larger block of the
system matrix to be dense. (c) A mechanism consisting of
Cardan and revolute joints (see supplementary video). It has
many loops in the kinematic graph which lead to redundant
constraints and fill-in during the factorization. (d) A heavy
dynamic body (blue) is connected to a red fixed body via a
long green jointed rod. The convergence of an iterative con-
tact resolution (between the red and green body) depends on
the mass ratio of the blue and green body and the length of
the green rod, adding a certain geometry-dependence.

closures (auxiliary constraints) and leave them out of the
direct solution procedure. They are then resolved with a
different strategy, e.g. iteratively, similar to contacts. How-
ever, this will cause the convergence speed to be mass and
geometry dependent and in situations with ill-conditioning
(e.g. large mass-ratios), the auxiliary constraints can have a
spring-like behaviour or lead to poor performance. In addi-
tion, the choice of auxiliary constraints is not unique, which
adds a certain bias that can lead to unexpected results.

In Section 4, we resolve this problem with a somewhat
simpler regularization approach that relies on a Cholesky
factorization of the resulting symmetric and positive def-
inite (s.p.d.) systems and show, that this method yields a
more predictable performance without compromising drift-
free satisfaction of all articulation constraints.

Bottleneck #2: Many constraints at a single body

The system matrix contains a large dense block if many con-
straints are attached to a single body (see Figure 1b), leading
to a slow factorization. A common remedy is the linear-time
factorization of [Bar96], which relies on the solution of a

larger, but always sparse formulation of the systems of equa-
tions. However, solving more general symmetric indefinite
systems resulting from loops in the kinematic graph is prone
to numerical instabilities and/or performance decrease. In
addition, a regularization of symmetric indefinite matrices
is computationally much heavier than for the positive defi-
nite case.

In Section 5, we therefore propose a technique to improve
the sparsity of the s.p.d. formulation and provide a perfor-
mance comparison.

Bottleneck #3: Fill-in

Systems with closed kinematic loops (Figure 1c) can not
only lead to a singular system matrix, but also introduce ad-
ditional nonzero matrix entries (so-called fill-in) during the
factorization process. In Section 6 we show that well-known
fill-in minimization techniques are effective in dealing with
this problem, yielding good scaling for a huge class of mech-
anisms.

Bottleneck #4: Coupling of contact and articulation

For unilateral constraints like contacts and friction, direct
methods such as the pivoting method introduced by Baraff
[Bar94] are not as attractive to the computer graphics com-
munity for performance reasons. Recent advances in simu-
lating huge contact groups such as stacks [GBF03] [WTF06]
[Erl07] have shown that iterative methods in combination
with shock-propagation scale well and plausible results can
be achieved. However, Shock-Propagation shall not be the
topic of this paper since we focus our attention to the in-
teraction between contacts and articulation. In Section 7 we
show that performance gains can be achieved by coupling
each contact, one at a time, directly with the involved articu-
lation constraints. This way, we eliminate the dependence of
the iterative solution method on mass ratios and geometric
properties of articulations (see Figure 1d).

Our approach
For collision and contact resolution, we use a pre-
stabilization approach (see [GBF03], [WTF06], [BFS05],
[Ben07] and Section 3), i.e. we iteratively compute impulses
based on predictions of joint- and contact states. This elim-
inates the problem of constraint drift, because the desired
states of constraints are targeted on a position-level.

Recently, Smith et. al. defined 5 desired properties
[SKV*12] for a physically accurate model that captures
simultaneous impacts. While they use an interior-point
quadratic programming solver (see also the staggered pro-
jections approach of [KSJPOS8]), we decided to rely on a
more light-weight Gauss-Seidel like propagation model sim-
ilar to [GBF03] [WTF06] and [BFS05] and accept the result-
ing symmetry violations for impacts. Plausible results for
our applications can usually be achieved, as synthetic sce-
narios like a perfectly symmetric pool break are rare in in-
teractive applications.

To make the following extensions better accessible and
our paper more self-contained, we shortly discuss the over-
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all setup in Section 3. The main contributions of this paper
are related to the bottlenecks #2 and #4 (Sections 5 and 7)
and some aspects are described in detail in the Appendix. In
Section 7 we showcase the methodical advantages of our nu-
merical approach such as facilitating larger simulation steps.

For the experiments presented throughout this paper, we
used CholMod [CDHRO8] to solve symmetric positive def-
inite systems. Recent advances in parallelization of direct
solvers for sparse matrices have shown that an iso-efficiency
of Q(pl'5 ) can be achieved for matrices arising from 3D-
domains [GKGO09]. From version 2.0.0 on, the CholMod
Solver has GPU computing capabilities, but they were turned
off in our examples for the purpose of comparison. Although
for cases with many single bodies (or simple articulated bod-
ies) the collision detection and contact propagation domi-
nate the computation time, efficient parallel methods exist
for these scenarios [Harl1].

2. Previous work

Rigid body simulation has a long history in computer graph-
ics, dating back to the 1980s [AG85], [Hah85] [MW&8] and
has its roots in mechanical engineering and robotics.

For pure articulation constraints, it became apparent that di-
rect solution methods yield best performance. There are two
contrary approaches:

Reduced coordinates eliminate constraints recursively be-
fore the simulation and describe the system configuration
with kinematically independent variables. These approaches
achieve linear time complexity in the number of degrees of
freedom (DOF). Thus, they perform well for highly con-
strained systems with few DOF like a robot arm with a ma-
nipulator (see [Fea08] for more details).

Maximal coordinate approaches, on the other hand, solve
a sparse system of constraint equations in each simulation
step. The performance therefore depends on the number of
constraints. [Bar96] and [Ben(07] pointed out, that the sim-
ulation of tree-like mechanisms with linear time complexity
is possible using maximal coordinates.

For assembly and disassembly of articulations, reduced
coordinates require a costly re-parametrization each time a
constraint is added or removed. For the same reason, col-
lisions and contacts can not be resolved efficiently with re-
duced coordinates alone, necessitating hybrid solution meth-
ods. Although Weinstein et. al. pointed out in [WTFO06] that
reduced coordinates can complicate the simulation of sys-
tems with frequent and unpredictable contact and collision
(see also [KPO03]), it is often used in video games for ragdoll
simulation [RGLO5]. Recently, [DBDB11] simulated inter-
acting fibers efficiently using reduced coordinates to ensure
inextensibility and combined it with an iterative solution
method to treat frictional contacts. For the sake of gener-
ality, we choose a maximal coordinate approach for articu-
lation constraints in this paper, although we admit that some
of the heavily constrained examples might yield better per-
formance using reduced coordinates.

Loops in the kinematic graph pose challenges to both
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reduced [Fea87] [SZ90] [SV96] [CAO3] and maximal co-
ordinates. A popular approach is to partition the kinematic
graph into primary and secondary (auxiliary) constraints.
The primary constraints can then be solved with an estab-
lished direct factorization for tree-like linkages in linear
time complexity [Bar96] [Fau99] [BenO7]. Constraint vio-
lations in auxiliary constraints can be countered with con-
straint stabilization [Bau72]. Iterative impulse-based meth-
ods have proven more effective in the past, although a certain
softness of auxiliary constraints might still appear in time-
critical applications. Goldenthal [GHF*07] achieved realis-
tic behaviour of cloth using a direct solution method to en-
force inextensibility in the warp- and weft directions, while
using spring forces for shearing.

We ensure that all articulation constraints behave per-
fectly hard with a Tikhonov regularization, which is widely
used in engineering applications (e.g. Matlab Simulink
[WKO3]), and in the Open Dynamics Engine [Smi00]. We
argue in Section 4, that the regularization error does not
pose major concerns for an impulse-based position-level ap-
proach. Iterative methods commonly include similar tech-
niques for damping, relaxation and smooth joints [Erl07].

Frictional contacts and collisions are commonly mod-
elled as a complementarity problem. From an instantaneous-
time perspective, it suffices to require only the second or
first time-derivative of the constraints to be 0, which leads
to a linear complementarity problem (LCP). Acceleration-
level approaches like the works of Baraff [Bar§89] [Bar93]
[Bar95] [Bar96] required a case distinction between contacts
and collisions. Later, velocity-level methods resolved this is-
sue [ST96] [AP97] [Erl07].

The established standard approach in the computer graph-
ics community are iterative solution methods to solve the
LCP, most commonly matrix splitting methods such as Pro-
jected Gauss-Seidel and blocked Gauss-Seidel (see [AC91]
[Mor99] [Jea99], [DBDB11]). These methods were origi-
nally designed for the simulation of granular material. To ac-
celerate convergence, conjugate gradient type methods have
been proposed [RA05]. However, a drift of constraints on
a position-level is inevitable with these methods, necessitat-
ing spring forces or post-stabilization [CP03] [Asc97]. Di-
rect methods for LCPs, such as Lemke’s method or the sim-
plex algorithm [Bar94] can handle numerically challanging
scenarios involving large mass ratios without convergence
problems, but scale poorly in the number of contacts.

The impulse-based paradigm we adopted was intro-
duced by [Hah85] and [MC95] and gained popularity
due to its rather simple implementation. Later works of
[GBFO03] and [WTFO06] (sometimes referred to as predictor-
corrector method) showed that benefits similar to the ones
of velocity-based time-stepping schemes [Mor99] [ST96]
[Jea99] [Erl07] with respect to correct handling of contacts
and collisions can be achieved. The difference between the
approaches is that the impulse-based method computes im-
pulses based on predictions of joint states, taking a discrete-
instead of an instantaneous-time perspective.
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Figure 2: Illustration of a time step for articulation con-

straints. All impulses are applied to the bodies at = ¥,

We refer to [BETC12] for a thorough distinction between
and an introduction into different paradigms and solution
methods. A survey of position-based methods is given in
[BMOT13], but not covered in this paper, since it is mainly
attractive for the simulation of cloth and deformable bodies.

3. Impulse-based simulation

Consider an articulated body (also referred to as multibody
system) that is composed of np rigid bodies and n; joints,
each constraining the motion of its two connected bodies by
¢; degrees of freedom. We use maximal coordinates, intro-
ducing n¢ constraint equations, where n¢ = Z:Z | Ci is the
total number of constraints emerging from joints.

As in [Ben(7], the computation of impulses is based on
predictions of the joint states (see Figure 2 for a single time
step from 1 1o tHD) =40 4 h). Bodies are in free-flight
between simulation steps, so the actual time integration does
not need to consider constraints, making it, in principle, very
easy to provide arbitrary time integration methods.

Guendelman et al. showed in [GBFO03], that resting
and sliding contacts and elastic impacts with break-away
behaviour as for the famous Newton’s Cradle (see also
[SKV*12]) can both be handled effectively. They modify the
order of the simulation step to distinguish between contacts
and collisions. We refer to this technique as implicit dis-
tiction, because it eliminates the need for an ad hoc veloc-
ity threshold (as used in [BS06a] and [Mir96]) that can be
hard to choose in some scenarios with external forces that
involve more than just gravity. However, this comes at the
cost of certain restrictions on the time integration method.
In Appendix A, we show how to respect these restrictions
for a Velocity-Verlet time integration, increasing the accu-
racy with respect to energy- and momentum conservation.
Although the time step of our method is similar to [BFS05]
[Ben07], we explain the basics for articulation constraints to
motivate the factorization methods of the following sections.

Let M € R®%%% be the block-diagonal global body
mass matrix M = diag (m; 13, Iy, ..., mp, 13, L;;), where

13 € R3*3 s the identity matrix, m; the body mass and
I; the orientation dependent inertia tensor. The linear and
angular velocity of a body i is labelled v; and ®;, re-
spectively. Let J € R"*%" denote the global sparse Ja-
cobian that defines the configuration dependent relations
between articulation constraints and bodies (see [Bar96]
[BS06b] and [Erl07]). With the generalized body veloc-

. T .

ities u = (vlT7 u){, vZB, (D,TLB) , the constraint forces
A € R" (Lagrange multipliers) and the external forces
f o € RO the equations of motion for some instant in time
read Mit = J'A+ f,, . Substituting the difference quotient

u= "*;;‘* yields

Uy —u_ :M_lJTAlx'i'M_lAtfext (1)
—— ~~— N——
Au p Pext

The impulse-based approach assumes finite changes in ve-
locity in an infinitesimal time period At. Thus, we are
searching for impulses p € R that yield the required jumps
in body velocities Au to fulfill joint constraints at the next
simulation step. Bodies are assumed to be in free-flight be-
tween the simulation steps.

External impulses p,,, € R®" are first applied to the bod-
ies. Then a joint correction (also called position correction)
is employed to find and apply additional joint impulses p at
t =1, such that the position-level constraint violations at
1) vanish (see Figure 2):

c(/+1)(p) :0, C(l+]) GRnC *)Rnc

PAGEIEN easily obtained from a preview of joint states, ob-

tained by updating position and orientation of the related
bodies temporarily.
Since an application of the standard Newton Method

-1
pn+l =DPy— (vc(l+])(pn)> c(l+l)(pn) , Po= 0

involves evaluations of the gradient of nonlinear constraint
displacements Vc‘(”l)(pn), we follow the work of [BS06b]
and use a constant approximation

v (p) ~hvel @)

for the whole time step. The approximation is justi-
fied in light of a single step of the Euler method
¢ (p) ~ e +heV) (p) . Note, that the previous joint vi-
olations ¢!!) do not appear in the gradient and any initial drift
will be eliminated, if the iteration converges. The constraint
velocities are related to body velocities by ¢ = Ju, so that
with equation (1), the gradient can be expressed by

A=ve) =M 17

A is called the system matrix and only depends on the cur-
rent configuration and mass properties.
The Modified Newton Method is now given by

—1 c(l+1>(pn)

Pn+1 :pn_A h p0:07
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so the system to be solved iteratively in each time step is

(I+1)
c
AAPn = _# s Apn =DPuny1 —Pn- (3)

The impulses are applied to the bodies in each iteration via
uilll = ug,l) +M 1T Ap,. A costly factorization of the sys-
tem matrix is performed only once per time step. In the fol-
lowing Sections, system (3) is rewritten for a simpler nota-

tion as

(1+1)
Ax=b, x:=Ap,, b= P h(p"). 4)

Although a strict quadratic converge rate is sacrificed by
using a constant approximation of the gradient matrix, the
method converges in practical settings after less than 10 iter-
ations, if the step size 4 is small enough, independent of n¢.
If a threshold HCUH)(pn)HOO < €p or a maximum number
of iterations (we use 50 for all examples, unless mentioned
otherwise) is reached, the joint correction is finished.

Note, that although this procedure is iterative, it is not to
be confused with iterative solvers. We use a simultaneous,
direct solver for articulations and the number of iterations
can be bounded by some small constant that only depends
on 4 and the Tikhonov Parameter discussed in Section 4.

The velocity correction (see Figure 2) is only based on
quantities at r = ) and finds joint impulses that lead to zero
relative velocity for all articulation constraints when applied
to the bodies. This can be achieved by solving the system
once, using the relative joint velocities as right-hand side of
system (4).

The velocity correction will not have much influence on
the final outcome at the end of the time step, but it is applied
after external impulses to improve the robustness of the fol-
lowing joint correction. This prevents light-weight compo-
nents of an articulated body from flying off in the case of
large external impulses.

4. Handling closed loops and redundant constraints

Redundant constraints often arise in mechanisms containing
closed loops. Figure 1a shows a simple example with one
redundant constraint. This leads to linearly dependent rows
in the Jacobian J which causes the system matrix A to be
rank-deficient (positive semi-definite).

The constraint of Figure 1a is called conflicting, if the dis-
tance of the anchor points of the lower body is different from
the corresponding distance of the upper one, caused for ex-
ample by an inaccurate user initialization. In this case, there
is no admissible configuration to satisfy the constraints. Such
systems are not considered here and the user must provide a
mechanism without conflicting constraints up to the required
accuracy €p of the joint correction (cf. Section 3).

Each redundant constraint causes an eigenvalue of A
to be zero. For this reason, the system of equations has
no unique solution and cannot be solved robustly using a
standard sparse Cholesky factorization. We apply a simple
Tikhonov regularization approach by slightly modifying the
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Figure 3: Simulation of a Peaucellier-Lipkin linkage with 9
redundant constraints (a). The linkage forces the yellow dot
to move on the black line. The length of the green bars is 2
and constraints are fulfilled up to an accuracy of ep = 107°.
An initial velocity lets it swing like a pendulum, tuned so
that it nearly reaches a singular configuration (7}:’"‘1* = 48245
in (a), )}t’”{“ ~ 107 in (b)). The maximum number of itera-
tions of the joint correction is set to 500 and the step size
is h = 0.03 s. In graph (c), the condition number Awmax/Amin
(right axis) and the number of iterations (left axis) for dif-
ferent choices of the regularization parameter are plotted for
this scenario as a function of simulation time.

system matrix and use Aq = A + al, instead of A, where
o is the regularization parameter. This increases all eigenval-
ues by o to ensure, that Aq, is positive definite, so the regular-
ized system can be solved with a standard sparse Cholesky
solver (we use CholMod [CDHRO8]). However, this also
introduces a regularization error and o should be chosen
smaller than the smallest nonzero eigenvalue A,;, of A. We
now assess the effects on the error of the solution to find the
lowest possible o we can safely choose. If the matrix Ag,
is computed with double precision, it is a slightly perturbed
representation of an exact matrix Ay, = Aq + E, where E ac-
counts for rounding errors, made during the computation of
Aq. The relative error

E]
ha = ~CEg
T

&)

can be bounded by a small multiple of the given machine ep-
silon, which is £y = 272 ~ 2- 10~ !¢ for double precision.
The condition number k(Aq) = ||Ac||||Ac " || is a measure
for the maximum amplification of the relative error hy in
the right-hand side b of system (4) on the relative error in
the solution hyx, (defined analogously to (5)).When using the
spectral matrix norm for K(Ag), it is given by
xmax + o }\-max
K(Ag)=—"—~ —. 6

(Aa) p o (6)
K(Aq) can also be used to estimate the smallest relative error
in Ag, which is able to cause it to be singular (cf. [Don87]):

C

@)

hy < —S
Aa = (Aa)
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The number c is used to hide all unaccounted errors, caused
by the choice of the matrix norm, errors of the computation
of Aq, the scaling of A, and errors introduced by the algo-
rithm to compute the solution. Usually, ¢ is a slowly grow-
ing function of the matrix dimension n¢ and assumed to be
small. (5), (6) and (7) yield a lower bound on o

0> ¢ Mnax€s - (€]

Since the computation of the spectral norm ||Al|2 = Amax i8
very costly in terms of performance, we use the matrix norm,
induced from the 1-norm of vectors:

Al 2 AL = max 12710

vA0 V][
It is computed as the maximum of the 1-norm of each col-
umn of A. The multiplier €7 = c €y is left to choose by the
user, so O is set to o = €7 ||A||;. If €7 is chosen too small,
the condition k(Ag) is very large, which causes the matrix
Aq to be too close to a singular matrix and may lead to large
errors in the solution xq. On the other hand, if €7 is too large,
the resulting error in Ag might cause the joint correction to
converge much slower or even diverge, because the approx-
imation of the gradient (2) is too inaccurate.

This, however, has little effect on the practical conver-
gence rate of the joint correction, while €7 does not need to
be finely tuned even for complex or ill-conditioned mecha-
nisms. We use the Peaucellier-Lipkin linkage as a test case
to quantify the dependence of the convergence speed on the
condition number. The graph in Figure 3 shows, for exam-
ple, that e may be chosen between 1079 and 107" for a
condition number of 10° with practically no effect on con-
vergence for this case. For most of the simulations described
in this paper and the accompanying video, €7 = 10719 does
not effect convergence seriously.

As the inequality between the spectral and the
1-Matrixnorm

1
\/T—CHAHl <||All2 < v/ncllAll

shows, however, a rough tuning might be necessary in some
extremely complex cases. For example, the tube with 150
rings (see Section 6) needed er = 10712, We note, that a
solver based on single precision can be expected to have
more convergence problems in light of inequality (8).

5. An always sparse positive definite factorization

To solve the linear system (4), a sparse Cholesky factoriza-
tion of the form A = LDL is performed once per time step,
D being a diagonal and L a lower triangular matrix with
ones on its diagonal. The factorization process might add
nonzeros to the factor L in addition to the ones present in
the original matrix A (fill-in). The amount of fill-in depends
on the order of constraints in the matrix. The elimination
graph (EG) of a matrix can be used to determine fill-in by a
process called vertex elimination (see [Ing06] for an intro-
duction into the topic). For systems with a tree-like elimina-

elimination graph nonzero pattern

XIX[X[X[X

standard
s.p.d. matrix A

XIX[XXIX[X[X&)

XX XXX IX[X]X

X
= XX
XX XXX
XXX XX
XIXIXIR[X[X
XIXIX|XI&X
X|X[X[X[XX)
XIXIX[X|X][X

Bz}
X

XK
X

indefinite matrix H
BAx I I XD XXX

X
X
X
X
X
X
X
XK
x| |x

XIXI®
6
QXX

XIX|X[X[X

RIXIXXX[X[X

with 2 splits

s.p.d. matrix A

RIX[X
X[
X[X[®

X
X[X[X[x

Figure 4: Illustration of the elimination graphs and nonzero
patterns of three different, yet equivalent formulations for
the example mechanism in Figure 1b. Circular nodes denote
joints and rectangular nodes bodies. The matrices are or-
dered as indicated by the numbers, so that no fill-in is created
during the factorizations. The indefinite formulation (middle
row) leads to a larger, but always sparse matrix. However, it
only works efficiently for tree-like articulations. Our method
(bottom row) introduces two fixation joints (red) to reduce
the number of edges of the EG in the top row and yields a
sparse and positive definite system matrix A.

tion graph, a depth-first order is perfect, i.e. there is no fill-
in. The EG of the s.p.d. block-matrix A consists of a node
for each joint and cliques between joints sharing a common
body. The number of edges in the EG represents the number
of off-diagonal nonzero entries in one half of A.

In this section, we are concerned with cases like the one
in Figure 1b, where a large clique leads to a dense matrix
A and therefore a factorization with cubic time complexity
(Figure 4, top row). A more practical example with the same
performance problems is the Strandbeest in Figure 6b, since
all legs are connected to the frame and a central axis.

Many authors overcome these performance problems by re-
formulating linear system (4) [Bar96] [Fau99] [Ben07]:

14T M I\ (y\_[0
e e (35)(2)-(5)
A —

H
A is called the Schur complement of H. The matrix
H € R(Om+nc)x(Onstnc) g 1arger, but always sparse. The
reason for this is that bodies are effectively included in the
EG as nodes (Figure 4, middle row), so that cliques cannot
form. For more general articulations containing loops, how-
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ever, factorizing the indefinite matrix H efficiently is much
more difficult, since for reasons of numerical stability, pivot-
ing needs to be applied that might conflict with re-ordering
interests of the fill-in minimization. In addition, a regular-
ization technique for indefinite matrices that is as effective
as the one described in Section 4 is unknown.

We propose an alternative approach that yields an al-
ways sparse and positive definite system matrix. The idea
is to split the bodies into np separate parts and connect them
by np — 1 fixation joints that are comprised of 6 constraints
each. Figure 4 (bottom row) illustrates a possible elimination
graph that results from applying the body-splitting to the ex-
ample in Figure 1b with np = 3.

The splitting is applied once before the simulation to all
relevant bodies. The mass and inertia tensor of the central
body are divided by np and then np — 1 identical copies
(without collision geometry or visualization) are created.
They are connected at the center of gravity by the extra joints
and the constraints of the original body are distributed over
the parts. This breaks up the large clique of the original elim-
ination graph into smaller ones and thus increases the spar-
sity of A. The overall dynamic behaviour is not altered by
this process, as long as the extra joints are simulated accu-
rately. In Appendix B, we show that this strategy yields lin-
ear time-complexity for the factorization and solution and
provide details on how to choose the number of splits to
achieve good performance. We compared computation times
of the indefinite and positive definite factorization and solu-
tion of two scalable examples for increasing n¢ in Figure 5.

6. Fill-in of the Cholesky factorization

In the presence of loops in the kinematic graph, a perfect
elimination order does usually not exist, meaning that fill-
in is inevitable. For our single-core implementation we rely
on Approximate Minimum Degree (AMD) to find an order-
ing that reduces fill-in. This only needs to be done once, as
long as the kinematic graph of the simulated system does not
change. For parallel computation, a Nested Dissection order-
ing is more adequate, but gives similar results with respect
to the amount of fill-in [GKGO09].

We chose some heavily constrained examples in Figure
6 (actually bad cases for maximal coordinate approaches) to
provide insights on how the fill-in and therefore performance
in cases with loops increases. The results indicate, that the
amount of fill-in increases super-linearly only for mesh-like
structures like the one in Figure 6e and the large octahedron
in the supplementary video.

7. Contacts and Collisions

As pointed out in Section 3 and Appendix A, our simula-
tion step resembles the one of [GBF03] in aspects concern-
ing contacts and collisions. We also rely on a Gauss-Seidel-
like propagation model, that resolves all detected contacts
sequentially without a global view of the contact situation.
Another aspect we adopt is the implicit distinction be-
tween impacts (collisions) and contacts to prevent blocks
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(a) Spider with 50 jointed legs

5

(b) Tree structure

Spider - factorize party dense s.p.d. matrix
— — Spider - solve partly dense s.p.d. matrix
Spider - factorize indefinite matrix
— — Spider - solve indefinite matrix
Spider - factorize sparse s.p.d. matrix
— — Spider - solve sparse s.p.d. matrix
| Tree - factorize s.p.d. matrix
Tree - solve s.p.d. matrix
Tree - factorize indefinite matrix
— — Tree - solve indefinite matrix

Computation time in ms

nc
(c) Timings

Figure 5: Performance comparison (c) of the factorization
and solution of the s.p.d. matrix A (using CholMod) vs. the
indefinite matrix H (using a straight-forward implementa-
tion of the factorization and solution algorithms described
in [Bar96]). The blue body of a spider-like articulated body
(a) is attached to a variable number of legs with spherical
joints. A standard positive definite factorization of the spi-
der has a time complexity of O(n.) and the solution O(n¢)
because part of the system matrix is dense (dark blue in (c)).
Linear time complexity is achieved by both the indefinite
(green in (c)) and our improved s.p.d. formulation (brown in
(c)), but the indefinite approach is restricted to tree-like ar-
ticulations while ours can handle loops. A tree structure of
variable depth (b) is also included in the graph (c).

from erroneously tumbling (instead of sliding) down an in-
clined plane. They divide the simulation step into a collision-
and a contact-phase. Collisions are resolved based on the old

0

body velocities u) (or u’ as in Appendix A). To prevent
some impacts from being resolved in the contact phase, how-
ever, the collision detection and contact generation is per-
formed based on previews of body positions 1 and ori-
entations q(Z“), obtained from velocities uS{) that already
contain the external impulses (see Section 3 and Figure 2).
For collision detection, we use the free library SOLID
[Ber04] which is based on an implementation of the Gilbert-
Johnson-Keerthi Distance Algorithm (GJK) for convex bod-
ies. SOLID can handle convex objects, compounds of con-
vex objects and polygon soups and also includes a broad
phase to narrow down colliding pairs of bodies efficiently.
A novel aspect of our method is that we couple each con-
tact and collision (one at a time) with the one or two "touch-
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Figure 6: A scissor lift (a) with 10 segments, 500 constraints. A walking machine (b), the so-called Strandbeest (SB) with 50
legs, 4482 constraints. For different numbers of segments/legs, the number of off-diagonal nonzero entries in one half of A
and the amount of fill-in in the factor L are plotted as a function of the number of constraints n¢ (c). The largest lift has 220
segments and the largest SB 100 legs. A complex mechanism based on the "octahedron" in Figure 1c in the shape of a tube with
an intricate structure involving many loops (see supplementary video) is illustrated in (d). The depicted case consists of 8 rings
(18981 constraints), while the largest example in graph (f) has 150 rings. (e) shows a cube with a mesh-like structure of these

"octahedrons" (576288 constraints).

ing" multibody systems to ensure good convergence in the
presence of bilateral constraints, challenging the numerics
due to large mass-ratios. Figure 1d exhibits an example,
where an iterative contact resolution leads to slow conver-
gence, even if a direct solution method for the two joints is
alternated with resolving the contact as in [Fau99] [Ben07].

To couple a normal contact constraint and two fric-
tion constraints directly to the articulation constraints we
insert them into the linear system of equations as last
rows/columns. Sparse matrix modification methods can be
used to avoid redoing a costly Cholesky decomposition for
each contact. However, dynamic Coulomb friction is known
to lead to an asymmetric system matrix [Bar94]. This is a
problem, because asymmetry necessitates an LU factoriza-
tion, which is slower and requires pivoting for numerical sta-
bility.

As a remedy, one can use a less accurate, but symmet-
ric approach to friction like the Open Dynamics Engine
[Smi00], not including dynamic friction constraints into the
linear system but resolving them with external impulses.

In Appendix C, we propose a different solution that is
both able to handle asymmetry arising from more accurate
dynamic friction models and does not require sparse ma-
trix modification capabilities. Any sparse Cholesky Solver
that is capable of applying separate forward- and back-
substitutions can be used. This is possible, because we only
add constraints at the end of the system, which constitutes
a rather simple, special case of matrix modification with-
out the need for complicated up- and downdate methods
(see [DHO5] [GGMS72]). For our demonstrations, we kept
the inaccurate friction model, because it provides sufficient
quality for the presented examples.

A collision that involves one or two articulated bodies is
resolved by coupling them to the system matrix as described
above, treating the collision in the same manner as articula-
tion constraints. With a single solution of the extended linear

system, impulses are computed and then applied to change
the body’s velocities, so the articulation constraints are ful-
filled on a velocity-level (,;-(1) = 0). This is similar to the
velocity correction (see Section 3), however for the collision
constraint, a separating velocity can be prescribed based on
the coefficient of restitution.

After resolving all detected impacts, new impacts can oc-
cur. We noticed, that joint constraints should be fulfilled be-
fore each collision detection to avoid flawed collisions and
contacts. We therefore apply external impulses, a velocity
correction and a joint correction before each collision detec-
tion.

To resolve a contact during the contact phase, that in-
volves articulated bodies, the approach is very similar. How-
ever, we perform a joint correction instead of a velocity cor-
rection to resolve contacts and articulation on a position-
level. This is more costly than a single solution of the linear
system, but the number of required solutions can usually be
bounded by a small constant (see Section 3).

We noticed popping artifacts, when the maximimum
number of iterations was reached resulting in small pene-
trations. For this reason, we applied the contact phase twice.
First, the contacts are resolved on a velocity-level only dur-
ing the joint corrections. The second (position-level) contact
phase is used to correct only the body locations, not their
velocities to prevent bodies from popping out of the ground.
Note, that the computation time is not doubled by this subdi-
vision. Rather, the computation time is divided up since the
second phase can warm-start from the results of the velocity-
level contact phase and usually converges quickly.

Comparison with ODE

The Open Dynamics Engine is based on a velocity-level
time-stepping approach [ST96]. The original implementa-
tion only featured a direct solver based on dense matrix fac-
torizations and a pivoting method for contacts. Later, an iter-
ative method, termed QuickStep, was added. Drift of joint-
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and contact constraints is countered with spring-like external
forces (Error Reduction parameter or ERP). For the direct
solution method, a regularization similar to Section 4 can be
used (termed Constraint Force Mixing or CFM).

The first comparison is based on the simple case example
illustrated in Figure 1d, that consists of a 50 kg rod (green)
and a 7.5 ton block (blue). Finding the right parameters with-
out resorting to mass scaling turned out to be cumbersome.
We had to choose a very small step size of 2 ms for reason-
ably plausible dynamics, while our method achieves good
results for very large time steps of up to 0.25 s (except for
an obvious stuttering). For the direct solver, setting the ERP
greater than zero resulted in huge energy increases, jitter-
ing an popping artifacts. Joint drift could not be corrected
and only be influenced by decreasing the step size even fur-
ther. The best results where obtained using Quick Step with
around 500 iterations, ERP around 0.1 and 2 ms step size.
Our simulator needed no fine-tuning at all.

We dropped a Strandbeest with 50 legs (see Figure 6b)
from a small height of 0.4 meters, about a third of its to-
tal height. We had to choose a step size smaller than 3 ms.
Otherwise the spring-like behaviour of joint constraints led
to an erroneous folding of some legs on impact. Loops
in the mechanism do not cause any problems for the di-
rect ODE solver with a regularization parameter of roughly
CFM = 1071, however, the O(n}) dense matrix factoriza-
tion led to about 3 seconds computation time per step with-
out contacts, and between 4 and 10 seconds when touch-
ing the floor. The ODE Quickstep method is much faster,
but we could not get rid of a spring-like behaviour of con-
straints and a small jittering due to an ERP of 0.1 to cor-
rect joint drift. The effect became more severe when in-
creasing the weight of the yellow frame of the Strandbeest,
which could only be countered with even smaller step sizes.

k h (ms) t (ms) error The table shows the
0 2 7464 00223 total computation time
21 s 0.75 19676 0.0258 .
S| 10 0.5 29125 0023 tc and maximum con-
20| 03 48055 002 - straint errors for 5 sec-
= - . . .
£ (5) ig ;Z;g :?)76 onds simulation time
o . . .
g 10 20 10078 <10-¢ with k times its total
Sl2]| 2 8024 | <107°  original mass added to

the frame. The performance and robustness of our simula-
tor is not affected by an increasing weight.

8. Conclusion and future work

The results presented in Sections 4 to 7 show, that an exten-
sive use of direct solution methods that includes loop clo-
sures and coupling between contacts/collisions and articula-
tion yields benefits for simulating complex mechanisms with
hard constraints. Relatively large time steps are possible, as
exhibited for many of the examples in our supplementary
video.

In combination with the impulse-based method, a fine-
tuning of parameters can be avoided to a large extent, since
the problem of joint drift does not arise, even when using
regularization to handle systems with redundant constraints.

(© 2014 The Author(s)

Computer Graphics Forum (©) 2014 The Eurographics Association and John Wiley & Sons Ltd.

Nonetheless, we believe that some of the ideas presented
in this paper might be useful for other methods such as
velocity-level constraint-based approaches as well.

Note, however, that the performance of our method
might be worse for some contact-heavy scenarios with well-
conditioned articulated bodies. A purely iterative treatment
of both contacts and joints as described in [WTF06] might
yield better performance for these cases.

The time integration in Appendix A led to long-term en-
ergy conservation of frictionless systems, but we noticed a
small energy increase/decrease in some cases depending on
the choice of the Tikhonov Parameter €p. For this reason, we
did not consider using more accurate time integration meth-
ods like the Moser-Veselov integrator used by [SKV*12].

To cover cases that involve strong coupling between con-
tacts, we plan to extend our approach to Shock-Propagation.
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