
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

Accurate and Efficient Lighting for Skinned Models

Marco Tarini1,2 Daniele Panozzo3 Olga Sorkine-Hornung3

1 Università dell’Insubria, Varese 2 ISTI-CNR Pisa 3 ETH Zurich

Abstract
In the context of real-time, GPU-based rendering of animated skinned meshes, we propose a new algorithm to
compute surface normals with minimal overhead both in terms of the memory footprint and the required per-vertex
operations. By accounting for the variation of the skinning weights over the surface, we achieve a higher visual
quality compared to the standard approximation ubiquitously used in video-game engines and other real-time
applications. Our method supports Linear Blend Skinning and Dual Quaternion Skinning. We demonstrate the
advantages of our technique on a variety of datasets and provide a complete open-source implementation, including
GLSL shaders.

1 Introduction

Skinning is ubiquitously used in movies and games to ani-
mate non-rigid bodies such as virtual characters, including
their clothes and other deformable parts [KSO10]. It decou-
ples the character being animated from the animation itself
by employing a low-dimensional set of degrees of freedom to
drive the animation of a potentially complex, detailed shape.
In video games, the de-facto standard skinning methods are
Linear Blend Skinning (LBS) [MTLT88] and Dual Quater-
nion Skinning (DQS) [KCZO07]. Despite the existing variety
of more elaborate schemes with superior expressiveness and
shape quality (e.g., [HYC∗05, FO06, YSZ06, JS11, JBK∗12,
VBG∗13]), many of which also explicitly take normal de-
formation into account [KJP02, MG03, JT05, DSP06, RJ07,
BJ07, WPP07], modern 3D games use LBS or DQS in prac-
tice. This is because these two methods fit very well in the
standard GPU rendering pipeline, and they deliver acceptable
animation quality at a small overhead cost, both in terms of
computation (at rendering time) and memory usage (main
storage and footprint during rendering).

Surprisingly, despite the vast popularity of LBS and DQS
as shape deformers, the local illumination of the animated
models is routinely computed by using a rather crude ap-
proximation of the correct normals and tangent frames. This
leads to visible shading discrepancies and may negatively
impact the perception of the animated shape and its motion
(see Fig. 1). The approximation error stems from ignoring
the spatially-varying, non-rigid deformation component of
skinning when updating the normals and tangents during the
animation, as traditionally done in order to avoid expensive
computations.

Figure 1: Lighting a skinned low-poly, normal-mapped
model. Top sequence: the standard method produces inac-
curate normals that makes the skirt look flat. Mid sequence:
our algorithm produces an accurate lighting which better
conveys the shape of the skirt. Bottom: differences in normals.
See also attached video.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

In this paper, we show how to accurately compute normals
for LBS and DQS without compromising the simplicity and
GPU-based efficiency of the original method, both in terms
of computation times and bandwidth.

This paper makes the following contributions:

1. We show that the standard approximation of normals and
tangents currently used in all major game engines pro-
duces visibly inaccurate results;

2. We propose a new algorithm to update normals for LBS
and DQS skinning, with higher quality and minimal over-
head compared to the standard algorithm;

3. We offer a simple and efficient implementation of our
algorithm in form of a ready-to-use GLSL shader that can
be easily integrated into existing game engines. The open-
source interactive demo is included in the accompanying
material.

2 Preliminaries

We briefly recap the basics of LBS and DQS and introduce
our notation along the way.

Models animated using skinning consist of three parts: the
skeleton, the surface (or skin) mesh, and the binding of the
mesh to the skeleton via a set of scalar weight functions.

The skeleton S is a low-dimensional set of degrees of free-
dom that control the animation. It can be thought of as a
collection of abstract bones, where each bone s ∈ S is asso-
ciated with an affine transformation Mt[s] in each frame t of
the animation. Mt[s] is typically a rotation plus a translation
(Mt[s](x) = Rt[s]x+ tt[s]). In the rest pose, the bones induce
no transformations, so that M0[s] is the identity transforma-
tion. Throughout the paper, we denote quantities associated
with the rest state configuration by a 0-superscript and the
current frame by t-superscript. Notably, in LBS the transfor-
mations M[s] are represented by 4×4 affine matrices, and in
DQS by unit-norm dual quaternions.

We denote by R the rigged mesh animated through the
skeleton; we assumeR is a triangle mesh with combinatorial
vertex set {1,2, . . . ,n}. We denote the position of vertex i in
the rest pose by p0

i , and the position in the current animation
frame by pt

i (p0
i ,p

t
i ∈R3). The meshR is rigged, or bound,

to the skeleton S via a set of scalar weight functions ω[s]
defined on the mesh vertices, such that for each bone s ∈ S,
the weight ωi[s] indicates the amount of influence the bone s
has on vertex i.

2.1 Deforming skinned models

A pose t of a skinned model (or rather, of its skeleton) is a
given set of bone transformations {Mt[s], s ∈ S}. Each ani-
mation frame is generated by inducing these transformations
onto the skin mesh using the weights. In the LBS formulation,

each mesh vertex i gets a new position pt
i in the current frame

as

pt
i = Ft

i (p
0
i) =

(
∑

s∈Bi

ωi[s] Mt[s]

)
p0

i = Tt
i p0

i . (1)

Here, Bi = {s ∈ S, ωi[s] 6= 0} is the set of bones with non-
zero weights influencing vertex i. To ensure affine invariance
of the skinning deformations, the weight functions partition
unity: ∀i ∈R, ∑s∈S ωi[s] = 1. In the DQS formulation, the
linear combination of transformations in (1) is replaced with
dual quaternion blending (followed by re-normalization); this
way of combining rotations and translations has the advantage
of better local volume preservation.

The above formula needs to be computed for each mesh
vertex, and at 30 fps or higher in modern games. The per-
formance is achieved by parallel computation on the GPU
and optimization of the bandwidth, i.e., minimization of the
amount of data that needs to be sent to the GPU for each
frame. All rest-shape vertex positions p0 and the scalar per-
vertex weights ωi[s] are stored on the GPU memory ahead of
time. In real time, for each animation frame the bone trans-
formations Mt[s] are sent to the GPU, typically requiring 12
floats times the number of bones. Then, the new vertex coor-
dinates are computed on the GPU in parallel using (1) or its
DQS version, in the vertex shader. This is extremely efficient
and requires only a small amount of information to be sent to
the GPU per frame, independent of the mesh complexity.

Since the vertex shader has limited capacity, the summa-
tion in (1) can only contain a small number of terms Nmax
(typically Nmax = 4). Hence the weight functions need to
be sparse, such that |Bi| 6 Nmax. If a skinned model does
not have this property, weight sparsification can be applied
beforehand [LS10].

2.2 Lighting of skinned models

The rest-shape of the skinned model R is supplied with at-
tributes to facilitate its rendering, such as per-vertex (u,v)-
coordinates into a set of textures, including normal maps.
Each vertex i has an associated unit normal n0

i and two unit
tangent vectors t0

i and b0
i . The latter two vectors are needed

for tangent-space normal-mapping (a popular technique in
3D video-games) and sometimes for lighting equations with
non-isotropic BRDFs; they are typically computed as the
derivatives of the (u,v) mapping. Note that n0

i is needed even
in the presence of a normal map, since its normals are ex-
pressed in tangent space.

To properly render the deformed mesh in any animation
frame t, we need the deformed normals nt

i and the tangents
tt
i ,b

t
i as well. Computing them from the geometry of the

deformed mesh is not practical on the GPU or even desirable,
as the “normals” of the relatively low-poly models used in
games often do not coincide with the geometric normals of
the surface. Instead, the normals of the current animation

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

frame must be recovered by “warping” the normals supplied
with the rest-shape.

Given the deformation mapping Ft
i (see Eq. (1)), the tan-

gent spaces on the surface are transformed by the Jacobian of
Ft

i , denoted by Jt
i , and the normals are deformed by Jt

i
−T :

nt
i = Jt

i
−T n0

i . (2)

The deformation is commonly considered locally rigid, and
thus Jt

i is approximated with Tt
i , as Eq. (1) suggests. Since Tt

i

is close to orthonormal, it also approximates Jt
i
−T
, yielding:

nt
i ≈ Tt

i n0
i . (3)

(with a slight abuse of notation: whenever a homogeneous
matrix multiplies a 3-vector, we mean that only its 3× 3
major is used).

Similarly, in DQS, nt
i is simply computed by the rotation

described by the primal part of the blended dual quaternion.

This approximation is efficient, but it is only accurate if the
bone weights are constant around vertex i. Fig. 2 illustrates
in 2D an intuitive counterexample. In practice, the errors in
the approximated normals can lead to perceivably incorrect
lighting in the parts of the model that deform non-rigidly
during the animation, as shown e.g. in Fig. 1, 5, 6, 7, 8 and in
the accompanying videos.

The mathematically exact computation of Jt
i
−T is pos-

sible. A formulation to do so, limited to LBS, is reported
in [MMG06], and we derive an equivalent in Sec. 3. However,
as we detail in the following section, this direct approach
suffers from several practical problems, such as computa-
tional and memory overhead, as well as frequent numerical
instability. We conjecture that these drawbacks are the rea-
son why Eq. (3) is still universally adopted and, despite its
inaccuracy, is the current de facto standard in video games.
In this paper we propose a solution to accurately recover the
values of nt

i which successfully addresses all these problems:
computational and, more importantly, memory overheads are
halved (or less, depending on Nmax), it is numerically robust,
artifact free, and, if required, it is easily extended to DQS.

3 Exact skinning Jacobian

In this section we derive the Jacobian of the skinning defor-
mation for the LBS case. The extension to DQS is discussed
in the next section.

3.1 Per-triangle LBS Jacobian

Let us consider a single triangle T ofR in rest pose, formed
by mesh vertices i, j,k; denote by n̂ the geometric normal
of T . The three corners of T are p0

i , p0
j and p0

k , and are
associated to weights ωi[s],ω j[s],ωk[s] for bone s ∈ S.

For our purposes, we can consider the weights to be lin-
early interpolated functions inside T . Note that this stretches

Figure 2: Conceptual sketch showing the problem with the
conventional way to transform normals with LBS or DQS. A
simple “pill shaped” mesh is rigged on a skeleton with two
bones. Left: rest pose. Right: a pose where the lower bone
is just translated to the right, keeping its orientation. In the
conventional way (dotted arrow), the normal for the shown
point would be transformed by an interpolation of the two
rotations, which in this case are both identities. Only when
the effect of the variations of the weights over the surface is
kept in account, then the correct transformed normals can be
recovered (full arrow).

the semantic of skinning a little: if each point on T was to
be transformed by Eq. (1) with its interpolated weights, then
the resulting shape would be in general curved. Instead, in
GPU-based skinning, only the vertices are transformed and
then linearly connected, producing a deformed, flat triangle
(weights are never actually interpolated). However, the hypo-
thetical curved triangle and the actual flat triangle are similar
in shape.

The interpolated weights for point p, an arbitrary point on
triangle T , can be expressed as a linear combination:

ω[s] (p) = â[s]T p, (4)

where p ∈ R4 is represented in homogeneous coordinates,
and â[s] ∈R4 is a constant vector associated with T which
solves the following linear system:

â[s]T p0
i [s] = ωi[s]

â[s]T p0
j[s] = ω j[s]

â[s]T p0
k[s] = ωk[s]

â[s]T n̂ = 0.

(5)

The first three equations prescribe the weights at T ’s vertices
to be the assigned ones; the forth equation states that displac-
ing p along the normal of T , the associated weight remains
constant. Since the weight function ω[s] is linear inside T , its
gradient there is constant and equals â[s].

The skinning deformation equation for p, is given by plug-
ging Eq. (4) in Eq. (1):

Ft(p) = ∑
s∈S

Mt[s]p(â[s]T p) (6)

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

The Jacobian Jt = ∂Ft/∂p can then be written as:

Jt = ∑
s∈S

(
Mt[s] (â[s]T p) + Mt[s]pâ[s]T

)
=

= Tt + ∑
s∈S

(
qt[s] â[s]T

)
,

(7)

where qt[s] = Mt[s]p. Eq. (7) can be intuitively understood as
follows. The local deformation of the surface during skinning
is comprised of two parts: the transformation defined by the
blending of bone transformations, which is rigid or almost
rigid, and a local deformation due to the spatial variation of
the bone weights, which is non-rigid. The first term of Eq. (7),
i.e. the one used in the conventional approximation in Eq. (3),
only captures the former effect.

3.2 Per-vertex LBS Jacobian

In Eq. (4), the vectors â[s] are defined per mesh triangle,
whereas in realtime rendering pipelines mesh attributes are
typically defined per vertex, to take advantage of GPU mech-
anisms like Vertex Arrays. It is also more memory-efficient,
since a mesh typically has twice as fewer vertices as triangles.

Following standard practice in discrete differential geome-
try [CdGDS13], we define the Jacobian Jt

i on mesh vertex i
by integrating the relevant quantities of the incident triangles
over the Voronoi cell of i. Essentially, we propose to com-
pute per-vertex ai[s] by weighted averaging of the â[s] over
the neighboring triangles, using the well-known cotangent
weights. The averaging has the advantage of concealing the
piecewise-linear nature of the mesh by making the shading
smoother (Fig. 3).

A caveat of this approach is that a vertex i may end up
having a nonzero-valued ai[s] for a bone s 6∈ Bi. This happens
when at least one vertex in the one-ring of i has a nonzero
weight for bone s. In this case, the bone index s must be
added to Bi, although with a corresponding weight ωi[s] =
0. This can occasionally result in overstepping the shader
limit (|Bi| > Nmax). In typical rigged models, this is very
rare, because the influence of a bone is localized and varies
smoothly. When the problem does occur, we discard the bones
s 6∈ Bi with the smallest magnitude of ai[s], thus accepting a
local approximation.

3.3 Discussion

Updating the normals using the Jacobian as described above
requires the following in a GPU-based setting: as a prepro-
cess, storing the ai[s] for each vertex i on the GPU memory;
at rendering time, computing the Jacobian as above and in-
verting it, for each vertex i. In terms of memory, we thus have
to store 3Nmax additional floats per vertex (i.e., typically 12
floats), and in terms of computation per-frame, we more than
double the entire per-vertex workload of skinning. In scenar-
ios like video-games, where the per-vertex computation and

Figure 3: In the rest pose (left), the piecewise-linear nature
of the mesh is concealed by usage of per-vertex normals or
tangents. However, if we use per-triangle values of â[s] to
compute accurate shading during animation, the triangle
structure emerges (middle). Employing the averaged per-
vertex ai[s] (right) results in smoother illumination.

memory budget is extremely scarce, these overheads can be
very inconvenient. In the case of DQS, the situation would
be even worse, since a closed form for J−T would be far
more complex to evaluate. Additionally, our findings show
that the straightforward approach above is prone to frequent
numerical stability problems (see Sec. 4.3), and, indepen-
dently of those, it may produce undesirable lighting effects
due to the occasional inversion of normals (see Sec. 4.4). In
the following section we propose a way to overcome all of
these drawbacks.

4 Efficient and robust transformation of normals

We aim to efficiently and robustly transform the normal and
tangent vectors in a standard GPU-based skinning pipeline.

4.1 Avoiding inverting the Jacobian

Instead of computing the inverse-transpose of the Jacobian
and then multiplying it with the rest-pose normal, a more effi-
cient approach is to transform a pair of tangent vectors ti,bi,
and then take their cross product to obtain the transformed
normal:

tt
i = Jt

i t0
i , bt

i = Jt
i b0

i ⇒ nt
i = tt

i×bt
i . (8)

(The normal should then also be renormalized.)

Since, as mentioned, the transformed tangent directions tt
i

and bt
i are required anyway in any standard rendering pipeline,

the only additional computational burden is limited to a cross
product.

This approach requires that t0
i and b0

i are both orthogonal
to n0

i in the rest shape R. This can be enforced in prepro-
cessing. We cannot override the original per-vertex normals
n0

i since this would change the intended shading, but we can
safely project the per-vertex tangent directions onto the plane

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

Figure 4: The cancellation problems of a naive implementa-
tion of Eq. (7) result in artifacts (left), which disappear when
the countermeasure explained in Sec. 4.3 is enabled (right).
See also attached video.

orthogonal to n0
i :

t0
i ← n0

i × t0
i ×n0

i
b0

i ← n0
i ×b0

i ×n0
i .

(9)

4.2 Avoiding the explicit computation of the Jacobian

We can avoid the explicit computation of the matrices Jt
i by

substituting Eq. (7) into Eq. (8):

tt
i = Tt

i t0
i + ∑

s∈Bi

αi[s] qt
i[s]

bt
i = Tt

i b0
i + ∑

s∈Bi

βi[s] qt
i[s]

(10)

where

αi[s] = ai[s] · t0
i and βi[s] = ai[s] ·b0

i . (11)

The scalar values αi[s] and βi[s] are quantities which do not
depend on the current pose and can be precomputed statically
for a rigged meshR. We call them deform-factors.

4.3 Numerical stability and bandwidth optimization

Recall that the first three coordinates of ai[s] are actually
the gradient of the weight function ωi[s]. Since the weights
partition unity, i.e. the sum ∑s∈S ωi[s] = 1 is constant, the
sum of the weight gradients is zero. Therefore, by Eq. (11)
we have:

∀i, ∑
s∈S

αi[s] = 0 and ∑
s∈S

βi[s] = 0. (12)

This indicates that the summation in Eq. (10) can contain
terms with much larger magnitude than the result, potentially
leading to numerical cancellation errors, especially since
GPU computations are typically performed in single preci-
sion. The problem occurs in practice, as shown in Fig. 4.

As follows from Eq. (12), any constant vector c can be
added to all qt

i[s] without changing the result in Eq. (10). We

Figure 5: Our method enhances defects of the input (middle).
With a simple modification, we can make our method (right)
as robust as the standard algorithm (left). See also attached
video.

use c =−qt
i[s0], where s0 is an arbitrarily chosen s ∈ Bi (e.g.,

the first one stored in Bi). This nullifies the first term of the
summation and significantly reduces the magnitude of the
remaining terms. It also removes the need to store one of the
Nmax deform-factor pairs per vertex. Eq. (10) becomes:

tt
i = Tt

it
0
i + ∑

s∈Bi\{s0}
αi[s]

(
qt

i[s]−qt
i[s0]
)

bt
i = Tt

ib
0
i + ∑

s∈Bi\{s0}
βi[s]

(
qt

i[s]−qt
i[s0]
) (13)

As an optimization, we can reuse the values computed in
Eq. (13) to transform the vertex coordinates. Eq. (1) becomes:

Ft
i (p

0) = ∑
s∈Bi

ωi[s]qt
i[s] =

= qt
i[s0]+ ∑

s∈Bi\{s0}
ωi[s]

(
qt

i[s]−qt
i[s0]
)
.

(14)

4.4 Handling flipped normals

The method described above reproduces normals that are sim-
ilar to the geometric normals of the deformed mesh, which
was our objective. In most cases, this improves the shading,
making it more communicative of the actual deformation tak-
ing place. However, the skinning deformation may sometimes
make some mesh triangles degenerate (nearly collapsed to a
line), and the orientation of some triangles may occasionally
flip. This can happen when the bone weights vary too rapidly
over R, for example when vertices of an extremely small
triangle are assigned to significantly different weights. Since
a vertex is shared by several triangles, the effect of the normal
of a flipped face can “bleed” to neighboring faces, causing
a noticeable artifact (see Fig. 5), even when the folded or
collapsed triangle itself is not very visible in the deformed
mesh.

Strictly speaking, these artifacts are caused by inconsisten-
cies in the input, and not by a defect of our method. However,
the traditional approximation (Eq. (3)), being oblivious to
non-rigid deformations, is ipso facto more resistant to such

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

inconsistencies; this simplifies the task of rigging the meshes
(e.g. by artists or by automatic algorithms). Moreover, it can
be desirable to adopt the new method directly to existing
rigged models designed for (and tested with) the approxi-
mated lighting.

If deemed appropriate, we can make our method as robust
as the approximate one, compromising only very little of its
accuracy in non-degenerate cases. It is sufficient to artificially
bound the magnitude of the second summation term in both
Eqs. (13) to a maximal value c, where c < 1 is a constant (i.e.,
if the vector has length greater than c, it is scaled down to c).

In our experiments, we picked c = 0.9. While this value
is sufficient for a complete or nearly complete correction
of the tangent directions, it prevents their inversion in the
degenerate cases. See Fig. 5 for an example.

4.5 Adaptation to DQS

The presented formulation can be easily adapted to serve
as a good approximation for normals transformed by DQS.
The same deform factors α[s],β[s] are used. The first term
of Eq. (13) is rotating the vectors t0

i and b0
i by the blended

dual quaternion (instead of the blended matrix Tt
i). In the

second term of Eq. (13), the qt
i[s] are computed by rigidly

transforming p0
i with the dual quaternion defined for bone s

in the current pose t.

5 Implementation recipe

In this section, we summarize our algorithm. A C++/GLSL
implementation is provided in the additional material.

Preprocessing. Given a rigged meshR with the following
per-vertex attributes: vertex position p0

i ∈ R3, normal n0
i ,

texture coordinates (ui,vi), a set of (up to) Nmax bone indices
Bi, and Nmax weights ωi[s] (s ∈ Bi).

1. Compute and store per-vertex tangent directions t0
i , b0

i .
Enforce both vectors to be orthogonal to n0

i (Eq. (9)).
2. Compute temporary per-face vectors â[s], solving the sys-

tem in Eq. (5), for each bone s ∈ S that has nonzero
influence on any vertex of the processed face. Accumulate
into incident vertices, finding temporary per-vertex vec-
tors ai[s]. If ai[s] 6= 0 but s /∈ Bi, add s to Bi with weight
ωi[s] = 0. Discard supernumerary nonzero vectors (see
Sec. 3.2).

3. Compute and store, per-vertex, (Nmax − 1) pairs
(αi[s],βi[s]), for all s ∈ Bi except one, using Eq. (11). Dis-
card temporaries.

At rendering time. In the vertex shader, compute trans-
formed tangent directions tt

i ,b
t
i in pose space with Eq. (13)

and transformed normals nt
i as their cross product. The rest

of the rendering pipeline is unaffected.

Figure 6: An animation with Linear Blend Skinning: the
standard method (left), our method (middle) and the ground
truth (right). See also attached video.

6 Results and evaluation

We evaluate the achieved visual quality and the total costs in
terms of memory and computation time of our technique.

Visual quality. We ran our algorithm on several low-poly,
bump-mapped, rigged models and animations taken from
games, testing both the LBS and the DQS cases. Several im-
ages throughout this paper show the results, compared with
the standard approximation of Eq. (3). Still images are only
partly meaningful, and the reader is kindly referred to the
attached videos (each image in this paper has a corresponding
short video sequence, and we attach several additional exam-
ples). All the results can also be inspected interactively using
the attached implementation, which embeds the datasets used
in this paper.

The visual comparisons show that our accurate lighting is
substantially more effective than the standard approximation
in conveying the animated shape. The improvement is usually
more evident in the less rigid deformations areas.

We also wish to indicatively assess the combined effects
of the assumptions and small approximations made by our

Figure 7: An animation of a simple character with Linear
Blend Skinning, which uses Nmax = 2. Same caption as Fig. 6.
See also attached video.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

Per-vertex operations Per-vertex bandwidth
LBS DQS (in bytes)

Nmax 2 3 4 2 3 4 2 3 4

Approximation 63 75 87 106 118 120 12 18 24
Ours (overhead) +12 +30 +48 +57 +90 +133 +8 +16 +24
Naive (overhead) +67 +85 +103 - - - +24 +36 +48

Ours (relative) +19% +40% +55% +54% +76% +111% +67% +89% +100%
Naive (relative) +106% +113% +118% - - - +200% +200% +200%

Table 1: Comparison of operation counts (multiply-and-add operations) and bandwidth (bytes) required per-vertex. Approxima-
tion stands for the approximate normal computation (Eq. (3)), Naive stands for the direct application of the exact Jacobian, as
described in Sec. 3, and Ours denotes our method. At the bottom, we report the normalized results compared with the commonly
used approximation. Refer to the supplemental material for a detailed explanation of the counts.

Figure 8: An animation with Dual Quaternion Skinning.
Same caption as Fig. 6. See also attached video.

system, which are: considering the weights as linearly in-
terpolated inside faces (Sec. 3.1), discarding supernumer-
ary weights, lumping averaged per-face gradients to vertices
(Sec. 3.2), capping the correction to prevent possible normal
flipping (Sec. 4.4), and the additional approximation for DQS
(Sec. 4.5). To do so, we compared with a “ground truth”,
which consists of a model deformed off-line for a given pose
(with LBS or DQS), over which we statically recompute nor-
mal and tangent directions from the deformed geometry. The
results, shown in Fig. 6, 7, 8, and in the attached videos,
demonstrate that our method gets much closer to this ground
truth than the commonly used approximation.

The datasets of all the examples in this paper and in the
attached videos use Nmax = 4, with the exception of the cactus
in Fig. 7, which uses Nmax = 2.

Operation count and bandwidth. We compare in Table
1 the number of operations and bytes required at run time
by our algorithm on a per-vertex basis. We compare with
the commonly used approximation of Eq. (3), and also with
the direct computation of Eq. (7). We compare the methods
using values of Nmax between 2 (typical for games on mobile
devices) and 4 (the value supported by most game engines).
In LBS, the overhead on operation count, compared with the
standard approximation, is negligible for a low Nmax, and it

caps at 55%. For DQS, adopting our solution more or less
doubles the computational costs. The bandwidth overhead
is very limited, requiring between 8 to 24 additional bytes
per vertex (the representation of animations is unaffected).
The overhead relative to the commonly used approximation
ranges between 100% (Nmax = 4) and 67% (Nmax = 2). In
a typical context where positions, normals, texture coordi-
nates, color, skinning weights, and tangent directions are sent
per-vertex, the overall bandwidth overhead is less than 29%
(Nmax = 4).

7 Discussion

We demonstrated that accurate normals can be affordably
computed, for LBS and DQS, eliminating the illumination
discrepancies introduced by the ubiquitously adopted loose
approximation. Our solution can be easily integrated into
existing rendering engines.

The balance between visual quality and consumed mem-
ory and processing resources has kept shifting throughout
the history of video games, as testified by the continuous
increase in poly-counts, texture resolutions, number of tex-
ture sheets, shader program lengths, amount of per-vertex
data, and so on. Ten years ago, when skinning techniques
were already the established standard to handle deformable
bodies, the rather loose approximation of the normal trans-
formations was fully in line with other compromises. Since
then, it has not changed, possibly due to the difficulties high-
lighted in Sec. 3.3 and addressed by this paper, and by now
this approximate technique appears outdated. Note that the
approximation error, differently from many other cases, does
not get better by simply refining the meshes.

For these reasons, we believe that our technique may have
a significant impact in the near future of interactive applica-
tions.

Implementation and videos available at the project page:
http://vcg.isti.cnr.it/deformFactors

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

http://vcg.isti.cnr.it/deformFactors

Marco Tarini, Daniele Panozzo, Olga Sorkine-Hornung / Accurate and Efficient Lighting for Skinned Models

Acknowledgments

Models, textures and animations are from Mount&Blade Warband,
used with permission from TaleWorlds Entertainment. We thank the
anonymous reviewers for their insightful comments, Alec Jacobson
and Ladislav Kavan for the useful discussions and Emily Whiting
for narrating the accompanying video. This work was supported
in part by the ERC grant iModel (StG-2012- 306877), by EU FP7
project ICT FET “Harvest4D”(G.A. no. 323567), by an SNSF award
200021_137879 and a gift from Adobe Research.

References

[BJ07] BARBIČ J., JAMES D.: Time-critical distributed con-
tact for 6-dof haptic rendering of adaptively sampled reduced
deformable models. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (2007),
Eurographics Association, pp. 171–180. 1

[CdGDS13] CRANE K., DE GOES F., DESBRUN M., SCHR ODER
P.: Digital geometry processing with discrete exterior calculus.
In ACM SIGGRAPH 2013 courses (New York, NY, USA, 2013),
SIGGRAPH ’13, ACM. 4

[DSP06] DER K. G., SUMNER R. W., POPOVIĆ J.: Inverse kine-
matics for reduced deformable models. ACM Trans. Graph. 25, 3
(July 2006), 1174–1179. 1

[FO06] FORSTMANN S., OHYA J.: Fast skeletal animation by
skinned arc-spline based deformation. EG 2006 Short Papers
(2006), 1–4. 1

[HYC∗05] HYUN D.-E., YOON S.-H., CHANG J.-W., SEONG J.-
K., KIM M.-S., JÜTTLER B.: Sweep-based human deformation.
The Visual Computer 21, 8-10 (2005), 542–550. 1

[JBK∗12] JACOBSON A., BARAN I., KAVAN L., POPOVIĆ J.,
SORKINE O.: Fast automatic skinning transformations. ACM
Trans. Graph. 31, 4 (2012), 77:1–77:10. 1

[JS11] JACOBSON A., SORKINE O.: Stretchable and twistable
bones for skeletal shape deformation. ACM Trans. Graph. 30, 6
(2011), 165:1–165:8. 1

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh animations.
ACM Trans. Graph. 24, 3 (July 2005), 399–407. 1

[KCZO07] KAVAN L., COLLINS S., ZARA J., O’SULLIVAN C.:
Skinning with dual quaternions. In Proc. I3D (2007), pp. 39–46.
1

[KJP02] KRY P. G., JAMES D. L., PAI D. K.: Eigenskin: Real
time large deformation character skinning in hardware. In Pro-
ceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (New York, NY, USA, 2002), SCA ’02,
ACM, pp. 153–159. 1

[KSO10] KAVAN L., SLOAN P.-P., O’SULLIVAN C.: Fast and
efficient skinning of animated meshes. Comput. Graph. Forum
29, 2 (2010), 327–336. 1

[LS10] LANDRENEAU E., SCHAEFER S.: Poisson-based weight
reduction of animated meshes. Comput. Graph. Forum 29, 6
(2010), 1945–1954. 2

[MG03] MOHR A., GLEICHER M.: Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3 (July
2003), 562–568. 1

[MMG06] MERRY B., MARAIS P., GAIN J.: Normal transforma-
tions for articulated models. In ACM SIGGRAPH 2006 Sketches
(2006), p. 134. 3

[MTLT88] MAGNENAT-THALMANN N., LAPERRIÈRE R., THAL-
MANN D.: Joint-dependent local deformations for hand animation
and object grasping. In Proc. Graphics Interface (1988). 1

[RJ07] RIVERS A. R., JAMES D. L.: Fastlsm: Fast lattice shape
matching for robust real-time deformation. ACM Trans. Graph.
26, 3 (July 2007).

[VBG∗13] VAILLANT R., BARTHE L., GUENNEBAUD G., CANI
M.-P., ROHMER D., WYVILL B., GOURMEL O., PAULIN M.:
Implicit skinning: Real-time skin deformation with contact mod-
eling. ACM Trans. Graph. 32, 4 (2013), 125:1–125:12. 1

[WPP07] WANG R. Y., PULLI K., POPOVIĆ J.: Real-time en-
veloping with rotational regression. ACM Trans. Graph. 26, 3
(2007), 73. 1

[YSZ06] YANG X., SOMASEKHARAN A., ZHANG J. J.: Curve
skeleton skinning for human and creature characters. Computer
Animation and Virtual Worlds 17, 3-4 (2006), 281–292. 1

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

