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Abstract
For the rendering of multiple scattering effects in participating media, methods based on the diffusion approximation are an
extremely efficient alternative to Monte Carlo path tracing. However, in sufficiently transparent regions, classical diffusion
approximation suffers from non-physical radiative fluxes which leads to a poor match to correct light transport. In particular,
this prevents the application of classical diffusion approximation to heterogeneous media, where opaque material is embedded
within transparent regions. To address this limitation, we introduce flux-limited diffusion, a technique from the astrophysics
domain. This method provides a better approximation to light transport than classical diffusion approximation, particularly
when applied to heterogeneous media, and hence broadens the applicability of diffusion-based techniques. We provide an
algorithm for flux-limited diffusion, which is validated using the transport theory for a point light source in an infinite homo-
geneous medium. We further demonstrate that our implementation of flux-limited diffusion produces more accurate renderings
of multiple scattering in various heterogeneous datasets than classical diffusion approximation, by comparing both methods
to ground truth renderings obtained via volumetric path tracing.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

The rendering of multiply-scattered light is highly computation-
ally expensive in the presence of dense participating media due
to the proliferation of scattering paths. A brute force solution ex-
ists in the form of volumetric path tracing, in which the random
scattering of photons is explicitly simulated via a Monte Carlo
method such as introduced by Lafortune et al. [LW96]. In prac-
tice, however, these methods are computationally too demanding
for many applications, since the calculation becomes increasingly
expensive as the medium becomes more opaque and the mean free
path (the local average distance travelled by a photon) between
scattering events decreases. Eventually path tracing becomes in-
tractable, and we enter a diffusive regime where photons undergo
long random walks in the medium. In this regime, the classical dif-
fusion equation provides a very good approximation to multiply-
scattered light, which is vastly more efficient than path tracing. It
is a simple partial differential equation which can be solved effi-
ciently via a variety of methods, both analytical and numerical.

Diffusion methods are thus clearly of great interest as a means
of accelerating the simulation of multiple scattering in high opac-
ity media. However, application of these methods to more general
volumetric media, such as clouds in which opaque regions are em-
bedded in relatively transparent regions, has been problematic for
the basic reason that the classical diffusion approximation (CDA)
becomes increasingly inaccurate as the medium becomes more
transparent. In fact, the classical diffusion equation for the light
field becomes singular in the limit of a zero extinction “vacuum”

† Joint first author

region, as elaborated on in Section 4. In the context of subsur-
face scattering [JMLH01], this is not an issue because the vacuum
outside the medium is dealt with analytically by imposing bound-
ary conditions at the surface. However, in a general heterogeneous
volume this is not possible as there may not exist a well-defined
boundary. So it has not been clear thus far how to extend the dif-
fusion approach to these more general situations.

Our contribution is the introduction of the flux-limited diffusion
(FLD) method to the graphics community and its application to the
problem of rendering participating media with multiply-scattered
light. This method is a standard radiative transfer technique in
other fields (in particular, astrophysics [LP81, TS01] and nuclear
physics [LK74]) and its underlying theory was first fully explored
by Levermore and Pomraning [LP81]. FLD was developed specif-
ically to produce a better approximation to multiple scattering in
the low optical depth regime than CDA. We will explain how a
grid-based diffusion solver can be easily extended to FLD by mod-
ifying the diffusion coefficient, and demonstrate that FLD in the
mentioned cases performs significantly better than CDA, in the
sense that it results in images closer to ground truth at affordable
additional computational cost (see Figure 1). Beyond that, we be-
lieve that flux-limited diffusion has the potential to improve other
techniques for multiple scattering in participating media which are
based on diffusion approximation, such as [AWB11, ZM13].

In the next two sections, we discuss related work followed by a
brief review of CDA theory. In Section 4, we introduce the theory
of FLD and give some intuition for its physical basis. We show
how to extend an existing CDA solver to FLD in Section 5. In
Section 6 we evaluate our method using the analytical solution for
a point source as a testbed, then render various datasets using FLD
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(a) Path tracing (23 min) (b) Flux-limited diffusion (0.6 s) (c) Diffusion approximation (0.4 s)

Figure 1: Renderings of a heterogeneous volume which contains regions of high and low opacity, embedded in vacuum. This is problematic
for the classical diffusion approximation (c), which becomes invalid near and within regions of low opacity. Our approach employing flux-
limited diffusion (b) addresses this deficiency and as a result provides a better approximation to volumetric path tracing (a) at a fraction of
the cost.

and compare to ground truth images obtained via volumetric path
tracing.

2. Related Work

Multiple scattering in participating media has been extensively
studied and we restrict the discussion to the work which is most
related to ours. For a broader overview, we refer to Cerezo et
al. [CPCP∗05].

The theory of multiple scattering as a diffusion process has a
long history in the radiative transfer literature [Ish78, RL86]. In
computer graphics, the theory of light diffusion has been most
profitably applied to the rendering of subsurface scattering (SSS).
This is the searchlight problem of finding the exitant radiance
under incident illumination at the boundary of a homogeneous
scattering medium. Jensen et al. [JMLH01] pioneered the appli-
cation of the radiative diffusion approximation to this problem,
solving the diffusion equation with appropriate boundary condi-
tions imposed at the surface. Further work has refined this tech-
nique [DI11, YZXW12, HCJ13]. This line of research cannot be
applied to our problem since SSS deals with media with well-
defined surfaces, while we are interested in finding the radiance
within heterogeneous volumes which contain regions of low opac-
ity or vacuum.

Wang et al. [WZT∗08] extended SSS to a heterogeneous
translucent volumetric medium modeled as an irregular finite el-
ement grid on which CDA was solved. Arbree et al. [AWB11]
later in similar approaches addressed various problems in Wang
et al.’s work and simplified discretization by using a tetrahedral
mesh basis. Li et al. [LSR∗13] used the same tetrahedral represen-
tation but a more efficient method for constructing the coefficient
matrix, which allowed realtime application under changing mesh
topology. In contrast to our approach, all this work still focuses on
rendering highly opaque media with well defined surfaces.

CDA was first applied to the multiple scattering of light in het-
erogeneous participating media defined on a grid by Stam [Sta95],
refining earlier work by [KVH84]. Here, however, the break-
down of CDA within more transparent regions was not accom-
modated for. In applying CDA to the rendering of clouds, Max

et al. [MSM∗04] recognized the problem, and to avoid it, intro-
duced a hybrid scheme in which diffusion is applied to discrete
homogenous cloud cores with high optical depth and well-defined
boundaries on a grid. Ray tracing is used to propagate light across
the empty space between grids.

Other related grid-based approaches to scattering in inhomo-
geneous participating media include Light Propagation Volumes
[KD10, BCK∗11], and Lattice Boltzmann methods [GRWS04,
QXF∗07]. These are similar to the diffusion methods in the sense
that light is propagated between cells on a grid. Bouthors et al.
[BNM∗08] described a semi-analytical approach to multiple scat-
tering in media bounded by geometry in which a pre-computed
path tracing solution in slab geometry is used. All these meth-
ods are less physically-based than ours, using phenomenological
models rather than direct approximation of the radiative transfer
equation. Another general approach based directly on the radia-
tive transfer equation (RTE) [Cha60] is Light Propagation Maps
[Fat09]. This is essentially a formulation of the classic Discrete
Ordinate Method [Cha60] in which the light field in each grid cell
is discretized into ray direction bins. This is a potentially more
accurate method than the diffusion approximation, but also much
more computationally expensive.

3. Classical Diffusion Approximation

In this section we review CDA as a preliminary to our introduc-
tion of FLD in Section 4. For more details, we refer the reader
to [Ish78] and [Sta95]. In Table 1 we give a summary of the sym-
bols used.

We assume that the properties of the medium are specified,
in the form of an absorption coefficient field σa(x) and scat-
tering coefficient field σs(x), both with units of inverse length.
We can also express these in terms of the total extinction field
σt(x) = σa(x) + σs(x) and the dimensionless scattering albedo
α(x) = σs(x)/σt(x). The mean free path is given by σt(x)−1.
We also allow for the possibility that the medium generates an
isotropic radiance field j(x) (with units of radiated power per unit
volume) due to self-emission. We specialize in our whole treat-
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Table 1: Nomenclature and units

Symbol Meaning
σs scattering coefficient [m−1]
σa absorption coefficient [m−1]

σt = σa +σs extinction coefficient [m−1]

α = σs/σt albedo
L(x,ω) radiance field [Wm−2sr−1]

j(x) self-emission field [Wm−3]

Q(x) source term [Wm−3sr−1]
Lri(x) reduced incident radiance [Wm−2]

Lm(x) medium radiance [Wm−2]

φ(x) diffuse fluence [Wm−2]
E(x) diffuse flux [Wm−2]

D(x) = 1
3σt

diffusion coefficient (CDA) [m]

DF(R,x) diffusion coefficient (FLD) [m]
R(x) Knudsen number
T (x) transmittance/DSM

τ optical depth (number of mean free paths)

ment in this paper to the case of isotropic scattering and discuss
anisotropy in Section 7.

Given these medium properties, the radiance field L(x,ω), for
all points x in the volume and all ray directions ω, is in principle
determined by solving the RTE, an integral equation which the
radiance field must satisfy

(ω ·∇)L(x,ω) =−σt(x)L(x,ω)+Q(x) , (1)

with

Q(x) = j(x)
4π

+σs

∫
Ω

1
4π

L(x,ω′)dω
′ . (2)

The source term Q(x) represents self-emission and in-scattering
(the factor 4π in the first term is the conversion factor from power
density to power density per unit steradian, see [RL86]).

Our particular task in volume rendering is to determine the radi-
ance L(xe,ω) at the endpoint xe of each primary ray of light propa-
gating in direction ω towards the camera through the volume. The
total radiance at the endpoint xe is the sum of the attenuated “back-
light”, and a term due to the light added by the medium at each
sample along the ray (attenuated by the transmittance between the
sample point xn and xe):

L(xe,ω) = L(xs,ω)T (xs,xe)+∆x ∑
n

T (xn,xe)Q(xn) . (3)

The transmittance function T (xa,xb) = exp(−τ(xa,xb)) gives the
attenuation of radiance due to absorption and out-scattering along
a given ray segment with endpoints xa and xb and optical depth
(number of mean-free-paths) τ =

∫ xb
xa

σt(x)dx. This is computed
numerically by breaking the ray into segments. With segment end-
points xn, and segment length ∆x, we have in discretized form
T (xs,xe)≈ exp(−∑n σt(xn)∆x).

To develop the radiative diffusion approximation, we first sep-
arate the total radiance into the sum of the reduced incident light
(also referred to as the unscattered light) Lri(x,ω) which is the in-
cident radiance from external sources attenuated by extinction, and
the medium radiance Lm(x,ω), which is generated by both scatter-
ing of the reduced incident light and emission from the medium:

L(x,ω) = Lri(x,ω)+Lm(x,ω) . (4)

Substituting Eqn. (4) into Eqn. (2), we get a decomposition of
in-scattered light, which results in:

4πQ(x) = qri(x)+qm(x)+ j(x) (5)

where

qri(x) := σs

∫
Ω

Lri(x,ω)dω ,

qm(x) := σs

∫
Ω

Lm(x,ω)dω .
(6)

The source field generated by the reduced incident light, qri, is de-
termined by the choice of external lighting, and we will assume
that it has been precomputed. For example in the case of an exter-
nal incident directional light of radiance Ll in direction ωl , it has
the simple form qri(x) = Llσs(x)T (x), where T (x) is the transmit-
tance from the point x in the volume along the ray in the direction
towards the light (commonly referred to as a deep shadow map).
This can be easily generalized to other forms of external lighting.

We can think of the medium radiance Lm(x,ω) as the multiply-
scattered “diffuse” light (though it includes all orders of scattering,
as well as the self-emitted radiance). The diffusion approximation
consists of the assumption that we can express the medium radi-
ance as the following expansion in the first two angular moments
of the radiation field:

Lm(x,ω)≈ 1
4π

φ(x)+ 3
4π

ω ·E(x) . (7)

In this approximation, the diffuse light is describable entirely by
two fields: the medium fluence (or scalar irradiance, the zeroth an-
gular moment of the medium radiance) φ(x) =

∫
Ω

Lm(x,ω)dω and
the medium flux (or vector irradiance, the first angular moment of
the medium radiance) E(x) =

∫
Ω

ωLm(x,ω)dω. In fact, this is a
good approximation in highly opaque media where multiple scat-
tering dominates. This is because multiple scattering tends to re-
duce the higher-order angular moments [Sta95]. The diffusion ap-
proximation provides an efficient means of solving for φ(x), which
determines qm(x) in Eqn. 6.

The source field expressed in terms of φ(x) is

4πQ(x) = qri(x)+σs(x)φ(x)+ j(x) (8)

To derive the equation for φ(x) in the diffusion approximation,
we start with the observation that, by definition, the unscattered
light satisfies the following restricted form of the RTE excluding
the scattering term:

(ω ·∇)Lri(x,ω) =−σt(x)Lri(x,ω) . (9)

Thus substituting Eqn. (4) into Eqn. (1), and using Eqn. (9), we
find that the medium radiance satisfies the RTE:

(ω ·∇)Lm(x,ω) =−σt(x)Lm(x,ω)+Q(x,ω) . (10)

To obtain equations for φ(x) and E(x), we substitute Eqn. (7) into
Eqn. (10), and integrate over

∫
Ω

dω and
∫

Ω
ωdω respectively, giv-

ing:

∇·E(x) = −σa(x)φ(x)+qri(x)+ j(x) ,

E(x) = − 1
3σt(x)

∇φ(x) =−D(x)∇φ(x) . (11)

The first line of Eqn. (11) is exact and (when integrated over vol-
ume) simply states conservation of energy, i.e., that in a steady-
state solution of the RTE the total power of diffuse light emitted
from any given region must equal the rate of increase in diffuse

c© 2014 The Author(s)
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xe

xn

xs

L (xe,V)

L (xs,V)

F(x)qri(x)

Lri

j(x)

Figure 2: Schematic of the volume rendering process. The unscat-
tered attenuated incident light Lri generates the source field qri(x),
and emission within the volume generates the source field j(x).
The multiply-scattered light φ(x) is then determined by solving the
diffusion Eqn. (12) with the source fields qri(x) and j(x). The fields
qri(x), j(x), and φ(x) are then used to compute the source term
Q(xn) at each ray segment according to Eqn. (8), which is accu-
mulated along the ray to compute the observed radiance according
to Eqn. (3).

radiant energy in the region due to in-scattering and emission, mi-
nus the rate of decrease due to absorption. The second line of
Eqn. (11), commonly termed Fick’s first law of diffusion, is the
statement that in the isotropic diffusion approximation the flux E
is proportional to the gradient of φ, where D(x) := [3σt(x)]−1 is
the classical diffusion coefficient, which has dimensions of length.
Flux-limited diffusion theory, to be introduced in the next section,
amounts to a modification of this diffusion coefficient.

Substituting Fick’s first law into the first line of Eqn. (11) yields
Fick’s second law, the radiative diffusion equation:

∇· (D(x)∇φ(x)) = σa(x)φ(x)−qri(x)− j(x) . (12)

This describes how the zeroth moment of the multiply-scattered
radiance (or fluence), φ(x), is determined by the incident unscat-
tered light and the emission, represented by the source terms qri(x)
and j(x). This is a partial differential equation defining a boundary
value problem which can be solved for φ(x) in the volume domain,
given specified conditions on φ(x) to impose at the domain bound-
ary. We use Dirichlet boundary conditions where φ(x) is simply
set to zero on the boundary. Though this is physically inaccurate,
our procedure of using the unscattered light to seed the diffusion
solve in the interior of the volume minimizes the influence of the
boundaries.

Volume rendering an image is then completed by marching
through the volume along the primary ray in order to compute the
sum in Eqn. (3), using the computed fluence field φ(x). The whole
process is summarized in Fig. 2.

4. Flux-Limited Diffusion

In this section, we introduce the theoretical ideas of flux-limited
diffusion theory (FLD), an enhancement to the classical diffusion
theory which proves to be more accurate, especially in hetero-
geneous media with low opacity regions. In outline, the method
amounts to replacing the diffusion coefficient D(x) = [3σt(x)]−1

with an expression which depends on the fluence φ(x) and the
magnitude of its gradient, |∇φ(x)|. FLD was developed originally

for radiative transfer applications in astrophysics [LP81, TS01]
and nuclear physics [LK74]. Here, we will state the mathematical
framework of FLD required for its application, but without giving
the full mathematical derivation, aiming instead to give intuition
for its physical meaning.

The classical diffusion approximation cannot be applied
straightforwardly to the computation of multiple scattering in het-
erogeneous media, as it breaks down and violates the true RTE
in regions of low extinction σt (or equivalently large mean free
path). The first indication of this is that in the limiting case of a
vacuum (i.e., infinite mean-free-path), the radiative diffusion equa-
tion, Eqn. (12), becomes singular, because the diffusion coefficient
D(x) diverges in the limit σt → 0. A more rigorous demonstra-
tion that this is inconsistent with the true RTE is as follows. The
medium radiance is non-negative and therefore manifestly satisfies
the following inequality, where n̂ is any unit vector:∫

Ω

(1− n̂ ·ω)Lm(x,ω)dω≥ 0 . (13)

This reduces to the statement that φ(x)≥ n̂ ·E(x) for all unit vec-
tors n̂, which implies the constraint

|E(x)| ≤ φ(x) . (14)

This states that at any point in the radiation field the magnitude of
the flux does not exceed the fluence. Physically this is related to the
fact that radiation propagates at the finite speed of light, so energy
cannot be transported at an arbitrarily high rate from point to point
(thus this flux constraint is sometimes said to enforce “causality”).

In CDA, φ(x) satisfies Eqn. (12) and the corresponding flux is
given by the Fick’s law relationship (the second line of Eqn. (11)).
However, there is no mechanism to prevent a solution where
|E(x)|= |D(x)∇φ(x)| is arbitrarily large compared to φ(x), which
violates the constraint in Eqn. (14). This suggests that CDA can be
improved by explicitly enforcing the constraint, which is the core
idea of FLD theory.

To achieve this, in FLD theory the diffusion coefficient in Fick’s
law is modified to

DF (x) =
F(R(x))

σt(x)
, (15)

where the dimensionless F( ·) is termed the flux limiter. CDA cor-
responds to setting F to the constant 1/3. In FLD, F is a function
of the dimensionless variable R(x), termed the Knudsen number,
which is defined as follows:

R(x) :=
|∇φ(x)|

σt(x)φ(x)
. (16)

Via the modified Fick’s first law E(x) =−DF (x)∇φ(x), the flux-
limiting constraint Eqn. (14) expressed in terms of the flux limiter
and Knudsen number becomes:

F ≤ 1
R . (17)

The physical meaning of the Knudsen numberR can be under-
stood roughly as:

R∼ mean free path
length scale of φ variations

. (18)

When the local mean free path is short relative to the local length
scale of changes in the fluence,R� 1 and the radiation field is in a
“diffusive” regime where CDA,F = 1/3, is a good approximation.

c© 2014 The Author(s)
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Table 2: Flux limiters, F(R) .

Flux limiter F(R)
sum [BW82] (3+R)−1

max [BW82] max(3,R)−1

Kershaw [Ker76] 2(3+
√

9+4R2 )−1

Larsen-n [LK74] (3n +Rn)−
1
n

Levermore–Pomraning [LP81] 1
R

(
coth(R)− 1

R

)

In this case Eqn. (17) is satisfied automatically. However, when
the local mean free path is much longer than this length scale,
R� 1 and the radiation field enters the “transport” regime where
interaction events are rare over the length scale being considered.
Thus in FLD, in order to satisfy the constraint Eqn. (17), we use a
modified flux limiter which satisfies the limits:

lim
R→0

F(R) =
1
3
, lim
R→∞

RF(R) = 1 . (19)

A variety of methods have been developed to find specific func-
tional forms for F(R) satisfying the constraints in Eqn. (19).
Some approaches use forms which simply satisfy the desired lim-
its [LK74, BW82]. Others derived flux limiters based on certain
assumptions about the smoothness of the moments [LP81,Ker76].
We give the expressions for these simple widely used flux lim-
iters in Table 2. Other strongly related work includes Minerbo’s
[Min78] flux limiters which are based on statistical mechanics of
the radiation field, and a method termed “M1-theory” which works
by making assumptions about the local rotational symmetry of the
radiation field and deriving the corresponding pressure tensor clo-
sure [OAH00]. We do not expand on either of these as this would
exceed the scope of this paper.

Regardless of the specific choice of flux limiter, the resulting
flux-limited radiative diffusion equation has the form

∇· (DF (x)∇φ(x)) = σa(x)φ(x)−qri(x)− j(x) . (20)

Here DF implicitly depends on φ(x) via Eqn. (16), which makes
this a non-linear PDE, unlike the classical diffusion Eqn. (12)
which is linear. As in the CDA case, we use Dirichlet bound-
ary conditions to specify φ(x) on the domain edge. In summary,
FLD takes the theoretical framework of CDA and modifies it
straightforwardly by replacing the diffusion coefficient with a
φ(x)-dependent expression. In Sec. 5, we give the details of im-
plementing a numerical CDA solver and extending it to support
the FLD technique.

Note that in the limitR→∞, the divergence term in the diffu-
sion equation becomes−∇·(φ(x)n̂), which effectively transforms
the diffusion equation into an advection equation for the fluence.
This also explains why the flux limiter is chosen to tend to exactly
1/R in Eqn. (19), which is a stronger requirement than imposed
by the constraint of Eqn. (17): FLD not only suppresses the flux in
the transport regime, it also saturates it at the appropriate value to
ensure correct free propagation (at the level of the approximation).

A deeper examination of the derivation of CDA gives further
insight into the physical content of FLD. As discussed in Section
3, CDA can be derived by expressing the radiance in terms of its
first two moments only, leading to the diffusion equation which
determines these two moments. It was not specified what assump-
tions we made about the higher moments—in general these mo-

ments are non-zero as they are coupled to the first and second
moments via a hierarchy. In fact, a deeper description of the dif-
fusion approximation is that the moment hierarchy is closed by
choosing a specific form for the second moment, termed the radi-
ation pressure tensor, Pi j(x) =

∫
Ω

ωiω j Lm(x,ω)dω. In the case of
CDA, the radiation pressure tensor is approximated as isotropic,
Pi j = δi jφ/3, which leads to the approximate two-term expansion
of the radiance given in Eqn. (7).

In the case of FLD, the form of the pressure tensor is different.
In terms of the Eddington tensor Ei j, defined by Pi j = Ei jφ, in
CDA Ei j = δi j/3, while in FLD

Ei j =
1
2
(1−X )δi j +

1
2
(3X −1) n̂in̂ j , (21)

where n̂ is the unit vector in the direction of the negative flu-
ence gradient, n̂(x) = −∇φ(x)/|∇φ(x)|, and X is a dimension-
less function called the Eddington factor. In a full analysis it has
been shown [Pom82, Lev84] that the following approximate rela-
tionship holds between the flux limiterF and the Eddington factor
X :

X = F +F2R2 . (22)

This implies that in the diffusive and transport limits respectively,
the FLD Eddington tensor becomes

lim
R→0

Ei j = δi j/3 , lim
R→∞

Ei j = n̂in̂ j . (23)

From this we see explicitly that in the transport regime, FLD pro-
duces a radiation pressure tensor closure which corresponds to
free propagation of rays down the local energy density gradient.
It should be borne in mind however that though FLD deals in a
more physically sensible manner with the transition to the trans-
port regime than CDA, it is still just an approximation to the full
RTE, as all but the first few moments of the radiation field are used.

4.1. Point Source in Homogeneous Medium

In this section we apply the ideas introduced above to the prob-
lem of a unit power point light embedded in an infinite homoge-
neous scattering medium with extinction coefficient σt and albedo
α. This is a spherically symmetric problem for which the exact
solution is known to both the full RTE and CDA. We use this ex-
ample both to illustrate the general idea of FLD and as a testbed
for our numerical solver.

The exact solution of the RTE for the fluence as a function of
radial distance from the point source, and an excellent approxima-
tion to it, termed the Grosjean solution [Gro58], are quoted in pre-
vious work [DI11]. Parameterizing the radial distance r from the
point source in terms of the dimensionless optical depth τ = σtr,
the Grosjean solution for the fluence is given (in the case of an
isotropic phase function) by:

φ(τ) =
σ

2
t

4π

(
e−τ

τ2 +
3α

2−α

e−λτ

τ

)
, (24)

where λ
2 := 3(1−α)

2−α
. Note that the σ

2
t factor occurs since φ has

units of radiance (power per unit area), and we used a unit power
source. The expression inside the brackets is dimensionless. In
Fig. 3(a), we plot the “normalized fluence”

φ̃(τ) := 4πφ(τ)/σ
2
t . (25)

c© 2014 The Author(s)
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Figure 3: Analytical “universal” solutions for normalized fluence versus radius for a unit power point source embedded in a homogeneous
medium. We plot in (a) the Grosjean transport solution Eqn. (24) and in (b) the classical diffusion approximation Eqn. (27), both for a
range of albedos between 0 and 1. To show the solutions for all possible σt we plot normalized fluence (defined in Eqn. (25)) as a function
of optical depth τ = σtr. In (c) we plot the Knudsen numberR (Eqn. (16)) of the Grosjean solution.

as a function of τ. These figures show the σt -independent “univer-
sal” solution to the point source scattering problem.

The CDA in Eqn. (12) reduces in this homogeneous emission-
only case to a screened Poisson equation:

D∇2
φ(x) = σa(x)φ(x)− j(x) . (26)

The solution to this, for a unit power point source emission j(x) =
δ(x), known as the CDA Greens function [JMLH01], is given by

φ(τ) =
3σ

2
t

4π

e−
√

3(1−α)τ

τ
. (27)

Fig. 3(b) plots the CDA Greens function as a function of optical
depth. As it has been discussed in detail [DI11], we see that CDA
fails to generate the τ

−2 power law term in the Grosjean solution,
and also has stronger exponential suppression of the τ

−1 diffusion
power law at large radii, which causes it to underestimate the flu-
ence.

In the Grosjean solution the Knudsen numberR→ 2/τ as τ→ 0
(see Fig. 3(c)). Thus, sufficiently close to the point source, i.e.,
roughly within a mean-free-path, the radiation field is in the trans-
port regime according to the criterion described in Section 4. In
this region, the inverse square term in Eqn. (24) dominates (and in
the α = 0 limit it is the exact transport solution, as can be verified
by trivial application of the RTE without scattering). In the termi-
nology of [DI11], this term represents the ballistic fluence due to
light propagating unscattered from the source.

As pointed out by Levermore and Pomraning [LP81], in spher-
ical symmetry the FLD Eqn. (20) with a point emission source
becomes in the transport regime (according to the R→∞ lim-
iting form in Eqn. (19)) the following linear first-order ordinary
differential equation:

1
τ2

d
dτ

(τ2
φ(τ))+(1−α)φ(τ) = j(r)/σt , (28)

whose corresponding solution for a delta function j is

φ(τ) =
σ

2
t

4π

e−(1−α)τ

τ2 , (29)

which tends to the ballistic term in the Grosjean solution as τ→ 0.
This verifies that FLD correctly reproduces the transport limit for

the point source problem. Thus, one reasonable test of our formu-
lation is to check that FLD gives this inverse square behavior of
the fluence near an emitting point source. However, note that we
do not expect FLD to perfectly match the transport theory through-
out the domain, as the FLD equation is merely an approximation
to the RTE.

5. Numerical Method

We provide here a numerical method for solving Eqn. (20) to ob-
tain the multiply-scattered fluence φ(x). We assume a uniform 3D
grid with voxel centers indexed by integer coordinates p = (i, j,k),
and voxel edge length ∆l. For notational convenience, we absorb
the external illumination term qri(x) into the emission term j(x).
Hence, the voxelized input fields are the emission field jp (units
of power per unit volume), the extinction field σp := σt |i jk (units
of inverse length), and the albedo field αp (dimensionless). For
brevity we write the flux-limited diffusion coefficient DF |i jk as
Dp (units of length).

Discretizing the LHS of Eqn. (20) at each grid point, the x-
derivative in the divergence term reads

Di+1/2, j,k(φi+1, j,k−φp)−Di−1/2, j,k(φp−φi−1, j,k)

∆l2 , (30)

where Di+1/2, j,k denotes the diffusion coefficient interpolated lin-
early at (i+ 1/2, j,k). Thus, defining s(p) as the 6-point stencil
surrounding point p, so s(p) ranges over the six points (i± 1, j±
1,k±1), we obtain the following discretized form of Eqn. (20):

∑s Dpsφs−φp ∑s Dps

∆l2 = (1−αp)σpφp− jp , (31)

where we abbreviated Dps := (Dp +Ds)/2. Given the current set
of φp values on the grid, we can estimate the accuracy of the so-
lution by the residual Rp, which is defined as the LHS minus the
RHS of Eqn. (31). Our goal is to solve for a set of values of φp
at every interior grid point which minimizes the root mean square
(RMS) residual. However, in order to apply the FLD method, Dp
at each point must also satisfy Eqn. (15), which makes Eqn. (31) a
non-linear equation involving the values of φ and its partial deriva-
tives on the stencil (the specific form of this equation depends on
the choice of the flux limiter F).
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Figure 4: Convergence behavior of our FLD solver. In (a) we show the normalized RMS residual R̄/ j̄ as a function of iterations for the
problem described in Section 5, run in double precision, with a 513 grid. In (b) we show the number of iterations required to reach the
R̄/ j̄ = 10−6 convergence criterion as a function of grid resolution for the same test case. In (c) we demonstrate the effect of extinction
tolerance σε on convergence of the Nebulae dataset in Fig. 1, here in single precision.

To find a consistent solution for both φp and Dp, we employ
a Gauss-Seidel relaxation scheme. We solve Eqn. (31) for φp to
obtain the following local update rule for φp:

φp←
jp∆l2 + ∑s Dpsφs

(1−αp)σp∆l2 + ∑s Dps
. (32)

We also update Dp at each stencil according to

Dp← F(Rp)

max(σp,σε)
. (33)

The threshold σε introduced here is discussed later in this section.
The local Knudsen numberRp is computed using the gradient vec-
tor at p, which is discretized as

∇φp =
1

2∆l




φi+1, j,k−φi−1, j,k
φi, j+1,k−φi, j−1,k
φi, j,k+1−φi, j,k−1


 . (34)

Algorithm 1: Gauss-Seidel FLD solver

Input voxel grids jp, σp, αp of extent L, voxel size ∆l
Impose extinction tolerance σp←max(σp,σε)
Compute RMS emission field j̄
Initialize voxel grids φp = ε j̄∆l, Dp = ε∆l, ∀p
Choose flux limiter F(R), from Table 2
Choose SOR factor, 0 < ω < 2
repeat

parallelfor ∀p (non-boundary red points) do
ComputeR via Eqn. (35)
Update Dp via Eqn. (33), using F(R)
Compute Dps = (Dp +Ds)/2 ∀ 6 points s
Compute φ

′
p via Eqn. (32), using Dps

Update φp← ωφ
′
p +(1−ω)φp, Eqn. (36)

Compute Rp via Eqn. (37)
end
parallelfor ∀p (non-boundary black points) do

As above.
end
Compute RMS of residual field, R̄

until R̄ < 10−6 j̄

We then compute

Rp =
max(|∇φp| ,ε j̄)
max(σpφp,ε j̄)

. (35)

This sets a lower bound ε j̄ on |∇φp| and σpφp, where ε = 10−20

and j̄ is the RMS value of the emission field, to deal with the case
when either φp or |∇φp| is extremely small.

For parallelization we use a Red-Black Gauss-Seidel update
process. We color the grid points as a red-black checkerboard,
then apply the updates of Eqn. (32) and (33) concurrently at all
red points (one “pass”) followed by a pass over all black points.
Each stencil computes and updates only its own local φp and Dp
values during the red (black) pass, which is then stored in the grid
for use in the following black (red) pass. The two passes constitute
one iteration. The φp and Dp grids are initialized to small toler-
ances φp = ε j̄∆l and Dp = ε∆l. Initially, these grid values do not
satisfy Eqn. (32) and Eqn. (33), but over a number of iterations
they converge to a consistent solution of both equations over the
whole grid. At the grid boundaries, we impose Dirichlet bound-
ary conditions with φ = ε j̄∆l by ignoring the voxels abutting the
six grid faces during the update. This introduces some unphysical
effects near the boundaries, but does not significantly corrupt the
solution in the bulk of the grid.

To improve the rate of convergence, we use the successive over-
relaxation (SOR) technique. Defining the over-relaxation parame-
ter ω, where 0 < ω < 2, the update of φp at each stencil is modified
to

φp← ωφ
′
p +(1−ω)φp (36)

where φ
′
p is the updated value from Eqn. (32). To monitor con-

vergence, we compute a normalized residual as the RMS of the
residual field R̄ (ignoring voxels close to the boundary, to avoid
boundary effects), divided by j̄. Writing Eqn. (32) as φp ←
numerator/denominator, we compute Rp as:

Rp = (numerator−φp ·denominator)/∆l2 . (37)

When R̄/ j̄ falls below a suitable tolerance, e.g. 10−6 for double
precision calculations, we regard the numerical solution as hav-
ing converged. An overview of the complete process is given in
Algorithm 1.
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Figure 5: Numerical solution for point source normalized fluence φ̃ (defined in Eqn. 25) for various albedos. In (a) and (b) we used the
CDA solver, and in (c) we used our FLD solver. In all figures, points indicate the numerical solution for φ̃ at given optical depth τ, and
solid/dotted curves show the CDA theory Eqn. (27) and Grosjean transport theory Eqn. (24) as labelled. In (a) we show the numerical
solution of CDA with Dirichlet boundary conditions set from the analytical solution. It closely matches the CDA theory, demonstrating that
the deviation of the numerical solve from the theory in (b) is entirely due to the effect of the φ = 0 Dirichlet boundary condition applied in
this case. In (c) we use the φ = 0 boundary condition.

In Eqn. (33), we impose a lower bound on the extinction σε,
as we found empirically that this tolerance has an effect on the
convergence rate in the presence of vacuum regions. This effect is
shown in Fig. 4(c), using our GPU solver applied to the Nebulae
dataset. A value of σε = 10−3/L (where L is the grid extent), cor-
responding to a maximum optical depth of 1000 box lengths, was
sufficient to ensure good convergence with all of our test datasets.

We implemented the numerical method described in both a
testbed solver in double precision on the CPU, and a high per-
formance GPU solver implemented in single precision via the
NVIDIA CUDA framework. In Figures 4(a) and 4(b) we show
the convergence properties of our CPU FLD solver on a simple
test case where the extinction field defines an embedded spheri-
cal cloud (with a vacuum exterior) and an internal emission field
generated via Perlin noise. These figures demonstrate that our nu-
merical method converges over a broad range of SOR parameters.

6. Results

In this section we apply our numerical FLD solver first to the point
source problem discussed in Section 4.1, and then to various het-
erogeneous datasets.

6.1. Point Source in Homogeneous Medium

We first applied our FLD solver to the point source problem pre-
sented in Section 4.1 to verify that it behaves according to the the-
ory. The point source was modeled as a single emitting voxel at
the center of the numerical grid, which had a resolution of 1273,
and a homogeneous extinction corresponding to τ = 4 across the
width of the grid. We set j within the emitting voxel to the recip-
rocal of the voxel volume in order to correctly discretize a unit
power point light. We ran both the CDA and FLD solvers (where
the CDA solver is simply the FLD solver with flux limiter set to
constant F = 1/3) for a range of albedos, and then extracted the
normalized fluence as a function of radial distance.

In Fig. 5, we compare our numerical results with the analyti-
cal solutions. Fig. 5(b) shows the solution obtained using CDA,
and Fig. 5(c) shows the solutions obtained via FLD using the

Levermore–Pomraning flux limiter. With the CDA solver, at low
to medium albedo we obtain a good match between classical dif-
fusion theory and the numerics, as expected since the CDA nu-
merical solver is based on CDA theory. At high albedo, the effect
of the boundaries becomes more pronounced, making the obtained
CDA solution deviate from the CDA theory of the case of an infi-
nite homogeneous medium. However, we do not expect a perfect
match between the FLD numerical solver and the Grosjean theory,
since FLD is merely an approximation to the full transport the-
ory. Despite this, with the FLD solver we obtain a rough match
to the Grosjean “ballistic” behavior at low optical depth, and the
Levermore–Pomraning flux limiter seems to produce a reasonable
quality match across the whole albedo range (the other flux lim-
iters produce a similar though slightly worse match). This indi-
cates that the FLD approximation of the transition to the transport
regime is working reasonably well.

6.2. Practical Examples

In this section, we compare renderings of heterogeneous datasets
obtained via FLD, CDA, and a volumetric path tracer which
serves as ground truth. The path tracer uses the standard Wood-
cock tracking method [RSK06] and was validated using Chan-
drasekhar’s analytical solution for multiple scattering in a slab ge-
ometry [Cha60].

In all cases we illuminated the volumes with a single direc-
tional external light source Ll . For the FLD and CDA tests, the
external lighting produces the multiple scattering source term
qri(x) = Llσs(x)T (x), which we computed via raymarching and
stored at the full resolution of the dataset extinction field. We solve
Eqn. (20) for the fluence φ(x) using Algorithm 1, with source term
qri(x). We use the Levermore-Pomraning flux-limiter in all exam-
ples (the other flux-limiters were tried and produced very simi-
lar results). Then via Eqn. (8) we complete the primary raymarch
Eqn. (3) to render the image. Since multiply-scattered light tends
to reduce higher-order angular moments, φ(x) has a much lower
spatial frequency than the extinction field and therefore resolving
it at the same resolution is not necessary. In fact, a major benefit
of the diffusion approach is the ability to decouple the computa-
tion of the multiply-scattered light from the singly-scattered light,
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Figure 7: Nebulae dataset rendered for albedo values from 0.1 (left) to 1.0 (right). The path-traced reference (top row) is compared against
FLD (middle row) and CDA (bottom row).

and solve for the multiply-scattered contribution more efficiently.
To exploit this we therefore, in all our examples, solved for φ(x)
on grids with a quarter of their original resolution. Fig. 6 demon-
strates that the effect of solving for the multiply-scattered light on
such a coarser grid has a low visual impact.

We implemented all three approaches in single precision using
the NVIDIA CUDA framework. When measuring performance,
we included in the CDA and FLD cases the time taken for primary
raymarching and generation of the source term (light baking), as
well as the time taken during the diffusion solve. All results were
obtained with a NVIDIA GTX TITAN GPU. We ran the diffusion
solver until convergence at the level of R̄/ j̄ = 10−4, which is the
practical limit for the single precision computation. With all our
path-traced images, we used 1000 Monte Carlo samples per-pixel,
which we found to strike a good balance between image quality
and computation time.

All images were rendered at a resolution of 10242 pixels,
and tone-mapped using standard gamma compression. For each
dataset, exposure was adjusted for ground truth rendering to avoid
blown highlights and then the same tone mapping was used for
FLD and CDA.

The Nebulae example, shown in Fig. 1, was generated from a
noise-displaced implicit surface. Color is introduced by a color-
dependent scaling of the extinction field. The resolution of the

(a) Original resolution (b) Quarter resolution

Figure 6: Comparison of our method when solving for multiply-
scattered light using FLD at original resolution 2003 (left) and at
resolution 503 (right).

dataset is 2003 and the albedo is 0.9. Note the differences of the
shadowed regions and the volume blob at the bottom of the dataset,
which only receives indirect light coming from other illuminated
parts of the volume. While CDA is completely black in those re-
gions, FLD finds a solution which is much closer to the path-traced
result. To compare the behavior of both methods as albedo is var-
ied, we show in Fig. 7 that the rendering of the Nebulae dataset
with FLD produces better results than CDA over the whole range
of albedos, though with a more pronounced difference at high albe-
dos.

The example in Fig. 8 is based on a CT-scan dataset, which has
a resolution of 256×329×256. In this example, the density field in
the original dataset is mapped to a per-channel albedo field and a
(color channel independent) extinction field via a transfer function
which colors tissue and bone areas distinctly. The image shows
that FLD better captures indirect light at the neck and the translu-
cent nature of tissue in the path-traced rendering, when compared
to CDA.

The example in Fig. 9 is based on a fluid simulation with a res-
olution of 201×272×230. There is an external light source and a
constant albedo of 1.0. In addition, there is a black body emission
field which is calculated from the temperature field of the simula-
tion. Again FLD matches the ground truth closer than CDA.

These examples demonstrate that FLD produces results which
are closer to path tracing than CDA for a variety of datasets and pa-
rameterizations. Significant improvements over CDA appear espe-
cially in situations with indirect lighting or transitions from highly
dense media to regions of low density or vacuum. As a modified
diffusion theory, FLD of course still deviates to a certain extent
from the true RTE solution, as all diffusion methods throw away all
but the lowest angular moments of the radiation field. Our perfor-
mance measurements indicate that FLD is roughly twice as com-
putationally expensive as CDA, but is still very fast when com-
pared with path tracing. We noted that in our GPU implementa-
tion, this loss in performance is dominated by the additional mem-
ory access per voxel which is required to compute the Knudsen
number.
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(a) Path tracing (19 min) (b) FLD (1.8 s) (c) CDA (1.3 s)

Figure 8: MANIX CT-scan dataset with spatially varying albedo. Extinction coefficient and albedo are driven by transfer functions. Note
how FLD better captures indirect light at the neck in comparison to CDA.

(a) Path tracing (21 min) (b) FLD (0.7 s) (c) CDA (0.5 s)

Figure 9: Fluid simulation dataset lit by internal blackbody emission and an external light source.

7. Conclusion

We introduced the flux-limited diffusion approximation for multi-
ple scattering in participating media. Flux-limited diffusion origi-
nated in the field of astrophysics as an improvement to CDA which
produces results of higher accuracy when applied to heterogeneous
media containing regions of low extinction or vacuum. While FLD
is slightly more computationally expensive than CDA, it is still
much faster than path tracing. We provided a numerical method
which we checked for convergence and validated using an analyt-
ical solution for scattering of a point source. We rendered various
heterogeneous volumetric datasets with FLD, CDA, and path trac-
ing, and demonstrated that FLD produces a better match to path-
traced ground truth than CDA.

For future work, we suggest that the extension of FLD to
anisotropic phase functions may be of particular importance. In
the anisotropic radiative diffusion theory, the extinction is replaced
by a “reduced extinction”, σ

′
t = σt(1−αg), where g ∈ [0,1] is the

phase function anisotropy factor [Sta95, JMLH01]. It causes a di-
vergence in the diffusion coefficient, and correspondingly the flux,
as g→ 1 (strong forward scattering) and α→ 1 (high albedo),
even in optically thick media. Thus, in the case of strongly for-
ward scattering high-albedo media, flux-limiting is an essential in-
gredient to obtain physically accurate results from diffusion meth-

ods. This is of practical importance in the application of diffusion-
based methods to, for example, the rendering of Mie scattering
[BNM∗08, YIC∗10] in atmospheric clouds. The form of the flux
is also different from Eqn. (11) in the presence of anisotropy,
with an additional term involving the first moment of the external
flux [Sta95, MSM∗04], which suggests that a detailed theoretical
analysis is needed to understand how to achieve flux limiting in
this case.

There might also be substantial performance benefit to be
gained by developing a more sophisticated numerical algorithm
for solving the flux-limited diffusion equation than the one pre-
sented here, such as a non-linear multigrid solver [BHM00]. Fi-
nally, it is worth noting that any existing graphics technique which
is based on classical diffusion theory, such as the work of Arbree et
al. [AWB11], could be easily augmented with the FLD technique
for improved accuracy.
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