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Abstract
Color, as one of the most effective visual variables, is used in many techniques to encode and group data points
according to different features. Relations between features and groups appear as visual patterns in the visualization.
However, optical illusions may bias the perception at the first level of the analysis process. For instance, in
pixel-based visualizations contrast effects make pixels appear brighter if surrounded by a darker area, which
distorts the encoded metric quantity of the data points. Even if we are aware of these perceptual issues, our visual
cognition system is not able to compensate these effects accurately. To overcome this limitation, we present a
color optimization algorithm based on perceptual metrics and color perception models to reduce physiological
contrast or color effects. We evaluate our technique with a user study and find that the technique doubles the
accuracy of users comparing and estimating color encoded data values. Since the presented technique can be used
in any application without adaption to the visualization itself, we are able to demonstrate its effectiveness on data
visualizations in different domains.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—

Display algorithms

1. Introduction

Color, after position, is among the most effective visual vari-

able to encode information [Tre85]. Color is pre-attentively

processed and thus, we perceive relations between features

and groups of data points. Patterns are unconsciously de-

tected and correlated by our perception. Often perception

dominates our cognition and therefore, color mapping must

obey perceptual processes in order to provide faithful data

visualizations.

Optical illusions may bias the analysis process at percep-

tual and cognitive levels. In our cognition, illusions are caused

by assumptions about the relation of visual objects which lead

to unconscious inference. Perceptual illusions are caused in

the processing of physical stimuli. Incoming light is first

processed by nerve cells that measure the intensity of light

of different wavelengths (short, mid and long wavelengths).

This information is passed to cells that combine this infor-

mation to perceive luminance and color. In order to detect

and identify natural shapes, objects, and movement our visual

perception has evolved to be good at detecting edges and

determining different color hues. Amplifying contrasts is a

means of achieving this.

Figure 1: Pixel-cell based visualization for time series data.
The highlighted values share the same data value of 0.6.
Due to the surrounding regions in the visualization, contrast
effects let us perceive the data points differently.

In data visualizations, these contrast effects can be harm-

ful. Ware [War88] has quantified the bias of contrast effects,

concluding that this can cause errors of up to 20 %, leading to

analysts grouping wrong data points and detecting relations

or extremes that do not exist in the data. Figures 1 and 2

demonstrate the extent of these contrast effect. As with most

optical illusions, we cannot compensate for these effects even

if we are aware that the representations are wrong.

There are sophisticated defined guidelines and discussions

of colormap usage in the field. Colormaps have been devel-
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Figure 2: Standard examples of simultaneous contrast. (Top) Original images. The gray patches share the same gray values
but are perceived differently (a) or as a gradient (c). The cats (e) share the same gradient from less saturated blue to yellow.
(Bottom) Compensated images. The patches and cats are almost perceived equal. (b) Our method reduces the contrast effect
on the patches to faithfully represent the gray value (3). (d) The method reduces the perceptually induced gradient (6). (f) Our
method improves the global gradient and average color of the cats (7).

oped to avoid contrast effects and there is still a discussion

whether such scales are intuitive and support enough distinct

color levels to express continuous data. But of prime impor-

tance is that color perception is relative, so that the perceived

color of an area of a display can only be predicted, if the

surrounding colors are known. Thus, these guidelines cannot

guarantee unbiased displays.

Our contribution. In this paper, we present a postprocess-

ing technique for compensating contrast effects in visualiza-

tions as illustrated by the standard examples in Figure 2. We

claim the following contributions: 1) A method for compen-

sating physiological color effects based on color appearance

models and optimization algorithms that can be used on any

data visualization as a postprocessing step; 2) A definition

of the optimization goal and the corresponding perceptual

metrics; 3) A general heuristic to approximate the gradient of

compensation; 4) An evaluation of the perception model and

the compensation, based on realistic tasks and data.

While computational models for physiological effects exist,

cognitive effects are far more complex and concrete theories

or models have yet to formulated. We therefore exclude cog-

nitive effects from the scope of this paper.

2. Related Work
The influence of contrast effects on data visualizations has

been quantified and evaluated in [CM83, War88, Bre97], who

indicate that their presence significantly influences users

when they look at visualizations. There already exist strate-

gies to handle these effects. Appropriate colormaps for spe-

cific tasks and specific data properties is a well discussed

topic in the literature and general guidelines on selecting

color maps can be found in [RO86, War88, BRT95, RTB96].

In addition, colormaps for segmentation and categorical data

have been discussed previously [Hea96, HB03]. Ware found

that the metric task (reading metric quantities) is signifi-

cantly influenced by contrast effects, when using a color

scale along one chromatic/achromatic channel. Some solu-

tions [War88, LH92, Kei00, KRC02] therefore propose spiral
color maps, which maximize color differences by varying

over hues with linear increasing intensity, in order to create

color maps that alternate between our chromatic channels,

thereby reducing the probability of contrast effects. A method

for predicting simultaneous contrast on maps is presented by

Brewer [Bre96] — the models and guidelines create a set of

colors that to a high extent do not produce contrast effects in

the final visualization. Recoloring tools [KOF08, FRGG13]

have been developed that modify website colors to make

them accessible for people with color vision deficiency while

preserving the subjective response and color differentiability.

The perception of colors on the display is not taken into

account in all the above techniques. Without knowing the

surrounding color of a data point it is impossible to accu-

rately estimate its perception a priori. We therefore propose a

postprocessing method to cope with these effects.

How color is perceived and how to model illusions is still

a focus of research. Hunt et al. [HP11] and Fairchild [Fai13]

offer a full discussion of color appearance. The standardized

color appearance model CIECAM02 [MFH∗02] is based on

the results of the Hunt model but is adapted for industrial

practical usage. These models are still based on certain view-

ing conditions and fixed patch sizes. Further advances for

232



more complex stimuli of natural scenes and varying view-

ing conditions have been made in the iCAM framework by

Fairchild et al. [FJ04].

Many computational models for brightness effects have

been developed over the last decades. For instance, the an-

choring theory of Gilchrist et al. [GKB∗99] and Scission

theory of Anderson et al. [AW05] try to explain these effects

on high-level (cognitive) interpretation of a scene by seg-

menting and processing the complex scene into frameworks

and layers. In contrast, low-level models such as the ODOG

model of Blakeslee et al. [BPM05] successfully use simple

Gaussian based convolutions to predict a variety of contrast

effects such as simultaneous contrast, Mach bands, Hermann

grid and White’s illusion. A full introduction and discussion

of achromatic vision can be found Gilchrist’s book [Gil06].

3. Method for Compensating Contrast Effects
Our method to compensate physiological biases in data visu-

alizations is an optimization process. The goal is to find an

image I′ that is perceived as the original image I and there-

fore faithfully represents the data. Our method finds I′ in

Figure 3: Schematic approach. The method iteratively re-
duces the difference between perceived and original image.

an iterative process illustrated in Figure 3: First, the method

estimates in step t the bias for a given input image It at each

pixel It
p. Then these effects are compensated by changing the

color of pixel It
p and its surround St

p to reduce the bias. These

steps are iteratively performed until the bias for all pixels is

compensated. The bias at each pixel is estimated by a percep-

tion model PM that predicts the perceived image Pt of It . If

the perceived image PM(It ,St) �→ Pt is equal to image I then

the data is faithfully represented. The goal of compensation

can thereby be defined by minimizing the difference of the

perceived image and the original image (1).

min(|PM(I,S)− I|) (1)

A sound perception model PM is therefore the basis of the

compensation method. Since vision research still advances

to optimize or create new models to cover all physiological

effects and some visualization techniques may suffer under

different effects, we propose a method, where the perception

model is an updateable module.

If the model PM is continuous, then the effects on one

pixel Ip can be inverted and color I′p, which is correctly per-

ceived, can be estimated. Another solution is to change the

surrounding pixels Sp in order to faithfully represent Ip. Both

work when considering a solitary pixel, but in a multi-pixel

display the adjustment of one pixel will change the perception

of other pixels. Therefore, the compensation method must

find an optimum to compensate the effects for the whole visu-

alization. Our process therefore requires perceptual metrics

as cost functions to evaluate a solution It , a sound perception

model PM, and an optimization algorithm to find solutions

that meet the compensation goal (1).

3.1. Cost functions

In the following sections, we define our cost functions based

on perceptual metrics and different visualization tasks as de-

fined by Tominski et al. [TFS08] that are based on a task

model of Andrienko and Andrienko [AA06]. The visualiza-

tion tasks are grouped in two levels: elementary and synoptic

tasks. While elementary tasks address individual data points,

synoptic tasks consider sets of values or data points.

Color distances are the base of all of our perceptual metrics.

We use the DIN99 color space for distance measurements.

This color space is an extension to CIELAB that accurately

models small color distances and allows vector arithmetics.

Its distance metric accords to CIEDE2000.

ΔE(c1,c2) =
√

ΔL2 +Δa2 +Δb2 (2)

3.1.1. Cost Functions for the Elementary Tasks

Any change in the perception of the original color of data

points misleads users in the localization, identification and

comparison tasks. Therefore, the costs have to increase if a

data point is perceived differently as the original color. While

the foreground F that holds the data must be accurately visu-

alized, the background B can be used for additional space to

reduce the effects on the foreground. We therefore differenti-

ate between foreground and background.

The first measure (3) computes the difference between the

original color and the perceived color of each pixel in the

foreground. This can also be measured in similar fashion

for the background (4) in order to avoid disturbing halos

or artifacts. In order to avoid further misinterpretation of

the background, the cost function (5) measures the distance

of a background color to the closest color CM(Pj) of the

color map. If the distance is very close (ΔE < 5), users may

interpret the background as a data point, which harms identi-

fication and localization of data values.

f1(I,P) :=
1

|F| ∑
p∈F

ΔE(Pp, Ip) (3)

f2(I,P) :=
1

|B| ∑
p∈B

ΔE(Pp, Ip) (4)

f3(I,P) :=
1

|B| ∑
p∈B

max(0, 5−ΔE(Pp,CM(Pp)) (5)
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3.1.2. Cost Functions for the Synoptic Tasks

The faithful representation of single data values is ensured

by the measures above. However, these measures do not pre-

serve local and global relationships. The local measure (6)

preserves the distance between each pixel and its neighbors

and thus spatially connected structures. It effectively removes

biased perceptual gradients as shown in Figure 2d). An is-

sue with preserving global structures or color patterns is that

they may not be spatially connected and not known a pri-

ori. This makes these patterns hard to preserve. The method

can, however, ensure that the global relations and the aver-

age impression between regions of the image are faithfully

represented such as the cats in Figure 2f). The constraint of

faithfully representing each data point is therefore relaxed in

order to preserve the global relationships of data items. This

can be obtained by computing a Gaussian pyramid of the orig-

inal and perceived images with δ = 2◦ as first level according

to the attentional center of the CIE standard observer (7).

Each pixel is compared to its according position in the pyra-

mid levels. We decided to use a Gaussian pyramid, because it

measures the perception of the images at different resolutions

and thereby accounts for structures of different granularity.

f4(I,P) :=
1

|F| ∑
p∈F

√
1

|Np| ∑
n∈Np

(ΔE(Pp,Pn)−ΔE(Ip, In))
2

(6)

f5(I,P) :=
1

|G| ∑
Gl∈G

1

|F| ∑
p∈F

ΔE(Gl(P)p,Gl(I)p) (7)

3.1.3. Combinations of Cost Functions

Since all of the cost functions are based on the color distance

measure, the cost functions do not have to be scaled and can

be aggregated in a weighted sum.

f (I, It ,PM) :=
n=5

∑
i=1

λi · fi(I,PM(It)) (8)

The weights of the cost functions depend on the visualization

task, data and colormap. A recommendation and evaluation

of weights is still ongoing work. In our experience, equalizing

the weights of all cost functions beside f2 gives satisfactory

results. We assign f2 a very low weight since this allows

the background to compensate effects in the foreground with

regards to f3.

3.2. Perception Model

The iCAM framework has been developed as an enhancement

of the standardized CIECAM02 color appearance model for

image processing. It is robust in predicting color appear-

ance and contrast effects, such as simultaneous contrast and

chroma chrispening.

3.2.1. Revision of the iCAM Framework
The iCAM framework processes the image in the following

way: First, the image is separated into three intensity images

according to the response signals (short, medium, and long

wavelengths) of the cones in the human eye. Second, each in-

tensity image I is convolved with a Gaussian kernel to model

the perceived surround Sp of each pixel. Then, the model

adapts each color at pixel p of image I to its surround Sp
and to the reference white D65 of sRGB. This local chro-

matic adaptation models a variety of contrast effects. The

reference white can be used to model ambient light or other

lightening conditions. The parameter ε controls the degree of

adaption. The higher ε the more contrast is reduced. More de-

tails can be found elsewhere [FJ04, FJ05]. The constants are

selected with c1 = 0.94, c2 = 0.06, and c3 = the maximum

of the LMS channel [94.92,103.54,108,74] in the CAT02

color space [MFH∗02].

PM(I,S,ε) =
(

c1 · D65

c3 · (Sp/Ip)
ε + c2

)
· Ip (9)

3.2.2. Our Extensions to the iCAM Model
The size of the kernel that models the surround appearance

is hereby a critical parameter. The kernel size is estimated in

iCAM by 20% of the image width. According to [SCT∗13]

and our study, we found that this is insufficient since simul-

taneous contrasts are increased in images with high spatial

frequency. We therefore adjust the kernel to the spatial fre-

quency of the image. We filter the image by difference-of-

Gaussians of varying sizes (sn
i=0 = 2i and with a fixed size

ratio of 1 : 1.6), which accords human perception of edges

in natural scenes [You87]. The root-mean-square response

of each filter result indicates the presence of the according

frequencies. The filter sizes are then pooled according to their

responses, which approximates the average kernel size that

will consider most of the spatial frequencies of the image.

The second critical parameter is the exponent that steers

the adaption. There is a difference between bright centers

with dark surrounds and dark centers with bright surrounds,

which is reported by Blakeslee et al. [BM99]. We differenti-

ate between these cases (10). In our experiments, we found

that ε0 = 0.5 (adapted from [FJ05]) and ε1 = 0.6 provide

satisfactory results.

PM′(I,S) := PM(I,S,ε), with

{
ε = ε0, if Sp > Ip

ε = ε1, else.
(10)

3.3. Optimization Algorithms & Heuristics
The optimization goal (1) can be achieved by minimizing the

sum of cost functions (8). The problem space is non-linear

and may be non-convex with non-linear constraints depend-

ing on the perception model. The model itself may be con-

tinuous, differentiable and homogeneous. These properties

significantly influence the selection of an efficient optimiza-

tion algorithm. Since we do have a meaningful initialization
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for the optimization and a rough approximation of the gradi-

ent of compensation, heuristics have great potential.

Heuristics. One of the most effective group of methods to

optimize a function are gradient methods. By inverting the

perception model the gradient of compensation can be esti-

mated. Some models such as our model are not differentiable

and thus, the gradient can only be approximated. This can be

revealed by determining the direction (vector in the DIN99

color space) of contrast effects. For example, a bright patch

of gray is perceived even brighter if the surrounding is dark.

Thus, the perception model predicts an increase of intensity

for the patch and a decrease of intensity for the surrounding.

In order to compensate this effect, either the patch itself has to

be made darker to reduce the effects on itself or the surround-

ing made brighter to compensate the effects on the patch.

Our iterative heuristic approximates I′ in step t with It .

It starts in step t = 0 with I0 = I. The effects on one pixel

ΔIt
p can be estimated by calculating the difference of the

perceived image PM(It ,St) to the original image I (11). If

the model PM is roughly continuous and homogeneous, the

effects will influence a pixel It+1
p in the same way. Therefore,

the difference between perceived and original pixels can be

reduced if, It+1
p is selected such that It+1

p +ΔIt
p = I. In the ex-

ample, the bright patch will become darker (inverse direction

of ΔIt ) in order to compensate the effects on itself.

ΔIt = PM(It ,St)− I (11)

A pixel It
p can also change its color to reduce the effects on

other pixels. The pixel measures the effects ΔS(It
p) (12) on its

surround Sp given by PM. The effects on surround pixels are

summed according to the weights of the influence function

s(Δx,Δy) of the perception model (Gaussian kernel in iCAM).

If pixel It
p adapts in the direction of ΔS(It

p), it will reduce the

contrast effects for its surroundings. In the example, the dark

surround will become brighter (direction of ΔS(It
p)) in order

to compensate the effects on the bright patch.

ΔS(It
p) = ∑

n∈Sp

ΔIt
n · s(Δxp,n,Δyp,n) (12)

The two different methods of compensation can be combined

with Eq. (13). As describe above, inversion of the perception

model is not enough, since changing one pixel will influence

its surrounding. We calculate the compensated image I′ with

multiple iterations and control the step size of compensation

with ϕ1,2 ∈ [0,1]. The pixels of It+1 will adapt to the change

of their surround in It . In practice, we set ϕ1 > 0,ϕ2 = 0 for

foreground pixels and ϕ1 = 0,ϕ2 > 0 for background pixels.

In this way, the background, which does not contain valuable

data, compensates the effects on the foreground.

It+1
p = It

p −ϕ1 ·ΔIt
p +ϕ2 ·ΔS(It

p) (13)

It should be noted that this computation of the gradient is

independent of the perception model. The required influ-

ence function s(Δx,Δy) can be approximated by Gaussians

or difference-of-Gaussians for most computational models.

3.4. Instantiation of the Method
For our experiments and applications we use the following in-

stantiation and parameters: We use simulated annealing with

multiple threads. Each thread is initialized with the original

image as starting point for the optimization. In each iteration

the neighbor solution is determined by Eq. (13).

Parameterization. The perception model is parameterized

as described in Section 3.2.2 with ε0 = 0.5, ε1 = 0.6. The step

sizes of the iterations are set to ϕ1 = α,ϕ2 = 0 for foreground

pixels and ϕ1 = 0,ϕ2 = α for background pixels. We widen

the search space by randomizing α∈ [0,1] in each thread. Our

tasks are focused on the elementary metric readings and syn-

optic identification of local neighborhood trends. Therefore,

we prioritize cost functions f1– f4 by equalizing their weights

in the iterative steps and exclude cost function f5 that pre-

serves global relationships. For the final decision, we select

the optimum solution that minimizes all cost functions f1– f5.

Bounding constraints. Another issue is the limits of the dis-

play. sRGB does not support all the colors that are defined

in perceptual color spaces such as DIN99. One solution is to

integrate the borders of the defined sRGB colors as non-linear

constraints in the optimization as presented in [LSS12]. We

select a heuristic for our iterative method, which samples the

defined sRGB color space in DIN99. Pixels that become unde-

fined in one iteration are assigned to the perceptually closest

color. In the next iterations, the pixel and its surrounding

pixels will adapt to this constraint.

4. Evaluation
4.1. Experiment 1
The goal of the first experiment was to evaluate the percep-

tion model on the basis of pixel-cell based visualizations. We

measured the accuracy of participants decoding colored infor-

mation and compared these results to the predicted values of

the perception model. Further, we measured the error between

participants and the original data and estimated whether the

accuracy of participants will improve, if compensation is

applied. Our hypotheses were:

H1 Predicted values of the perception model are equal to
participant results. In the ideal case, the perception model

decodes data values similar to a participant.

H2 Participants are as accurate or better with our method
than with standard mapping. Our method reduces the con-

trast effects and therefore improves the participant results.

Task. One-dimensional time series were visualized in a cell

based visualization above and under an interactive drawing

field (see Figure 4). The participants were asked to estimate

the quantity of each pixel cell and the trend of the time series.

They were able to redraw the trend by clicking on pixels,

dragging the line (trend) and correcting any errors by sim-

ply adjusting the line accordingly. The colormap was shown

above the field for reference and participants were told that

the lowest and highest values in the colormap correspond to

the lowest and highest positions in the field.
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Such complex tasks include biases. We see a gap between

perceiving the data values on the screen and expressing the

cognitive processed information to the drawing field. Also

the participant may be influenced by the line drawn before.

However, participants have to cognitively process sets of data

values and recognize trends, which is realistic compared to

real data analysis scenarios.

Figure 4: Task of experiment 1. Participants had to draw a
line (shown in yellow) that estimates the value at each point
in the time series shown above and below the drawing field.
The colormap was given for reference.

Experiment Factors. The experimental factors were col-

ormap and color mapping (with or without our method).

We selected one achromatic scale and three chromatic

scales shown in Figure 5 on the basis of the guidelines

in [War88, BRT95, Kei00]. All colormaps were perceptually

equally spaced by interpolations in the DIN99 color space.

The achromatic scale continuously increased in lightness

from dark gray to white. The first linear chromatic scale de-

creased in saturation from blue to white. The second linear

scheme had equal lightness and only varied over hues from

red to blue. The fourth multihue colormap varied over hues

with continuously increasing intensity. Note, that some multi-
hue sequences such as the common rainbow sequence share

the problems of non-perceptual uniformity, false coloring

and attention steering that are harmful in real analysis sce-

narios. These issues are reduced in the selected colormap

of [Kei00] (see Section 2).

4.1.1. Experimental design
A user study with 40 participants was conducted. The experi-

ment was split into two parts: In the first part, the data was

collected to evaluate the perception model. In the second part,

the mappings (with and without our compensation method)

were alternated to measure how the results of participants

change when compensation is applied.

First part. 20 participants performed the task on different

colormaps. The participants were randomly assigned to one

colormap and trained on the tool and colormap. Each partic-

ipant fulfilled two phases with a break in-between. In each

phase, the participants performed two training tasks to ensure

that they understood the colormap correctly followed by three

real tasks.

Second part. The goal was to measure the improvement

of accuracy of participants with our compensation method.

Therefore, the experiment followed a within-subject design

and another 20 participants were randomly assigned to the

colormaps. They were trained on the tool and then performed

2 phases with each 4 tasks alternating between the mappings

in randomized order.

Participants. The participants (14 female, 26 male) were

mixed graduated and non-graduated without background of

information visualization but they were all familiar with info-

graphics. The ages ranged from 19 to 57 with an average of

27. 37 participants had normal or corrected to normal color

vision. Three male participants had deuteranopia.

Data. The data originated from power consumption measure-

ments of a Smart Grid environment, where the analysis of

past data requires a faithful visualization of large volumes of

time series data. A set of 40 similar time series was selected

from this data source for our experiment. In each task, a time

series was randomly selected from this set and visualized.

The time series were normalized.

Apparatus. The study was performed under controlled lab

conditions. The monitor was color calibrated with a resolution

of 1920 × 1200 pixels. Each pixel cell had a width of 0.125◦
of the viewing angle. The ambient light was controlled to

normal daylight conditions, without reflectance on the screen.

The viewing distance was approximately 60 cm. The intro-

duction, training and tasks were web-based and standardized.

Metrics. We measured the error of participants in the

task (estimating the quantity of each cell). We therefore com-

puted the Euclidean distance between the original time series

and the participant results. In order to evaluate the percep-

tion model, the result values of the perception model were

predicted for each time series-colormap combination. The

difference of participant results, as well as the difference

of the perception model and participants were estimated by

calculating the pairwise Euclidean distance. The time for a

participant to finish each task was recorded.

4.1.2. Results
Figure 5 shows a summary of the results.

Evaluation of perception model. We found no significant

difference (U-test: p>0.5) between the pairwise participant-

participant distances (median=1.51, iqr=0.84) and the pair-

wise model-participant distances (median=1.44, iqr=0.30).

Evaluation of compensation method. In our experiment,

there was no significant difference (H-Test: p > 0.6) between

the linear (intensity, saturation and hue) colormap-groups.

The error of the linear-group (combined: median=0.98,

iqr=0.34) was significantly greater (U-Test: p < 0.01) than

the error of the multihue-group (median=0.80, iqr=0.24). The

results of the within-subject comparisons (see Figure 5b))

revealed that there was no significant shift of error location

and ratio of error scales between our method and a standard
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Figure 5: Results of experiment 1. (a) Pairwise distance measure for participant-participant and participant-model comparison.
(b) Error of participants in the metric task using standard mapping and our compensation method.

mapping. However, the inter-quartile ranges and medians

were smaller when compensation was applied for all groups.

Efficiency. The choice of colormap had significant influence

on the efficiency of participants performing the task (H-Test:

p < 0.001). The red-blue colormap group performed worse

with a median of 209 seconds (iqr=84.75). The participants

mentioned that they had problems to interpret differences in

the middle of the colormap. The multihue group (median=94,

iqr=33) was slower than the other linear groups (combined:

median=81, iqr=56), however, there was no significant differ-

ence (U-Test: p > 0.2).

4.2. Experiment 2
The goal of our 2nd experiment was to measure the contrast

effects on the estimation and comparison of metric quantities,

and how participants improve when our method is applied.

Our hypotheses were as follows:

H3 Participants assign more data points to the correct data
ranges with our method than with standard mapping. Us-

ing the method, we expected participants not to overesti-

mate and underestimate values in high frequent areas of

the image.

H4 Participants increase the number of correct comparisons
of data points with our method than with standard mapping.
We assumed that participants perceive the differences of

data points correctly with our method.

Tasks. The task was inspired by Ware’s metric task [War88]

for colored data visualizations. Ware showed the participants

a visualization and asked participants to match the color at

a given pixel (indicated with a cross-hair) with a given set

of colors. We adapted this method to our experiment but ex-

tended it by direct comparison in the intentional presence

of contrast effects. According to Ware [War88], participants

have up to a 20 % error in the estimation of the correct quan-

tity if a linear colormap is used. Since we were measuring

cases of contrast effects, fine granular data ranges would not

increase the expressiveness of our measurements. Therefore,

the data range was split into three equally sized parts (low,

middle, high). Two data points were marked that share the

same data value but had different surrounds (see Figure 1).

We ensured that the data values were at least 5 % away from

the closest different data range. Users were asked to assign

the points to the data ranges. If a participant assigned the

points correctly to same data range, we asked which of the

data points was higher or whether they were equal.

4.2.1. Experimental design & metrics
The experiment was a within-subject design with 20 par-

ticipants of the first experiment (part two). After finishing

experiment 1, each participant was shown 32 different visu-

alizations, as illustrated in Figure 1 for the time series data

(encoded with their colormap of experiment 1). Our method

was applied in half of the visualizations with randomized or-

der of the mappings. For each of the 32 tasks we counted the

number of correct data value assignments and comparisons.

4.2.2. Results
The summary of results is illustrated in Figure 6.

Figure 6: Results of experiment 2. (Top) The percentage
of correct data value assignments increases if our method
is applied on perceptual linear colormaps. (Bottom) The
percentage of correct data value comparisons does increase
with our method.

Estimation of quantity. As in experiment 1, there was no

difference between the linear colormap groups (H-Test: p

> 0.3). Again, the linear-groups (combined: median=0.81,

iqr=0.44) assigned significantly less (U-test: p < 0.001) data

points to their correct value range than the multihue group

(median=1.0, iqr=0). The within-subject comparisons re-

vealed a significant increase in the number of correct par-

ticipants answers (paired U-Test: p < 0.001) with our method
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(median=0.91, iqr=0.25) compared to standard mapping (me-

dian=0.66, iqr=0.38) for the linear groups.

Direct comparison. Users of all groups showed a signifi-

cant increase (paired U-Test: p < 0.05) of correct answers

with our method. In the linear groups the percentage of cor-

rect answers increased from (median=0.25, iqr=0.125) to

(median=0.56, iqr=0.5) and in the mutlihue group from (me-

dian=0.5, iqr=0.5) to (median=0.875, iqr=0.22).

4.3. Discussion
We found that the predicted values of the perception model

were close to the participant results. In general, the perception

model was more accurate than participants. Uncertainties of

the complex task and abilities to master the colormap and tool

varied from participant to participant, which was expressed

in the pairwise differences. Since there was no significant

difference between the participant-participant and participant-

model distances, we conclude that the model behaves like an

average participant and thus, we can approve H1.

We can confirm the finding of Ware [War88] that col-

ormaps that vary over hues with linear increasing intensity

perform well for the metric task of reading metric quanti-

ties from a colored display. In all groups, the inter-quartile

ranges and medians decreased with our method, which in-

dicates that the accuracy of all participants was improved

and thus, H2 can be approved. Even in combination with

our method, grayscale mapping was not as accurate as the

standard multihue colormap, which indicates that there might

be a maximum of accuracy that can be achieved by each col-

ormap. This confirms the guidelines of the community that

colormaps must match the visualization task and data, even

with our compensation method.

The second experiment revealed a significant influence of

contrast effects on linear scales as already discussed and quan-

tified by Ware [War88]. In contrast, participants were correct

with the multihue colormap, because the granularity of data

ranges was too coarse for this colormap. However, most of

the participants were wrong in the comparison. Our method

did significantly improve the correctness of participants in

both tasks. Thus, we can approve H3 and H4.

Another issue is raised by the efficiency of participants.

The multihue colormap did outperform the other mappings in

terms of accuracy in the metric task and the low probability

of contrast effects. However, participants were 14 % faster

with the grayscale and saturation based colormaps than with

the multihue colormap. This might be due to the issues of

intuitiveness, since it is easier to identify trends in perceptual

linear colormaps.

5. Applications
5.1. Purple America Map
The Purple America map of Vanderbei [Van12] visualizes

the results of the 2012 presidential election in the United

States. Figure 7 shows a detail of the western part of this

map. The visualization uses color to show the proportion of

votes for Democrats (blue), Republicans (red), and others

(green) for each congressional district. The color of a district

results from a mixture of these colors corresponding to the

percentage of votes. This color choice is solely based on

the colors associated with the parties and does not consider

perceptual effects.

This usage of blue and red leads to very strong color con-

trasts, which gives rise to small areas of one color appearing

stronger when surrounded by the other color. For instance,

the color of the districts Baine/ID (A) and Big Horn/MT (C)

appear similar in Figure 7a). Looking into the numbers the

distance between (A) and (C) is 5.7 %. However, this is the

same distance of (A) to (B) with 4.3 % but they appear differ-

ent. The contrast between the red surround of (A) causes the

district to appear more bluish and thus, similar to (C).

The result of our compensation method on this image is

shown in Figure 7b). The compensation changed the color of

almost all districts. The magnitudes of differences are shown

in Figure 7c). In total, the compensation method reduced

the contrasts in the image. Not only the contrasts between

districts are reduced but also contrasts between the border of

the map and white background. As an effect of the compensa-

tion the Purple America map appears even more purple than

before. The real differences of the colors of the districts (A),

(B), and (C) are visibly better. It is clear that the share of blue

increases from (B), to (A) and (C), which is a more faithful

representation of the data.

5.2. News Visualization
Another example of compensating contrast effects in a news

visualization can be found in Figure 8. The original visu-

alization in Figure 8a) plots a semi-transparent triangle for

each news item. The color of the triangle (red, white, blue) is

mapped to the sentiment of the item (negative, neutral, posi-

tive). The different rows represent different news categories

at different days. The technique clusters news visually. When

several items of news of the same category are published at

the same time, the triangles overlap and a continuous block

of news becomes visible.

In Figure 8a) we can see that the differing contrast between

the triangles and their background alters the appearance of

triangles. The perceived saturation of single triangles depends

on their color. For instance, the triangles in the fourth row

appear to have different saturations. Some appear as saturated

as the groups of triangles in the first or third row, which is

actually a perception error. Our compensation method takes

the color contrasts into account and generates Figure 8b). In

this image, the triangles in the fourth row appear to have the

same saturation as in the areas with many triangles (in the

first and third row). In the difference image in Figure 8c)

one can see that the compensation method has changed the

triangles differently to compensate for the contrast effects.

Through the black background, we over estimate the bright-

ness and differences of triangles in the original image, which

is reduced by our method.
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Figure 7: Detail of Vanderbei’s Purple America map of the 2012 presidential election in the US [Van12]. The images show the
original a) and compensated b) visualizations. The normalized difference between a) and b) is shown in c). The labels in c) mark
the districts or counties Baine/ID (A), Teton/WY (B), and Big Horn/MT (C). The colors in a) appear crisp and saturated due to
color contrast effects. Our compensation removes color contrasts and the resulting image b) appears less saturated with dull
colors but represents the data faithfully. In b) the share of blue increases from (B) to (A) and (C), which accords to the data.

Figure 8: Detail of a news visualization in [WRM∗09] using colored triangles with low alpha value for representing single news
items in time. The images show the original a) and compensated b) visualizations. The normalized difference between a) and b)
is shown in c). Depending on the color, single news items in a) appear as bright as dense episodes of news. Our compensation in
b) compensates the contrast effects and the corrects the impression of single news.

6. Limitations & Future Work

We have experienced some limitations of the perception

model. Since the method behaves like a contrast low pass

filter and uses a distinct kernel size for the whole image,

we often have the impression that the final results of the

method are not as clear as the original data visualizations.

Fine achromatic structures sometimes show artifacts in these

cases, because the method induces color. A locally adapted

perception model would decrease these issues. Also, the influ-

ence of the background is overestimated by the model. Future

work will look at methods to adjust the parameters to user,

hardware, and visualization and also methods to preserve

structural information that is known a priori. One concern

with the presented method, however, is its runtime cost. It

can be directly applied on any visualization, however, calcu-

lation of a perception model is very costly and thus, there

is a clear need for more efficient optimizers. In our current

implementation the algorithm needs minutes to converge and

therefore, cannot be applied to dynamic or interactive analy-

sis tools. One potential solution is in efficient heuristics that

only focus on relevant regions of the visualization and can

exclude recalculation of the whole perceived image.

7. Conclusion

In this paper we present a method for compensating phys-

iological color effects based on color appearance models

and optimization algorithms. We present the necessary cost

functions and heuristics to reach the optimization goal. Our

experiments show that with our method users double their

accuracy in comparison tasks and significantly improve their

accuracy in identifying data values. We demonstrate that our

method successfully compensates contrast effects in data vi-

sualization in order to provide a faithful display.
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