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Abstract
We present a system to analyze time-series data in sensor networks. Our approach supports exploratory tasks
for the comparison of univariate, geo-referenced sensor data, in particular for anomaly detection. We split the
recordings into fixed-length patterns and show them in order to compare them over time and space using two
linked views. Apart from geo-based comparison across sensors we also support different temporal patterns to
discover seasonal effects, anomalies and periodicities.
The methods we use are best practices in the information visualization domain. They cover the daily, the weekly
and seasonal and patterns of the data. Daily patterns can be analyzed in a clustering-based view, weekly patterns
in a calendar-based view and seasonal patters in a projection-based view. The connectivity of the sensors can
be analyzed through a dedicated topological network view. We assist the domain expert with interaction tech-
niques to make the results understandable. As a result, the user can identify and analyze erroneous and suspicious
measurements in the network. A case study with a domain expert verified the usefulness of our approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and

Techniques—Interaction techniques H.5.2 [Information Interfaces and Presentation]: User Interfaces—User-

centered design C.2.3 [Computer-Communication Networks]: Network Operations—Network monitoring

1. Introduction

The amount of sensor data has seen a rapid growth over the

past years in many different applications and scenarios. In

this paper, we focus on univariate sensors that measure a sin-

gle variable over time. In many applications it can be safely

assumed that the sensors measure variables that are explic-

itly or implicitly linked. We motivate our approach with a

practical example: the exploratory analysis of the power con-

sumption in a small to medium sized electrical grid.

In this example, the operators in the control rooms are in-

terested in the recordings of the power consumption. They

are interested if sensors at two stations that are connected

by electric cables measure similar values or not. Depending

on the task, the network analyst wants to know about daily,

weekly and seasonal patterns and trends. In how far do the

consumption patterns change over the year? What are the

differences between workdays and weekends? What are the

regional differences in the grid? These characteristics apply

to other application scenarios as well (like, e.g. traffic analy-

sis, water-level-predictions on rivers or logistics). While we

aim for a generic application, we will motivate the definition

of tasks and goals by transfer from the specific scenario.

Typical approaches include expert systems based on rule

inference to analyze the system in a fully automated man-

ner. These software systems usually operate in a black box

manner that do not allow for user interaction. The user has

to rely on the fact that the a-priori knowledge encoded in the

rules is sufficient. On the other hand, performing a manual

analysis of all sensor readings is often hardly feasible, be-

cause it is difficult to have an eye on all sensors at the same

time. Also, it is quite difficult to derive trends and frequently

occurring patterns from simple line chart plots. Therefore, a

set of visual tools can successfully assist the human in the

analysis process to become more effective and efficient.

The users that work with this kind of data are, for exam-

ple, operators in the control room of an electrical grid. Their

task is to monitor the state of the network using the mea-

surements provided by the installed power meters across the

country. The operators must be able to identify repeating pat-

terns as well as anomalies with respect to changes over time
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Figure 1: A screenshot of the entire system. The similarity view on the left side shows all daily patterns of all sensors. Similar
patterns are assigned to the same group and color. The change of patterns over time for a selected sensor is indicated by the
black spline. The network view on the right side gives an overview of the network topology. The small calendar in the node
glyph shows changes over time and a fingerprint view underneath shows the sensor patterns in the global context.

and across different sensors. For that, it is important to rec-

ognize diverging states, anomalies and suspicious patterns as

quickly as possible. More specifically, we have identified the

following problems:

• Getting an overview of a sensor network is required in or-

der to get an impression of the “big picture” and to iden-

tify potential problems.

• The user needs to analyze the network in space and time

to find atypical patterns in the network.

• Comparison of different sensors at the same time but also

the development of a single sensor over time is relevant.

• Based on the pattern similarity, the user must be enabled

to quickly identify non-standard patterns and trends.

Based on these tasks, we derive a set of design criteria.

Atomic entities (i.e. daily patterns) are analyzed with respect

to three different criteria: based on content and relations to

the geographic and temporal context. These different aspects

must be linked to enable the analyst to provide additional

insight and to solve multi-criteria problems. We identify the

most appropriate visualizations with respect to the properties

of the data and the user task:

• The data is recorded at several linked univariate sensors

that measure the same physical quantity.

• The time-series data can be segmented into meaningful

equally-sized day-long patterns.

• Interesting patterns are expected to be daily, weekly or

yearly.

• The system must be able to robustly detect and deal with

outliers and missing values.

We contribute a visualization system that is able to as-

sist the analyst in dealing with these problems. It consists

of two tightly coupled views that complement each other: a

Similarity View and a Network View (see Figure 1). A topo-

logical map of the network gives a geo-based topological

overview on the network in space and development of pat-

terns over time for every sensor. Using a calendar-based vi-

sualization, the analyst is able to identify trends on differ-

ent scales, based on individual sensors. As a result, the user

can identify erroneous and suspicious measurements in the

network. A similarity-based view gives important details on

the global relations of different temporal patterns (in our ex-

ample the power consumption over the day). The user can

thus analyze daily patterns of the sensors, grouped by their

pair-wise similarity. On demand, points that belong to the

same sensor can be connected. This gives the analyst a quick

overview on the variability of daily patterns over a period of

time. If the patterns are very similar this spline would look

like a tiny hairball and anomalies can be easily spotted. Tight

linking between the two ensures that the user recognizes the

same element and sets of similar elements in both views.

The paper is organized as follows: In Chapter 2, we dis-

cuss related analysis systems for time series data and sensor

networks. Chapter 3 covers the algorithms and data struc-

tures before Chapter 4 describes visualizations and interac-

tion. Results from the case study and the design study are

presented in Chapter 5 and 6.

2. Related Work

We briefly discuss scientific work in terms of related con-

cepts in this chapter, grouped by topic. In the presentation of

our approach a short explanation of why we chose a certain

technique is given.
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2.1. Sensor network analysis

The analysis of sensor networks is often associated with a

very specific application domain, be it wireless networks,

surveillance systems or electrical grids. The GreenGrid vi-

sualization system of Wong et al. focuses on the analy-

sis of very large electrical grids [WSM∗09]. Similar to our

approach, it illustrates the potential advantages of force-

directed layouts based on physical properties over geo-

graphic coordinates. The visualization system of Hadlak et

al. analyzes the temporally changing link quality of a wire-

less network [HSCW13]. The authors cluster time-series

data and display the data in a node-link diagram, but we

take this one step further and enable the analysis of repeat-

ing patterns which was not part of their work. Saraiya et al.

conduct a user study to evaluate different node glyphs for

graphs with multi-variate node attributes [SLN05], which

we use as a guideline for our glyph design. Using a combi-

nation of spiral visualizations and treemaps, Janetzko et al.

detect anomalies in power consumption data of commercial

buildings [JSMK14]. Shi et al. demonstrate anomaly detec-

tion for multi-variate sensor data in hierarchical networks.

In contrast to our work, the authors do not focus on pattern

analysis [SLH∗11].

2.2. Dimensionality Reduction

In order to make large data sets accessible to the user, a va-

riety of data reduction techniques exist. One of the most

used projections is Principal Component Analysis (PCA).

Being a linear method, it is very sensitive to outliers and

does not use the available display space too well. Multi-

Dimensional Scaling (MDS), a group of methods for dimen-

sionality reduction, is also very popular. Since its original

presentation [Tor52], many variations have been developed

[Kru64] and has gained popularity also in the graph draw-

ing community [BP09]. Also, non-deterministic projection

methods such as Stochastic Neighbor Embedding have been

employed [HR02]. Using locally restricted projections, Joia

et al. present not only a new projection approach, but also a

comparison of different approaches [JPC∗11]. Another sur-

vey is presented by Lee et al. who discuss dimensionality

reduction schemes without user supervision [LV10].

2.3. Dimensionality Reduction Quality

With the reduction of data comes a loss of data quality. Many

different measures are available that assess the quality of a

given projection. A natural choice, in particular for MDS

methods, is to use the weighted stress function as an indi-

cator for the projection quality. Kruskal proposed a small

variation of this stress function as well as some reference

values for quality [Kru64]. However, measuring the quality

with the same means as the actual algorithm seems to be an

unreliable choice for MDS. Sips presents “...two quantita-
tive measures of class consistency, one based on the distance

to the class’s center of gravity, and another based on the en-
tropies of the spatial distributions of classes...” [SNLH09],

which are robust against outliers. In the work of Bertini et al.,

an overview on many different quality measures, pros and

cons as well as application domains can be found [BTK11].

2.4. Time Series Analysis

The analysis goals of this approach are influenced by social-

temporal (daily, weekly), natural-temporal (daily, yearly),

and geo-spatial variances in the data. We present related

techniques for time series preprocessing and for visual-

interactive time series analysis. The data mining community

has spent great effort in the development of time series pre-

processing techniques [DTS∗08, Fu11]. Usually, pipelines

are applied that may execute several cleaning, reduction,

normalization, segmentation, or feature extraction steps on

the underlying time series data. Recently, visual-interactive

applications to support time series preprocessing and model

creation have been presented [BRG∗12, BAF∗13]. Relevant

overviews of time series visualization [AMST11] and the

visual analysis of time and geo-spatial data [AAD∗10] ex-

ist. We shed light on single techniques that are most closely

related. Stoffel et al. present a client-server visual analyt-

ics systems for anomaly detection in computer networks

[SFK13]. Its main views show a collection of vertically ori-

ented line charts that are compared with a reference model

of the data. An inspiring technique is the calendar view

[VWVS99] by van Wijk et al. Similar to our approach clus-

tering of daily patterns is applied to visually encode a calen-

dar visualization. However, the calendar view differs in the

chosen clustering technique, the color coding (which is not

similarity-preserving) and a lack of spatial comparison ca-

pability. A technique that combines the comparison of daily

temperature patterns and geo-spatial meta data information

was presented in the digital library context [BRS∗12]. How-

ever, a chronological representation of the daily patterns is

not provided. Techniques that focus on the visualization of

periodic time series data may rely on radial [ZFH08], cyclic

[TS08], or on projection-based layouts [BWS∗12, WG11].

3. Data and Algorithms of the System

In this chapter we present the data and algorithms for the

visualization system. We do not use pattern shapes directly

but provide similarity-based measures to support the identi-

fication of similar and different patterns, as well as projec-

tion and clustering techniques. In this way we support the

user in the identification of both frequent patterns as well as

outlier patterns. We first cover the data preprocessing rou-

tines before we explain the rationale behind the design de-

cisions. Before we start, the data is condensed from high-

dimensional data vectors to lower-dimensional feature vec-

tors that are presumed to contain the majority of information

and are faster and more robust to work with. We compute

the similarity based on this data, before we aggregate similar
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patterns into groups. This allows the user to get an overview 
of recorded measurements and identify trends and repeating 
patterns in the visualization. 

3.1. Input Data 

The input data is a collection of time series measurements 
of a single variable spanning over one yecu: The sensors that 
record the measurements are organized in a network struc­
ture. Nodes indicate sensors, the edges between two nodes 
indicate some kind of connectivity. 

-

-
-

Figure 2: A part of the sensor network, displayed as a octi­
linear topological map. At the cost of uniform edge lengths, 
geographical directions are preserved, if possible [NW06]. 

Not all sensors have recordings for every time stamp, and 
day, respectively. Since missing values may be an important 
aspect for analytical tasks, our visual representations need to 
be sensitive to an explicitly defined missing value indicator. 
Another aspect of the data is that some patterns are partly 
filled with zeros. In some scenarios, zero can be interpreted 
as missing value, whereas in others, it cannot. We therefore 
do not assign a special meaning to this value. We prefer 
a shape-preserving in favor of a domain-preserving pattern 
comparison strategy. Thus, we apply a standard score nor­
malization for the input data per sensor. To reduce the impact 
of outliers we previously apply a moving average procedure 
with a kernel range of one hour. The next step in the analysis 
process is the segmentation of the time series data into in­
dividual patterns. In our scenario, diurnal variations are the 
smallest repeating patterns and therefore the segmentation 
into days appears to be the right level of granularity. 

3.2. Similarity Measures 

Many different algorithms for measuring the similarity of 
time series data exist Our system supports different anal­
ysis tasks and therefore supplies different similarity mea­
sures. For the analysis of values or changes in the values, 
the Euclidean distance is a useful measure to compare pat­
terns. We argue in accordance to Hadlak et al. [HSCW 13] 

that trend-based similarity measures support the user in find­
ing simultaneous changes over time well. If the shape of the 
consumption pattern is of interest, the correlation coefficient 
and Dynamic Time Warping (DTW) are reasonable choices. 
The DTW algorithm compares two time series by aligning 
sequences of the data so that the distance between the two 
is minimal [BC94]. This makes DTW robust to shifts and 
length of the temporal sequences. While the original version 
is rather expensive to compute - it is in complexity class 
O(nl)- several speed improvements have been implemented 
since then. We use the optimized FastDTW algorithm as de­
scribed by Salvador and Chan [SC07]. 

3.3. Projecting Similarity 

The generated distance information is rather extensive and 
not directly interpretable by the analyst. At this point, dimen­
sionality reduction becomes necessary to be able to convey 
the information to the user. The user needs to be enabled to 
detect changes, especially outlier patterns and to find clus­
ters of similar patterns. 

lnspired by projection-based approaches such as the Mo­
tionExplorer system [BWK* 13], we derive a 2D projection 
of the time series patterns based on the pair-wise distances. 
The goal here is to preserve the distances from the original 
data set as good as possible. Patterns that are similar should 
have 2D positions that are close and patterns that are very 
different should have a large distance between them. Here, 
the first part of the statement is more important than the sec­
ond one. If two very similar patterns are plotted apart, the 
user gets a wrong impression of the data. On the other side, 
if two different patterns are far apart, it is not that impor­
tant how different they are. This allows us to use non-linear 
projection methods that preserve local structure in favor of 
global projection quality. 

The resulting scatter-plot represents the similarity of the 
daily patterns. Any kind of projection introduces errors, due 
to the expected loss of information. After a series of tests, 
the class consistency measure of Sips et al. turned out to be 
the most robust quality measure [SNLH09]. For each point, 
the set of n nearest neighbors in high-dimensional space is 
compared to then nearest neighbors in 2D space. The quality 
is defined by the set of elements that appear in both sets. We 
use this approach to assure that the projection quality is high 
enough to allow for drawing reliable conclusions from the 
data. In practice, stress-based non-linear projection methods 
such as those from the MDS family perform quite well for 
many data sets [JPC*ll]. 

4. Visualization & Interaction 

We present two tightly coupled views of the linked time­
series data to the domain expert. Based on an atomic en­
tity - i.e. daily patterns - all data records are arranged based 



on their pair-wise similarity and displayed in the Similar­
ity View (Figure I, left). This provides an overview of the 
recorded patterns in the network and allows for different in­
teractions. In a second, goo-based view (Figure 1, right), the 
sarne patterns can be analyzed on different levels of granu­
larity in time, but also in space using a visual calendar. The 
visual link in between is based on the color that is assigned 
to the ditferent groups of daily patterns. 1o combination, the 
two views show the data from two complementary perspec­
tives, both supporting each other. 

4.1. Similarity View 

The Similarity View gives an overview on all recorded pat­
terns of the entire network. It displays the patterns with re­
spect to their pairwise similarities that were computed in 
Section 3.3. Every pattern is represented by a single point 
in the screen space. 

By selecting a particular node in the network, the ana­
lyst can investigate the change of patterns over time. The 
view connects all daily patterns of that stations and orders 
them by time. The result can be seen in Figure 3. All days 
of the station Newluvn are plotted for the month May. The 
patterns oscillate at a high frequency up and down with one 
outlier on the left. In contrast to straight line segments, ~zier 
splines are used to interpolate between the patterns, because 
the changes are expected to happen gradually. 

- ·-
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Figure 3: The sensor aJ Newham, plotted based on the sim­
ilariry of daily pall ems for the 11Willh May. 

Using a range-based slider that spans over the entire year, 
the user can filter the data set with respect to recording time. 
Filtered elements are not being hidden to preserve the coo­
text, but they are rendered small and their color becomes 
faint. The filtered part of the spline turns into a thin, gray, 
dashed line. See Figure 3 for an example. 

The user can access the actual shape of the pattern on de­
mand by hovering over any elemenL A tooltip with addi­
tional information about the data point appears, providing 
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details about the sensor, the recording date and a line-chart 
of the time series or the particular day. 

As already mentioned, the axes in this display do not have 
an intrinsic meaning. The information in the scatter-plot is 
very fine-grain and does not permit an intuitive understand­
ing of its organization. We create an abstraction layer on 
top of the scatter-plot display. ln other words, we discretize 
the continuous space into a set of discrete partitions. 1o 
this layer, similar patterns are aggregated into larger groups 
which help the user in getting an overview of available pat­
terns and their location. This is accomplished by clustering 
of the data and displaying the groups, each annotated with a 
representative element. Clustering is performed in 20 space, 
after projection of the data, to prevent clusters from being 
rendered as rragrn.ented regions. The result of this operation 
can be seen Figure 4. 

"\•\ ~ ,. •••• • • . . ., · .. 

Figure 4: The projected pauem similarities, clustered and 
colored using a 20 colormap. Some of the patlems show 
negative energy consupmtion during daytime (purpelish red 
patrems at the top). This could indicate that connected solar 
plams produced significam amounts of energy on that days. 

Generally speaking, the intrinsic property of good clus­
ters is that the elements within have low pair-wise distances 
while distances to elements in other clusters are compara­
tively large. lf a central element in the cluster can be identi­
fied, it would represent the other elements in the cluster with 
a minimum or lost information. The k-meaos algorithm cre­
ates a clustering based on such cluster representatives. While 
this algorithm is rather basic, it produces the cluster repre­
sentatives. This pattern stands for the means of the closter, 
i.e. an artificial pattern with the smallest distance to all other 
panern in the cluster. In cases where no new element can or 
should be created, the closely related k-mediaos algorithm 
works on existing elements only [JOSS]. The common chal­
lenge of choosing an optimal number of desired clusters is 
not a problem in our main use case, because its main purpose 
is to create a simplified version of the data. The number of 
clusters is limited by the number of pattern shapes the user is 
expected to differentiate. In practice, choosing kin the range 
of 10 to 20 seems to be reasonable. 

To improve the readability of the drawing, every cluster 
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is annotated with a small line chart glyph of the mean pat­
tern that the cluster stands for. Tbis technique is similar to 
the Micro-Macro Views display [BvLBS09], wbich uses the 
rectangular grid of a SOM to derive the 20 position of the 
entities together with a representative for each of the clus­
ters. In our system, the clustering is separate from the pro­
jection, resulting in a non-rectangular layout of the clusters. 
It is shown as small line chart in the center of every cluster. 

Figure 5: A 2D colonnap created by interpolation of four 
perceptually disuuu colors. It defines the color of the simi­
larity clusters. 

We emphasize similar patterns using a discrete set of col­
ors to indicate cluster membersbip. Thus, the color indicates 
the shape of the pattern without having to show the actual 
pattern. Patterns of similar color are expected to have a sim­
ilar shape. Using the 20 position in the similarity plot, the 
corresponding color of a pattern can be derived from a 20 
colormap. This allows us to also use the color as an indica­
tor of similarity. However, using only one color per clusters 
makes it easier for the user to recognize a certain color as the 
same in another view if many different slight variations co­
exist. The colormap must enable intuitive and accurate read­
ings in order to express the metrics of similarity. On the one 
hand, it should exploit a maximum of different colors. On 
the other hand, the user must be able to estimate the approx­
imate the distance between two objects correctly, wbich re­
quires a perceptual uniform interpolation. In contrast to the 
RGB or the HSV color space, CIELAB is a non-linear col­
orspace that can be used to extract perceptually uniform 20 
planes. However, as presented by Bremm etal. [BvLBSll], 
these colormaps do not contain many perceptually different 
colors. Inspired by the work of Ziegler et al. [ZNK07] we 
use four perceptually distant colors and interpolate between 
these colors. However, we slightly use a different set of col­
ors, namely yellow, cyan, red and blue. The goal of tbis se­
lection is to separate the colormap into complementary color 
tones and also from fully saturated (bottom) to fully intense 
(top} colors. We use cyan instead of green in order to ap­
proximately equalize the perceptually distance between all 
comer colors. The corner colors are equalized in intensity 
and saturation in the HSl color space [KeiOO] and then inter­
polated in the CIELAB color space (see Figure 5). 

While tbis view already contains a Jot of information on 
the occurring patterns in the network, the network structure 
is not visible. Also, it is not immediately clear, wbich sensor 

measures wbich pattern at wbich time of the year. We over­
come these limitations with a second view that displays just 
that. Tight coupling and interactive linking between the two 
ensures that the user can bridge the mental gap between two 
different visual representations of the same entity. 

4.2. Network View 

This second part of our system has its focus on the network 
topology. The visualization is a node-link diagram with drill­
down functionality that displays temporal information in the 
node glyphs on demand. In this manner, the user can not 
only learn about the spatial organization, but also the pattern 
distribution in different temporal granularities. 

Nodes represent sensors and edges denote connections 
between the sensor. A sound layout should create an intu­
itive display of the topology, but preserve directions, if pos­
sible. The user is interested in an abstraction of local geo­
graphic coordinates to reduce the visual complexity of the 
network. General graph layout algorithms, however, try to 
satisfy edge length constraints and/or minimize the number 
of edge crossings. Tbis are typically not problems for sensor 
networks, as both criteria are not overly important. 

Figure 6: The network view at the second level of detaiL 
Both calendar and cluster fingerprint view appear. 

A prominent group of methods that acbieves this is 
the octi-linear layout family. These algorithms create a 
schematic representation that is inspired by the metro map 
metaphor. Originally, these methods were used to generate 
layouts of subway lines, wbich lead to the name Metro Maps. 
They restrict the angles of edges between nodes of the net­
work to multiples of 45 degrees, yielding a stratified version 
of the original layout. They also try to preserve directions 
where possible. We adopt one of these algorithms to com­
pute the layout of a sensor network. While different algo­
rithms exist, we chose the work of NOllenburg et al. [NW06]. 
In contrast to other works, it favors quality over computation 
speed. As the layout is static, tbis can be pre-computed and 
thus speed is not a major issue. 

ln order to avoid cognitive overload, tbis view uses differ­
ent level of details to adjust the visual complexity. A "vir­
tual camera" that supports zooming and panning enables the 



user to navigate in this spatial view. Zooming in and out trig­
gers different levels of detail of the sensor node glyphs. At 
the most abstract level, all nodes are represented by simple, 
labeled rectangles (Figure 2). Starting at the second level, 
higher zoom levels show two small views: the calender and 
the cluster fingerprint (Figure 6). Every zoom level scales the 
views in intervals, because only discrete scale factors make 
sense for the contained calender view. 

Focusing on a particular station, the user is interested in 
its behavior over time. The patterns in the contained time 
series can be analyzed with respect to different occurrence 
frequencies. Using van Wijk's Calendar View [VWVS99], 
we assign a single color value per day based on the cluster 
the pattern belongs to. This color is then used to colorize a 
calendar (Figure 7). In this manner, the user can thus iden­
tify seasonal patterns. In contrast to radial plots, the calendar 
view assigns the same amount of screen space to individual 
patterns, which gives them equal visual importance. 

a:'a • a~aa • 1~11 S!OIICII~ . :; : : ::: : :::: : : :: :¢: ::: : 

Figure 7: Calendar view of a partly selected sensor. The cal­
endar maps colored patterns to a cluster. A selection is ac­
tive which causes unselected elements (mostly in summer) to 
become smaller. 

Every day in the calendar is colored by the cluster color 
this day belongs to. While different layouts for calendars 
exist, we decided to align weekdays on along horizontal 
axis. Weekdays are ordered according to the international 
standard ISO 8601 which defines Monday as the first day 
of the week. This alignment brings Saturday and Sunday 
together, which facilitates the distinction between work­
days and weekends. From left to right, weekly patterns and 
changes over the year for a given weekday become appar­
ent. From top to bottom, patterns within a week are visible. 
Looking at a distance on the small calendar, larger seasonal 
changes are most recognizable. A tooltip shows the actual 
pattern together with the date and the ID of the cluster. Us­
ing cluster IDs serves as an alternative to matching the color 
across different views, especially for color-deficient people. 

The analyst also wants to know which patterns are specific 
to a particular sensor. We therefore added a small filtered 
version of the similarity view. All clusters are displayed in 
light gray to provide context to the current focus (the sen­
sor). Then, a filtered set of clusters that contain only patterns 
from this sensor is created. In a Focus & Context approach, 
these reduced clusters are then drawn on top of the faint, un­
filtered clusters. Patterns that were recorded by the sensor 
in focus are highlighted using the same set of colors. This 
creates a visual fingerprint of the sensor that also has its rep­
resentation in the similarity view. As in the similarity view, 
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the clusters are drawn using their convex hull, similar to the 
work of Schreck and Panse [SP07]. Again, tool tips indicate 
the cluster ID to differentiate borderline cases. See Figure 8 
for an example. 

Figure 8: A sensor shown at the highest level of detaiL The 
calendar maps time to a cluster of patterns. The fingerprint 
view below illustrates which patterns this sensor recorded 
compared to the other sensors. Low and even negative con­
sumption patterns are recorded from March to October. 

The system also shows a legend on the right side of the 
view to facilitate the matching between pattern and color. It 
is based on the representative pattern of the cluster and the 
color that is derived from its location in the colormap. It en­
ables the user to see which color relates to which pattem 
Again, corresponding IDs are displayed to differentiate bor­
derline cases. The displayed glyph contains the representa­
tive pattern of the cluster which is also used in the similarity 
view. This strengthens the link between the two views. 

4.3. Linking the two views 

Aside from the visual linking between the two views, inter­
action with one of them can also affect the other. Selecting a 
sensor in the network view triggers the selection of all linked 
time series patterns in the similarity view. Using a single se­
lection color to highlight a selected element would overwrite 
the cluster association of the elements. We therefore use the 
color of the corresponding cluster to highlight selected pat­
terns and display the remaining ones in gray. 

On the opposite side, we can also select interesting pat­
terns in the similarity view and see their distribution in the 
network. We use a lasso selection tool that is known from 
image manipulation software to maximize tlexibility. Again, 
selected patterns are colored while unselected patterns re­
main gray. 

On the lowest level of detail, the network view shows the 
distribution of selected patterns across the network. We use 
a progress bar metaphor (blue bar on bright background) to 
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reflect the fraction of patterns that were selected. As can be 
seen in Figure 9, the selection affects mostly the sensors at 
Hanham and Harwick. About two thirds of the sensor at 
Hanhmn are selected 

Figure 9: Selected patlerns distributed to their relaud sen­
sors in rile network. Sensors t/WJ are at least partly selected 
are accordingly marked will! bluish seleaion bars on briglu 
background 

The analyst can also zoom in to also see the selection dis­
tributed to individual days. As can be seen in Figure 10, 
mostly Saturdays and Sundays are selected 1n this exam­
ple, only patterns on the lefl part of view have been selected. 
Thus, selected patterns are in different variations of orange. 
The cyan clusters are not part of the selection and do not 
appear in the calendar view. Filtered patterns are drawn as 
miniaturized rectangles to indicate that they are not part of 
the selection. Missing values are not drawn. The fingerprint 
view is not affected by the selection. 

Figure 10: Partly selected sensor ar Hanham. Mostly week­
ends are affected by rile seleaiofl. Filtered pan ems are dis­
played only as small rectangles. The motrtlls August and 
September do not co1uain any data. 

5. Case Study 

We performed a guided case study with a domain expert to 
demonstrate the usability of our approach in a real-world 
use case. The expert identified two major areas of relevance: 
monitoring and planning. The first step was to identify in­
teresting patterns with the help of the legend of the network 
view (Figure 8). 1n the legend, the pattern that occurred most 
frequently gave the expert a quick overview on the network. 
An interesting finding was the prominence of patterns with 
backHow (i.e. patterns with a significant values below zero) 
during daytime which is unusual. These patterns indicate an 
electric How from the consumers back into the grid - an of­
ten undesired result which is due to the high amount of solar 
panels in the pilot region where the data was recorded. 

ln the next step, the grid was explored using the Network 
View. The domain expert first focused on the calendar view, 
because it was considered the most intuitive one and most 
similar to the tools the expert uses. l)tpically, manual lookup 
or patterns from the previous years is required to derive typ­
ical daily patterns, based on the day of week, season of year 
and other circumstances (e.g. public holidays). For the mon­
itoring task, the focus was on some or the previously iden­
tified patterns (see Figure 8). After that, the Similarity View 
was used to select the interesting parts (patterns with back­
How) in the top-left corner using the lasso tooL This selec­
tion action highlighted in the Network View that most of 
the patterns were recorded at only 5-6 stations in the net­
work (e.g. in Figure 9). The expert concluded that only these 
few stations needed to be investigated funher in terms of 
backfiow protection. For the planning task, the interest was 
on finding the right time to temporarily isolate stations orca­
bles for maintenance. This should be done when power How 
is at the lowest for all relevant stations. The ex pert therefore 
used the network overview to anticipate the pattern for dif­
ferent station on a given day based on the recordings of the 
previous year. 

6. Design Process 

ln order to optimize the design choices, we performed the 
design process in an iterative manner. Different data map­
pings, visual representations and interactions were explained 
to a group of 8 non-expert users and two experts from the 
electrical grid domain. We conducted informal interviews 
with the running prototype which led to fruitful discussions 
about the pros and cons of different aspects of the system. 1n 
a final round, we gave a video demonstration to two usability 
professionals to get feedback on the usability of the system. 

The first idea was to create a gee-referenced layout that 
is drawn on top of a thematic or navigational map. A re­
sult from the interview with the experts was that geographic 
reference is required only in exceptional cases. The most im­
portant design factors for them were the network topology, 
followed by simplicity. 



The visual representation of the sensor node has changed

significantly through the design phase. One idea was to split

the calendar into four distinct seasons. The fingerprint view

was motivated by the fact that users could not correlate the

two views without explanation. Putting the calendar above

the fingerprint was motivated by the fact that it was unclear

to some of the users where the calendar legend belongs to if

put the other way round.

Different concepts to connect the similarity trajectory of

a single sensor were proposed. The idea of drawing arrow

heads to indicate the direction of the spline was rejected, be-

cause the glyphs were often misinterpreted in crowded dis-

plays. Aside from line segments and splines, convex hulls

[SP07] and bubble sets [CPC09] were evaluated. While they

two emphasize areas, they also cover much screen space,

especially when outliers are present. Also, the temporal se-

quence was no longer visible. Combing multiple techniques

seemed promising at first, but produced too much overplot-

ting. We conducted a survey with about 15 non-experts with

12 screenshots of the system, each with a different colormap.

It clearly confirmed that the four colors we used achieved the

clearest color separation.

Using integer IDs for clusters was suggested by one of the

users to enforce the ability to recognize the same cluster in

different representations, especially for color deficient peo-

ple. The ID is used in the legend and in the tooltips of the

calendar view, the fingerprint view and the similarity view.

7. Discussion & Outlook

In this paper we presented a visualization system for interac-

tive pattern analysis in univariate sensor networks. The focus

is on the analysis of similar patterns over different temporal

scales, but it also respects the network structure of the sen-

sors. It consists of two strongly linked views that enable the

analyst to gain insight into the data set. The cluster proto-

types show typical, often occurring patterns. The network

view gives an overview over the network topology and the

patterns for each sensor. This enables the analyst to compare

different sensors and to see seasonal trends.

We considered two types of scalability: the number of sta-

tions and the length of measurement data. The application is

fairly robust with respect to the number of nodes. The sim-

ilarity view is not affected by the network complexity and

the network view uses a drill-down metaphor to adjust the

amount to displayed information. For very large networks,

aggregation based on either topology or geography could be

used. Currently, only one year of measurements can be ana-

lyzed. Comparing yearly patterns requires a different visual

encoding of the data.

Future work includes the extension to multi-variate data

sets. A challenge is to integrate both multi-variate data and

the time domain in one similarity model. Also, an appropri-

ate visual representation of the data is required, in particular

for the glyph that represents clusters of similar elements.

We also plan to include semi-interactive clustering to bet-

ter adjust the representation patterns. This could be achieved

by iterative split and merge operations or through adjust-

ment of the distance functions and the clustering parameters.

Another aspect is to extend the system to also support live

monitoring. As of now, the major restriction is the insertion

of new measures in already existing projections. One possi-

ble solution would be to insert new measures in an existing

projection. This, however, requires a deterministic projec-

tion function and the quality may decrease as the projection

is computed based on the old patterns only. Another option

would be to recompute the projection every time a new pat-

tern is added. While this is a sound approach in theory, it will

be challenging to communicate the changes between the old

and the new projection effectively to the user, especially if it

changes significantly. One lesson we learned in this project

is the role of familiar visualizations to enable the learning

of new techniques. Here, the calendar view was the anchor-

ing point for the user to understand the rest of the system

featuring visualizations which have not been used before.
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