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Abstract

Matrix visualization is an established technique in the analysis of relational data. It is applicable to large, dense
networks, where node-link representations may not be effective. Recently, domains have emerged in which the
comparative analysis of sets of matrices of potentially varying size is relevant. For example, to monitor computer
network traffic a dynamic set of hosts and their peer-to-peer connections on different ports must be analysed. A
matrix visualization focused on the display of one matrix at a time cannot cope with this task.

We address the research problem of the visual analysis of sets of matrices. We present a technique for comparing
matrices of potentially varying size. Our approach considers the rows andfor columns of a matrix as the basic
elements of the analysis. We project these vectors for pairs of matrices into a low-dimensional space which is
used as the reference to compare matrices and identify relationships among them. Bipartite graph matching is
applied on the projected elements to compute a measure of distance. A key advantage of this measure is that it can
be interpreted and manipulated as a visual distance function, and serves as a comprehensible basis for ranking,
clustering and comparison in sets of matrices. We present an interactive system in which users may explore the
matrix distances and understand potential differences in a set of matrices. A flexible semantic zoom mechanism
enables users to navigate through sets of matrices and identify patterns at different levels of detail. We demonstrate
the effectiveness of our approach through a case study and provide a technical evaluation to illustrate its strengths.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Information Storage and Retrieval]: Informa-

tion Search and Retrieval—Search process

1. Introduction

Relational data, such as computer or social networks, can be
modelled as graphs. These graphs can be visualized as ma-
trices by simply using their adjacency matrices. The matrix
cells can be coloured to show binary, categorical or continu-
ous attributes for each edge, e.g., the edge weight [Ber81, p.
33]. Matrix visualizations are particularly suitable in cases
where the associated graph is dense [GFCOS5]. Interactive
features may improve the usability of matrix visualization
when specific aspects, such as groups or connectivity, should
be explored in the data [HFMO07, HF06].

Existing techniques generally support the display of a sin-
gle, static graph. However, graphs such as computer or so-
cial networks may change over time. Many analysis tasks
are focused on exploring that change; e.g. the comparison
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of a series of snapshots of a network over time. This gives
rise to a matrix comparison problem. This problem is partic-
ularly challenging since both the edge sets and the node sets
may change, yielding graphs, and thus matrices, of different
sizes. Comparison tasks in large datasets can be supported
effectively through ranking or clustering operations. These
typically require the definition of a distance function for sets
of matrices. Here too, the variation in size is problematic;
the Euclidean distance, for example, can only be applied to
matrices of the same size.

We introduce a novel technique for the comparison of
sets of univariate matrices. We make matrices comparable
through data reduction, i.e. by projecting matrices of differ-
ent size to the same low dimensional space. For each pair
of matrices we obtain a pair of point clouds, which is com-
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Figure 1: Using our semantic zoom interface users can explore distances between matrices (a) (here: 100 matrices; ordered
by time stamp, cf. Section 6.1). Starting from an overview distance meta-matrix (b) showing the pairwise distances between
matrices, users can identify patterns (e.g. strong groups or outliers). Having found such patterns, users can investigate the
impact of matrix size variations on the distance calculation (c) and steer it using a simple set of interactions (d) and (e).

pared by solving a bipartite graph-matching problem. Our
distance function therefore relies on essential information of
the matrices. The function is visually interpretable, which
can enhance user understanding in the analysis of change.
Finally, it enables the implementation of ranking and clus-
tering tools for sets of matrices of varying size. We demon-
strate the utility of our distance function by applying it to
test data and we explore the sensitivities and precision of
the distance function based on benchmark data. In particu-
lar, we consider alternative projection methods, and assess
the effect of outliers, scaling factors and size variations in
the input data. We also apply our technique to selected, real-
world network-analysis scenarios and show that insights can
be found which are difficult to perceive with existing tools.

The remainder of the paper is structured as follows. In
Section 2 we discuss related work. In Section 3 we introduce
our distance function for matrices and describe its imple-
mentation in Section 4. Section 5 shows how our technique
can be used to support real-world matrix comparison tasks.
In Section 7 we present the results of sensitivity experiments
for the assessment of the stability of our distance function.
In Section 8 we discuss limitations and possible extensions.
Finally, Section 9 concludes the paper.

2. Related Work

We briefly review related work on the visualization of static
and dynamic matrices, and on matrix matching.

Static and One-Dimensional Matrix Data. Graph data can
be depicted with the help of adjacency matrix visualiza-
tions [WTCOS]. The cells of the matrix can encode the rela-
tionships between nodes (i.e the edge attributes) of a graph.

Matrix visualizations provide a highly scalable visual rep-
resentation of graphs [VLKS*11, GFCO05]. They can reveal
important aspects of graph structure if they are appropri-
ately sorted and rendered. However, matrix representations
are less intuitive than node-link diagrams, thus they need
to be supplemented by additional visualizations and inter-
action techniques to improve understanding. In [HFMO7],
matrix visualizations and node-link visualizations are com-
bined in an interactive system. The matrix is used to provide
an overview representing very dense areas of the graph, and
a node-link view shows details for selected parts that are
globally sparse. Semantic zoom interaction can help nav-
igate matrices which do not fit into the available screen
space. In [EDG*08, AvH04] zooming and dynamic aggre-
gation techniques support the navigation process in large
matrices. Matrices, and thus matrix visualizations, occur in
many real-world analysis tasks. Matrix visualizations have
been used in the analysis of social networks [HF06], and
gene regulatory networks [DWvW12]. Time series can effi-
ciently be summarized in a matrix visualization [SKU*12].
Visualizations of similarity matrices are frequently used in
the analysis of non-numeric attributes, such as in the pair-
wise comparison of text documents [BKSK12].

Time-Dependent and Multivariate Matrix Data. Many
analysis tasks involve multiple, heterogeneous matrices. For
example, a social network is a time-dependent graph whose
nodes correspond to entities and edges and/or their at-
tributes corresponds to relations such as friendship or a
message (count). Both, nodes and edges may change over
time. Each attribute dimension yields a matrix with a sin-
gle value/dimension encoded in each cell. Each time step
may give rise to a different attribute matrix. Many matrix vi-
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Figure 2: Processing pipeline for our projection-based matrix comparison technique: A set of matrices of potentially different
size is input (left). Their columns andfor rows are interpreted as high-dimensional vectors and projected to the plane (middle).
Solving a bipartite graph-matching problem on the resultant point clouds leads to a set of allocation edges. Aggregating the
euclidean lengths of the edges results in a similarity score for each pair of matrices (right).

sualizations were developed for one-dimensional and static
matrix entries and do not support dynamic and complex ma-
trix data well. One approach to handling time-dependency
in graphs is [BVB*11], where graph states are represented
as consecutive narrow stripes, in which vertices are arranged
vertically on each side. Directed edges connect vertices from
left to right to show the graph evolution. In [BSB*10], the
interactive visualization of pairs of matrices was addressed.
Specifically, one matrix contains weight values and the other
contains target values in a correspondence-matrix repre-
sentation of molecular data, and interaction allows cross-
filtering in both matrices. In [BDS*12] time-series data is
presented in a triangular matrix, where the matrix cells are
statistical aggregates over all possible subintervals.

Dimension Reduction and Fuzzy Graph Matching.
Many techniques exist to reduce the dimensionality of data
[POMO7] and support the exploration process in analysis
tasks [YXRWO7]. We use projection to compare matrices
based on their row/column elements, and define a distance
function based on bipartite graph matching. Matching ap-
proaches can compare data by finding correspondences of
local data properties. An example is the matching of re-
gions in images based on the correspondence of local SIFT
features [Low04]. Comparison of graphs by edit distances
has been proposed in [ZWS96], however this is an expen-
sive process. Inexact or fuzzy graph matching approaches
try to cope with the computational effort by applying tree
search/indexing algorithms [SF83, CFSV96, Pel98], trans-
forming the graph matching problem into a continuous, non-
linear optimization problem [FE73, WH97, WWO02] or ex-
ploring spectral characteristics of the graph [Ume88, CK04,
KCO02]. Similar to our approach, in [KC02] a vector space
is defined using the Eigenvectors of the adjacency matri-
ces. The graph nodes are projected onto points in this space.
Then, a clustering algorithm is used to retrieve common lo-
cal relational structures between different graphs [KCO02].
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The authors state that this method is robust with respect to
graph distortions; corresponding nodes are always close to
each other in their graph Eigenspace. The comparative anal-
ysis of sets of graphs has been considered in [VLGS09] by
means of clustering of statistical graph features.

Our approach goes beyond the state-of-the-art by in-
corporating a visual-interactive analysis of differences be-
tween matrices. We are able to show these differences on
a row/column basis, even if the compared matrices vary in
size. Implementing a projection-based matrix representation
enables us to compute the similarities between row/column
vectors and allows these to be visualized for interactive ex-
ploration. To the best of our knowledge, the combination of
row/column projection and the subsequent solving of a bi-
partite graph matching to compute a measure of distance
is new. It gives rise to a steering mechanism to control the
fuzziness in inexact graph matching problems. We introduce
a set of interaction operations to steer the computation and
to perceive its outcome visually.

3. Basic Idea for Matrix Comparison

We regard a matrix as a set M of high-dimensional row or
column vectors. Two sets IM{,IM, of vectors can be com-
pared by computing an aggregate vector-based similarity
score. If the matrices have the same size then we can eas-
ily compare them, e.g. using the Euclidean distance. How-
ever, for matrices of different size this is not possible. In the
following, we introduce an alternative approach.

Figure 2 illustrates our comparison approach. A set of ma-
trices My, ...,IM,, which vary in size is shown on the left. It is
possible to interpret either the rows or the columns as high-
dimensional vectors of the length of the respective matrix.
Assuming a topology-preserving projection, we project the
matrix vectors to the plane (see the center of Figure 2).

It is necessary to consider the effects of the projection
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Figure 3: A visual interpretation of the distance calculation is possible from two perspectives. Clicking on a cell of the distance
meta-matrix (see Figure 1 (b)) shows the compared matrices (left). Additionally, a transparency factor for columns indicates
their impact on the overall distance score. The matrices’ columns are visually connected by edges to represent the bipartite
graph matching decisions (middle). These connections are also shown in the projection view (right), which lets the user explore
patterns in the projection of columns, i.e. projection points which are close together represent columns which are similar.

for our targeted distance calculation. Projection methods are
conventionally used to reduce the dimensionality of data by
reducing the number of dimensions while minimizing infor-
mation loss (in this case, metric properties) [CK04]. They
can be separated into linear and non-linear techniques. Lin-
ear projections attempt to separate important from unimpor-
tant dimensions to form the projection space. Non-Linear
projections try to preserve the high-dimensional neighbor-
hood properties, such as pairwise distances, in the low-
dimensional space and seek to separate projection points
whenever their high-dimensional counterparts are far apart.

As Kosinov and Caelli show in [KC02], with an appro-
priate choice of projection, the projected vectors will reflect
the similarity relationships present in the original data. Con-
sequently, a matrix IM; can be represented by a number of
|M;| (only rows or columns) or 2 X |M;| (rows and columns)
projection points in the plane. Since we only consider ad-
jacency matrices they are always square. The use of only
rows or columns applies to symmetric matrices (undirected
graphs), while non-symmetric matrices (directed graphs)
benefit from simultaneous row and column projections.

In the case of projection techniques based on eigendecom-
position, we can take advantage of a well-known property:
The eigenvalue spectrum of a matrix is invariant with respect
to similarity transformations. For any non-singular matrix M
and compatible, invertible matrix PP, the product PMP~! has
the same eigenvalues as M. This means that the spectrum of
a graph represented by its adjacency matrix is not affected
by row/column permutations [KCO02]. This result is impor-
tant, since it allows us to compute of the distance between
two matrices irrespective of the ordering of rows/columns.

To compare two matrices, we match the projected points

of one matrix M, to the projected points of the another
matrix IM,. Having obtained a matching of the projected
point sets, we compute an aggregate distance score over
the matching, as shown in Figure 2 (c). This distance score
can be used for a range of applications, such as similarity
search: Given a matrix, return the most similar matrices from
a larger data set to be explored; or to generate a clustering of
a set of matrices. It is also possible to interpret the projected
vectors (point clouds) as a complementary form of matrix
visualization. Thus, our approach can easily be embedded
in visual analytics tasks. In this way, it is possible to visu-
ally identify outliers in the two-dimensional space that cor-
respond to outliers in the high-dimensional space. Further-
more, we can use linked interactions between the projected
representation and the traditional matrix visualizations to
help users interpret and interact with the matrix.

4. Implementation

We next detail our implementation, describing the projection
and matching schemes we used.

4.1. Projection of Matrix Data

As explained in Section 3, we can take advantage of the
eigenspectrum’s property of being invariant to row and col-
umn permutations. In our case, we can project vertex con-
nectivity data from a graph adjacency matrix to a smaller set
of its most important eigenvectors. The projection coordi-
nates obtained this way then represent the relational proper-
ties of individual vertices relative to the others in the lower
dimensional eigenspace of the graph. In this eigenvector
space, structurally similar vertices or vertex groups will be
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located close to each other, which can be used for approx-
imate comparison and matching of graphs [KC02]. This is
shown in Figure 3: The upper right projection view shows
the projection of two similar adjacency matrices, while the
lower projection view depicts a higher distance score.

As we use projection to compare matrices, we require de-
terminism of the projection calculation, that is, the projection
calculation needs to produce the same output on the same
data set. This statement does not hold for projection tech-
niques, in which an initial seed population is projected, fol-
lowed by the projection of all other points based on their
high-dimensional (dis-)similarity. t-Distributed Stochastic
Neighbor Embedding (t-SNE) [vdMHO8] or Kohonen’s
Self-Organising Maps (SOM), as described in [CP97], are
representatives of possibly non-deterministic projection ap-
proaches, and we therefore exclude them from our approach.

In our implementation we apply one exemplary linear
and one non-linear projection technique to our data sets.
Both implementations are based on eigendecomposition ap-
proaches. The linear projection we chose was Principle
Component Analysis (PCA) [Jol05]. The non-linear projec-
tion technique was Classical Scaling (Metric Multidimen-
sional Scaling) [CCO0]. The implementation of PCA and
Classical Scaling was taken from the Projection Explorer
Framework of Paulovich [POMO7].

4.2. Comparing Matrices By Graph Matching

As aresult of the projection of a pair of matrices M| and M
into the plane, we obtain two point sets representing the ma-
trices. We compare the matrices by solving a bipartite graph-
matching problem on the point sets in the projected space.
One possible solution is to calculate the minimum sum of
pairwise Euclidean distances between the points’ projection
coordinates. We now describe our distance calculation for
the cases of equal and unequal size of the input matrices in
detail.

Matrices of Equal Size. For |M;| = |M;| we have to find
M| edges connecting the two vertex sets. This computa-
tional problem is referred to as the stable marriage problem.
Gale and Shapley showed that stable marriages exist for any
choice of rankings [GS62].

For the matrix comparison task, we can use the Euclidean
distances between the projection point coordinates from IM;
and M, to compute the (men-)optimal allocation for the two
matrices. The optimality proof is given in [GS62]. After hav-
ing found a pair matching, we can define the sum over all
pairwise Euclidean distances as the distance between M
and M. This is shown in Equation 1:

Dist(My,My) = " distpr;(m,n) (1)

where m € My, n € Mj and m and n are matching partners.
In our implementation, we use the Extended Gale-Shapley
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algorithm [GI89], which is a performance improvement over
the classical Gale-Shapley algorithm [GS62].

Matrices of Unequal Size. When |M;| # |M5|, the match-
ing defined previously needs to be modified. It is still pos-
sible to calculate the men-optimal allocation between the
projection points, but only min (|M|,|IM3|) can be allocated.
For the remaining points a penalty can be added to the over-
all distance score. Accordingly, the distance function from
Equation 1 can be adapted in the following way:

Dist(My,Mg) = )" distpro j(m,n)
+(max (M, |,[M|) — min (M|, M) (2)
X Penalty(M{,M;)

where m € My, n € M; and m and n are matching partners.
The penalty function Penalty(IM,IM>) can be chosen in ac-
cordance with the task at hand. In the current implementa-
tion the penalty calculation schemes, depicted in Equation 3,
can be interactively chosen:

0
Penalty(My, My) = { max(distpro j(m,n)) )
max(dist pro j(m,n))?

where m € My, n € M3, and m and n are matching part-
ners. The penalty can be set to zero (ZeroPenalty),
or multiples of the maximum distance (MaxDist) or its
square (MaxDistSquare), among all matches. Whenever
the matching results in a small maximum matching distance
score, only a small penalty will be added. Whenever the
maximum matching distance is large, a large penalty will
be added.

Figure 5: Changing the penalty function has a large im-
pact on the appearance of the distance meta-matrix show-
ing all pairwise matrix comparisons. From left to right, the
ZeroPenalty and MaxDistSquare penalty functions are
rendered in the upper diagonal part of the matrix. The lower
part shows the MaxDist, for reference purposes.

Figure 5 depicts the impact of changing the penalty
function for the VAST 2013 Challenge Dataset discussed
in Section 6.1. From left to right, the ZeroPenalty and
MaxDistSquare penalty functions are plotted in the upper
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Figure 4: Matrix Projection Explorer is used to visualize matrices and their projections. The overview (2) shows a distance
meta-matrix of all pairwise matrix distances for the VAST Challenge 2013 dataset with 120 matrices. Patterns, like closely
related (dark groups) and outlying (light rows) matrices, stand out. The projection view (3) lets the user explore the selected

matrices’ structural similarities expressed in the projection space.

diagonal part of the matrix. The lower diagonal part shows
the MaxDist, for reference purposes.

The choice of penalty function is closely related to the
graph matching tasks at hand. If the size differences are
important a “strong” penalty must be applied. The lower
the penalty, the more fuzzy the distance calculation be-
comes. In other words, a “weaker” penalty function, e.g.
ZeroPenalty, shifts the focus to matrix comparisons that
ignore size differences and try to derive a statement from the
available information. Other penalty functions are possible,
ranging from a static penalty score to a penalty that reflects
the situation in high-dimensional space.

5. Exploration and Analysis of Sets of Matrices Using
Projection-Based Distance

Our distance calculation technique is proposed as a basis for
a range of applications. Specifically, we see two important
domains: (1) Applications using the projection-based ap-
proach for the distance calculation, and (2) Applications that
enable domain experts to draw conclusions from the projec-
tion view as a complementary view for visual matrix analy-
sis. We developed a prototype that implements the proposed

distance computation and uses it to support visual explo-
ration in sets of matrices (Matrix Projection Explorer). We
now describe the system and proposed analytic work flows.

5.1. Matrix Projection Explorer

Our system consists of two parts: (1) A NoSQL database to
store matrices and cache projections. (2) A visual front end,
consisting of four components (see Figure 4):

1. Data Explorer View: Allows the selection of a set of ma-
trices to be examined and visualized.

2. Matrix Visualization View: Shows matrix visualizations
in a heat-map-style display (for individual matrices) or an
overview of a set of matrices (sorted by distance). A se-
mantic zoom function allows the transition between pro-
jection view ports, the matrix view and the meta-matrix
overview (see Figure 1 and the supplementary video).

3. Projection View: The main interactive component, which
can be found at the lowest semantic zoom level for
every matrix pair, depicts the chosen matrices’ two-
dimensional projections. The distance calculation is rep-
resented by means of the graph matching. The user can
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interact visually with the algorithm by excluding or in-
cluding vertices and edges from the matching or adapt
the penalty calculation to the task at hand.

4. Similarity Table: Shows the distance scores for a set of
two or more matrices selected in the Data Explorer View.

In addition, a legend allows the highlighting of matrices, a
colour map shows colours applied in the matrices and a re-
trieval view ranks the most similar matrices to the current
selection in ascending order. Finally, Views for experiments
allow the user to start and keep track of experiments.

5.2. Workflow and Interaction

When the user selects a set of matrices, their high- and low-
dimensional representations are rendered on the screen as
matrix views and projection views. The two-dimensional
points are rendered at the positions determined by the se-
lected projection technique in the projection view. The ma-
trix representation is rendered following the best practices
presented in [FekO4]. All pairwise distances between the
matrices are also calculated and the user can switch to a
meta-matrix representation of these. We experimented with a
MBDS projection of the distance values. While it proved ben-
eficial in perceiving similarities (i.e., groupings) we rejected
the idea, because it was hard to reflect interactive changes to
the distance calculation in a visually traceable manner.

For inspection purposes, the user can select a calculation
to show the best possible bipartite graph matching alloca-
tion, as described in Section 4.2. The matching is visualized
by adding edges to the projection view (see Figure 4 (3)),
connecting the matched vertex pairs.

5.3. User-Guided Distance Calculation

Our approach explicitly supports the interactive guidance of
the distance calculation by the user. As shown in Figure 1 (d)
and Figure 6 (c), by zooming from the overview meta-matrix
into an area of interest, the user can investigate each pair-
wise matrix comparison in the projection view. In this view
three different interactions are possible: (1) Selecting and de-
activating projection points allows the exclusion outliers or
otherwise irrelevant rows/columns; (2) Selecting edges with
a lasso or by clicking on the respective distance histogram
bin, allows the exclusion ranges of edge lengths from the
distance; (3) Adapting the penalty function (clicking on the
distance histogram penalty bin or via a specific penalty dia-
logue) allows modification of the effect of the matrices’ size
differences on the distance. We demonstrate the usefulness
of these interaction mechanisms in the use cases in Sections
6.1 and 6.2 and in the supplementary video.

6. Use Case Demonstration of Our Approach

We now show the use of the Matrix Projection Explorer to
analyse various data sets, demonstrating its applicability to
potential analysis cases.
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6.1. Application to Dynamic Computer Network
Analysis (VAST 2013 Challenge Dataset)

Monitoring large computer networks is a challenging, but a
highly important task for network operators. While there are
many tools to plot and explore time-series for single hosts
and network ports, most tools lack an overview of the whole
computer network independent of the number of underlying
hosts. We use the VAST Challenge 2013 dataset [CGW13] to
demonstrate the usefulness of our tool on a realistic dataset
in a network security scenario. We preprocessed the data to
fit our matrix-based data model, imported the first week of
NetFlow traffic of Mini Challenge 3 into our system and ag-
gregated the dataset hourly. Each one-hour interval is repre-
sented as a matrix, which conveys the number of bytes trans-
ferred from any source IP address to any destination ports.
Obviously, the matrix sizes are quite diverse, because in each
time interval there might be a different number of comput-
ers and even a different number of active destination ports.
These common properties make the dataset a challenge to
analyse and visualize in an overview for a long period.

The interactive overview visualization is shown in Fig-
ure 4. It depicts the overall distance of aggregated connec-
tions active for each hour. Each matrix cell represents a dis-
tance value between two different hours.

At a first glance, several horizontal and vertical lines stick
out as patterns. They represent individual hours, which have
highly different underlying connection matrices compared to
all other points in time. The event on 2013-04-02 06:00 to
06:59 is indeed a denial-of-service (DoS) attack to one of
the company’s web servers, which is confirmed in the VAST
Challenge scenario. Another confirmed DoS attack is clearly
visible on 2013-04-03 around 11:00. Such events have a high
impact and are outstanding in this overview, because they are
highly different from normal network behaviour.

More subtle patterns are visible in the visualization as
well. There are several rectangles (2013-04-01 08:00 until
16:00, 2013-04-03 16:00 until 2013-04-04 05:00), which are
almost black, representing time intervals with quite homo-
geneous connection matrices. The insight can be confirmed,
that the traffic in those hours seem to be quite similar. Fur-
ther analysis reveals that during the mentioned time period
less unique IP addresses are involved than usual. A possi-
ble reason could be a crashed server during the aforemen-
tioned DoS attack. However, such hypotheses can only be
confirmed by taking further log data into account, because
the NetFlow data does not provide enough detail to answer
such questions.

Interestingly, there are at least three very visually out-
standing hours (2013-04-05 10:00, 2013-04-06 06:00, 2013-
04-07 06:00), similar to those hours in which DoS attacks
occurred. These should be investigated further by the ana-
lyst. For this dataset a modification of the distance penalty
calculation proves to be useful. As Figure 5 shows, chang-
ing the Penalty calculation to ZeroPenalty visually boosts
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Figure 6: Excluding vertices from the calculation helps to filter out aspects of low importance. In this soccer analysis task it
makes sense to exclude goal-keepers to find semantically similar game situations, where goal-keepers have a low impact.

areas of homogeneity, while applying the MaxDistSquare
penalty function gives outliers a higher visual impact.

Overall, the visualization does support the identification
of behaviour-related patterns. The main advantage is a com-
pact, but dense overview, based on the notion of matrix sim-
ilarity for different points in time, which proved to be quite
effective for the VAST Challenge 2013 dataset.

6.2. Application to the DEBS 2013 Challenge Dataset

As a second example, we consider the ACM International
Conference on Distributed Event-Based Systems (DEBS)
soccer game analysis challenge dataset of 2013 [JZ13]. The
dataset originates from a real-time movement tracking sys-
tem deployed on a football field of the Nuremberg Stadium
in Germany. For the duration of a game, real-time wireless
sensors embedded in the player’s shoes and the ball recorded
the respective positions as a function of time. To transform
the data into matrices, we extracted a distance matrix be-
tween all players for every second of the game; i.e. a set of
4126 matrices depict every 1-second game situation. Every
row, respectively column, in the matrices corresponds to one
player and every matrix cell represents this player’s distance
to another player at that specific time instance of the game.
Figure 6 (a) shows a range of situations during the second
half in the meta-matrix overview. The view is sorted by time
and shows similar game situations adjacent to each other.
We can see that two patterns occur: (1) The pattern [a] de-
picts a corner-kick (2) the diffusion-like pattern [b] refers to
a goal-kick.

One possible task could be to find similar game situations
in a soccer game, such as corner kicks, goal-kicks, or shots
at the goal. Other tasks are exemplified in [PVF13]. Most of
these tasks tend to be related to fuzzy queries, in the sense
that player positions may change between semantically sim-
ilar situations. Also, certain players may not even be im-
portant for a game situation (e.g., the offensive goalkeeper

is normally less important for a corner kick if not attack-
ing directly). In these cases it seems appropriate to exclude
data vectors from the calculation, whenever they have no im-
pact on the task at hand. This typical work flow is shown in
Figure 6, where the user zoomed into an area of a known
corner-kick (left) and selects vertices to be excluded from
calculation (middle). The influence is shown in the adapted
overview (right), where the area [c] changes significantly.

7. Sensitivity Experiments

To evaluate our technique we conducted experiments to (1)
assess its dependency on the chosen projection technique,
and (2) validate the tolerance of outliers, scaling factors and
size variations. We used the data set from the Petit Test-
suite [Pet03] for our evaluation. The test suite consists of
21 sparse graphs derived from random models and real-life
scenarios, such as VLSI, computational fluid dynamics, or
earthquake wave propagation. Out of the 21 graphs, we se-
lected the 17 based on real data. The remaining four graphs,
were replaced with five self-constructed dense graphs, each
with a higher average vertex degree.

Dependency on the Projection Technique. We conducted
an experiment with PCA and Classical Scaling projections.
Our approach is not dependent on the chosen projection
technique, as illustrated in Figures 7(a) and 7(b). Both pro-
jections allow the calculation of a distance as long as the
matrices compared were projected with the same method.

For the evaluation of sensitivity to outliers, scaling factors
and size variation we first defined a basis for comparison.
We chose the minimum aggregate over all Euclidean com-
parisons of the two matrices’ high-dimensional vectors. We
refer to the Euclidean test results as the EuclideanVectorDis-
tance and to the similarity calculation after projection into
the plane as the ProjectionPointDistance.

Outlier Sensitivity. We define outlier tolerance as follows:
The comparison of a matrix with a certain number of out-
lier rows/columns to the same matrix without outliers should
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Figure 7: The experimental evaluation shows the technique’s insensitivity to noise in the input data, scaling factors and the

projection technique used, as long as it is deterministic.

result in a lower increase in the ProjectionPointDistance
when compared to the EuclideanVectorDistance. Figure 7(a)
shows the distribution of our experimental results. These
were obtained, by varying (1) the investigated matrix, and
(2) the number of outlier rows/columns between 0 and 50%.
We can see that the ProjectionPointDistance is tolerant with
respect to outliers. However, a large number of outliers has
an impact on the projection and eventually on the distance
calculation. It is also clear that MDS and PCA behave differ-
ently in the case of outliers. While MDS is more tolerant of
outliers, the PCA projection distance shows a positive corre-
lation with the maximum value of the outlier vectors.

Scaling Sensitivity. We define scaling-factor tolerance as
follows: The comparison of a scaled matrix to the same ma-
trix without the application of a scaling factor should result
in a lower distance value increase of the ProjectionPoint-
Distance when compared to the EuclideanVectorDictance.
The scaling factors we considered were 1, 10, 100, 1000. As
Figure 7(b) depicts, our technique is tolerant with respect to
scaling factors. Similarly to the outlier experiment, the MDS
projection shows less influence in comparison to PCA.

Further Experiments. We conducted a range of other ex-
periments on the test suite. For example, we showed that
the row or column ordering did not influence the matrix dis-
tance calculation. This is due to the fact that the applied pro-
jection techniques operate on the so-called eigenvalue spec-
trum, which is by definition invariant to similarity transfor-
mations.

In Figure 7(c) we show the results of a sub-matrix search
experiment to check tolerance of size variation. We cropped
a 100 x 100 sub-matrix from the Petit test suite’s bintreel0
matrix and searched for it in the test suite. One can see that
bintreel0_cropped and its larger counterpart have the lowest
distance score, meaning that their original relationship could
be retrieved.

8. Discussion and Extension

While our technique has proven useful, we have identified
several areas where improvements or alternatives could be
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explored. Firstly, there are many other projection methods.
There are also dimension reduction methods which do not
involve projection. A thorough analysis of their advantages
and disadvantages still remains to be done. Secondly, there
is the question of target dimension: We chose two dimen-
sions, since this enables a simple graphic representation of
the results. However, earlier works [KCO02, CK04] incorpo-
rate considerations of the adjacency matrix’s rank. While
our technique can be adapted for the comparison of higher-
dimensional objects appropriate and effective visualizations
would be indispensable for this step. Thirdly, alternative
graph-matching methods could be applied in the projection
plane. Taking high-dimensional relationships for the ver-
tex allocation into account could help to deal with matrices
of dramatically varying size. Fourthly, we want to consider
multivariate matrix data as a challenging future work point.

9. Conclusion

Matrices occur in many applications. While previous work
centered on understanding the relationships in one matrix,
the focus is shifting to a new research problem: The compar-
ative analysis of sets of matrices. We motivated the research
problem of the visual analysis of sets of matrices and in-
troduced a novel technique for the comparison of matrices
of varying size. A projection-based comparison allows ana-
lysts to understand the structure of and differences between
matrices, while allowing them to comprehend and influence
the distance calculation by visual means. A visual analysis
framework was presented for the interpretation and adapta-
tion of the distance score. We evaluated our method with a
case study, conducted to showcase the approach on a exam-
ple real-world dataset. In addition, we conducted an experi-
mental analysis to show the insensitivity of the proposed ma-
trix distance function to noise and scaling. Our technique is
shown to be independent of the chosen projection function,
as long as it is deterministic. In conclusion, the presented
technique serves as a generic basis for a range of applica-
tions. While this paper focused on classical retrieval tasks
and outlier analysis, the projection-based approach will en-
able further matrix analysis applications which we will ad-
dress in future work.
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