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Figure 1: With geodesic paths we can parallel transport the difference between a smiling (upper left) and a neutral face (lower
left) along a path (bottom row) towards a disgusted face (bottom right), resulting in a smile with a frown (upper right).

Abstract
We prove both in the smooth and discrete setting that the Hessian of an elastic deformation energy results in a
proper Riemannian metric on the space of shells (modulo rigid body motions). Based on this foundation we develop
a time- and space-discrete geodesic calculus. In particular we show how to shoot geodesics with prescribed
initial data, and we give a construction for parallel transport in shell space. This enables, for example, natural
extrapolation of paths in shell space and transfer of large nonlinear deformations from one shell to another with
applications in animation, geometric, and physical modeling. Finally, we examine some aspects of curvature on
shell space.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational geometry
and object modeling—Physically based modeling

1. Introduction

Elastic energies play a pivotal role when deforming, animat-
ing, or simulating geometries. Continuously changing the
form of a given shape corresponds to a continuous path in
shape space. Studying these paths offers a way to explore
shape space, both locally and globally. Geometrically, such

an exploration relates to the search for shortest paths, or
geodesics, which require a Riemannian metric for distance
measurements. Physically, the exploration relies on a notion
of distance between shapes given by the energy dissipated
while deforming one shape into another. Here we combine
geometry and physics by showing that the Hessians of a wide
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class of commonly used elastic energies for thin shells give
rise to Riemannian metrics on shell space. In hindsight, this
justifies the notion of geodesic paths in shell space intro-
duced in [HRWW12].

With this foundation we can build a geodesic calculus,
for example, a notion of parallel transport in shape space.
That is, we can move a vector field along geodesic paths and
in this way transfer, for example, large nonlinear deforma-
tions from one shape to another (see Fig. 1). In the time- and
space-discrete setting this amounts to defining

• a discrete notion of the logarithm, mapping shortest paths
between two shapes into an initial velocity vector which
“shoots” to the target shape, and
• a discrete notion of the exponential, mapping an initial

shooting direction into a particular shape via a shortest
path.

Practically speaking, the final algorithm consists of se-
quences of elementary steps: finding a third shape as the
minimizer of an action involving three shapes, two of which
are given. Because each of these steps represents a vari-
ational problem, our approach is linked to the variational
discretization of Hamiltonian systems in mechanics, which
helps ensure computational robustness.

Aside from practical applications in geometric modeling,
such as animation and deformation transfer, these tools also
allow us to explore the local and global geometry of shell
space, which are little understood so far. We provide a first
glimpse in this direction via examples of Riemannian trian-
gles in shell space as well as examples of a particular conse-
quence of space curvature in Riemannian geometry known
as holonomy.

2. Related work.

Here we briefly review some of the relevant concepts and
paradigms required in our geometric treatment of shell
space.
Elastic energy of shells. The importance of efficient simu-
lations and deformations of thin plates and shells has long
been known to the graphics community [TPBF87]. Vari-
ous researchers in graphics have formulated and discretized
separately the membrane and bending modes of deforma-
tion of Kirchhoff–Love shells. The treatment of the mem-
brane energy for triangulated meshes follows the widely
studied models of elasticity in the Finite Element commu-
nity [ZT00,Hug87]. In contrast, the geometrically nonlinear
treatment of bending energy, which accounts for change of
curvature, requires tools from (discrete) differential geom-
etry. In graphics, popular approaches for the treatment of
bending energy include discrete thin shells [GHDS03] and
a discrete shape operator based on edge normals [GGRZ06].
Alternative representations of metric and bending data in
the form of edge lengths and dihedral angles have been
used by Winkler et al. [WDAH10] in the context of cas-
cadic interpolation, while PriMo [BPGK06] introduced a

non-linear model for the deformation of thick shells (rigid
prisms coupled by non-linear springs). It is also possible
to include learning into physical simulation for shape de-
formation as investigated by Fröhlich and Botsch [FB11].
For an overview of linear deformation models (as opposed
to geometrically nonlinear ones that we use here) we refer
to [BS08].
Relative to all these previous approaches ours is character-
ized by taking a differential geometric point of view. Defor-
mation energy densities are functions of the relative first and
second fundamental forms, incorporating geometric non-
linearities while being agnostic to the constitutive model
used.
Hessian of elastic energy. Physical simulation models can
be expressed in different bases. One attractive choice is the
so called modal basis given by the eigenvectors of the en-
ergy Hessian. Noting that small eigenvalues correspond to
low stiffness, the corresponding eigenvectors parameterize
physically preferred deformation modes. This was exploited
recently by Hildebrandt et al. [HSTP11,TSSH13], who used
this basis for the intuitive modeling of surfaces and accel-
eration of physical simulations with a linearized vibration
model and damping.
In our case, small eigenvalues of the energy Hessian resem-
ble low frequency oscillations, i.e., they produce the least
energy dissipation for a given magnitude of motion. We uti-
lize this fact when doing geodesic extrapolation.
Geometry of spaces of shapes. From a more global per-
spective, researchers in vision have studied shapes as points
in shape space. Studying shape space from the point of
view of Riemannian geometry enables transfer of important
concepts from classical geometry to these (usually) infinite-
dimensional spaces. Examples with a fully developed geo-
metric theory include spaces of planar curves with curvature
based metrics [MM06], elasticity based metrics [SJJK06],
or Sobolev-type metrics [SYM07]. Geodesic paths between
shapes have been approximated via the minimization of
discretized path length [SCC06] or path energy [FJSY09,
WBRS11]. This Riemannian perspective has had a large im-
pact ranging from shape morphing and modeling, see, e.g.,
[KMP07], to shape statistics, see, e.g., [FLPJ04], and com-
putational anatomy [BMTY02]. A central concept in this
setup is the flow of diffeomorphisms to define distances and
geodesics. See [You10] for a comprehensive exposition.
Most relevant for us is the work of Kilian et al. who investi-
gated the (finite dimensional) space of triangulated surfaces
and considered geodesics between such meshes [KMP07],
with respect to a Riemannian metric measuring the stretch-
ing of triangle edges. While this metric is invariant to rigid
body motions, the lack of a bending term leaves a non-
trivial kernel of the metric tensor, including all isomet-
ric deformations of the triangular mesh. To avoid the re-
sulting unphysical wrinkling effects, a supplementary (non
physical) regularization was incorporated by Killian and
co-workers. Instead one may use the regularizing effect of
bending energy—and stay entirely in a physical simulation
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framework—as demonstrated in [HRWW12]. Other types of
shape spaces where explored by Kurtek et al. [KKG∗12],
who studied geodesic paths between surfaces parametrized
over the unit sphere, using local changes of the area element
as a Riemannian metric; Bauer et al. [BHM11] investigated
geodesic paths on the space of surfaces described by embed-
dings or immersions of a given manifold using as Rieman-
nian metric a quadratic form corresponding to a higher order
elliptic operator; finally Jin et al. [JZLG09] studied Teich-
müller space as a finite dimensional shape manifold, where
shapes are classes of conformally equivalent surfaces.
Our method falls into the category of shape space based ap-
proaches and we show rigorously that the energy Hessian
of a simple class of stretching/bending models does indeed
provide a proper Riemannian metric.
Link to variational integrators in mechanics. For Hamil-
tonian mechanical systems, variational and structure pre-
serving time discretization is by now a classic field
[HLW06]. The discretization of the Lagrangian in me-
chanics [LMOW04] corresponds to our notion of a time-
discrete path energy. From the discrete Lagrangian, by us-
ing a discrete Hamilton’s principle, one arrives at our Euler–
Lagrange equation of discrete geodesics. The associated dis-
crete symplectic time steps exhibit the same structure as the
discrete exponential shooting proposed here, giving it many
of the numerical advantages associated with such methods.

3. Riemannian structure of the space of shells

Here we outline the elastic energies that we consider in our
exposition, both for the case of smooth and discrete surfaces,
and we show that energy Hessians give rise to Riemannian
structures.

Smooth thin shells. Shells are thin, curved material sheets,
i.e., three-dimensional objects sδ of thickness δ > 0. We de-
note their midsurface by s. A deformation φ

δ : sδ → R3 of
the physical material sδ maps each point x ∈ sδ onto a new
position φ

δ(x). ByWδ[φδ] we denote the stored (in general
nonlinear) elastic energy of the deformation φ

δ. It is well-
known (see, e.g., the exposition in [HRWW12]) that up to
higher order terms in δ this 3D energy reduces to a rescaled
energyW[φ] on the deformation of the midsurface s.

For a homogeneous, isotropic, elastic material, the
(rescaled) deformation energy W[φ] of the elastic defor-
mation of the midsurface s can be captured by membrane
and bending contributions, or the changes of first (i.e., met-
ric) and second (i.e., curvature) fundamental forms. Accord-
ingly, we define

Qmem[φ] = Bmem
φ −Bmem

1 and Qbend[φ] = Bbend
φ −Bbend

1

with the symmetric operators Bmem and Bbend given by

Is(Bmem
φ v,w) = Iφ(s)(dφ(v), dφ(w)) ,

Is(Bbend
φ v,w) = IIφ(s)(dφ(v), dφ(w)) ,

Here, Is, IIs, and v,w denote the first and second fundamental
form as well as two tangent vectors of s, all at a position
x∈ s. These equations uniquely define Bmem and Bbend as they
have to hold for all v and w. The operators Bmem and Bbend are
the linear operators that correspond to the quadratic first and
second fundamental forms, respectively.

The total elastic energy is then given by

W[φ] = δ

∫
s
Wmem(Qmem[φ]) dx+δ

3
∫

s
Wbend(Qbend[φ]) dx ,

where the non-negative energy densities Wmem,Wbend act on
the symmetric linear rank two operators Qmem and Qbend. A
prominent example for these densities is the squared Frobe-
nius norm. For Wmem and Wbend we require that (i) W (0) = 0,
(ii) DW = 0 at the zero matrix, and (iii) D2W is positive def-
inite at the zero matrix. These requirements correspond to
the fact that if the shell is in a stress free configuration, then
the deformation identity 1 is a minimizer ofW and thus (i)
W[1] = 0 and (ii) dW[1] = 0. Additionally, we assume (iii)
that the energy is strictly convex (modulo rigid body mo-
tions) in a neighborhood of a minimizer. These assumptions
capture most thin elastic materials [Cia00].

Let S denote the space of smooth shells. Our first main
result is:

Thm. 1 (Non-degeneracy of smooth Hessian) For v
a tangent vector field to S at some smooth s ∈ S,
Hess(W)(v,v) = 0 if and only if v induces an infinitesimal
rigid motion. Consequently, gs(v,w) = 1

2 Hess(W)(v,w) is
indeed a Riemannian metric on the space of smooth shells
modulo infinitesimal rigid body motions.

We defer the proof to the appendix.

Discussion. Note that in general the Hessian Hess( f ) =
∇(df ) of a function f depends on the choice of a Rieman-
nian metric through the covariant derivative∇. Thus in gen-
eral it is meaningless to speak of Hessians giving rise to a
Riemannian metric without presuming such a metric to be-
gin with. However, at a critical point of a function f (i.e., a
point where df = 0), Hess( f ) is independent of the choice
of metric [Mil63]. This is our setting since a given shell is
the minimizer of its elastic energy.

Discrete thin shells. We identify a triangulated shell or sur-
face s with a vector s ∈ R3m, where m denotes the number of
vertices. We follow the smooth setting for our exposition in
the discrete case.

A deformation of a triangulated shell can be identified
with a mapping φ : V → R3, where V denotes the set of ver-
tices. If the deformation φ, acting on vertices, is interpolated
piecewise linearly over triangles, then the membrane part
can be treated identically to the smooth case. For the bending
part, which requires second derivatives of surface positions
in the smooth case, we resort to (a variant of) the widely
used thin shell energy in the discrete case, where bending is
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quantified by changes of dihedral angles. In both cases the
discrete energy densities Wmem and Wbend can be chosen iden-
tically to their smooth counterparts.

The discrete version of the elastic deformation energyW
reads

W[φ] = δ ∑
t∈T

Wmem(Qt
mem[φ])At +δ

3
∑

e∈E
Wbend(Qe

bend[φ])Ae ,

where T and E denotes the set of triangles and edges, respec-
tively, At denotes the triangle area of the undeformed triangle
t, and Ae is the area associated with an undeformed edge e.
The latter is given by Ae = |e|he =

1
3 (At1 +At2), where he is

a third of the average of the two heights of the two triangles
ti incident to e. Finally,

Qt
mem[φ] = Bmem

φ,t −Bmem
1,t and Qe

bend[φ] = Bbend
φ,e −Bbend

1,e ,

where Bmem
φ,t and Bbend

φ,e , respectively, are given by

Bmem
φ,t = 1

8A2
t

∑
2
i=0(I

φ

j + Iφ

k− Iφ

i )(∗ei)⊗ (∗ei) ,

Bbend
φ,e =

θφ(e)
he

(∗e)⊗(∗e)
|e|2 .

Here, the indices i, j,k ∈ {0,1,2} refer to the edges of t,
where j = i+ 1 (mod 3) and k = i+ 2 (mod 3), ⊗ denotes
the outer product, and ∗ei is the undeformed edge ei rotated
clockwise by π/2 in the plane of t. Similarly ∗e is the un-
deformed edge e rotated clockwise by π/2 in the plane of
one (arbitrary) of the triangles incident to e, θφ(e) is the di-

hedral angle at the deformed edge φ(e), and Iφ

i is defined as
Iφ

i = ‖φ(ei)‖2 for the deformed ith edge φ(ei).

Simplified expressions for discrete elastic energy. We
chose the above representation of discrete elastic energies
since it enables reuse of the smooth energy densities Wmem

and Wbend. When Wbend is given by the squared Frobenius
norm (our setting), the representation can be simplified to
the widely used discrete shells energy

W[φ]bend = δ
3

∑
e∈E

|e|
he

(θe−θφ(e))
2 .

For Wmem we use the nonlinear energy density given in equa-
tion (8) in [HRWW12].

Let S denote the space of triangulated shells. Our second
main result is:

Thm. 2 (Non-degeneracy of discrete Hessian) For v∈R3m

a tangent vector to S at some s ∈ S, Hess(W)(v,v) = 0 if
and only if v induces an infinitesimal rigid motion. Conse-
quently, gs(v,w)= 1

2 Hess(W)(v,w) is indeed a Riemannian
metric on the space of discrete shells modulo rigid body mo-
tions.

Proof Suppose that Hess(W)(v,v) = 0 for some vector field
v sitting at the vertices. Then v is both in the kernel of the
Hessian of discrete membrane energy and the Hessian of dis-
crete bending energy since both are positive semi-definite

operators. Consider two adjacent triangles t1 and t2. After
subtracting global translations induced by v, for v to be in
the kernel of the Hessian of membrane energy implies that v
induces an infinitesimal rotation of t1 since the edge lengths
of t1 must not change. The same holds for t2. Since v is also
in the kernel of the Hessian of bending energy, it follows that
v must not induce a change of the dihedral angle between t1
and t2. Hence v induces a single infinitesimal rotation of the
hinge t1 ∪ t2. Iterating this argument over the entire mesh
proves the claim.

Physical interpretation We have established a Riemannian
metric both on the space of continuous and discrete shells.
Physically, our approach corresponds to thin shells that dis-
sipate energy when being deformed. A widespread model of
dissipation in mechanics [Hug87, ZT00] is Rayleigh damp-
ing. By Rayleigh’s paradigm [Str45] one derives models for
viscous dissipation from elastic energies replacing elastic
strains by strain rates. Consider a 1-parameter family (φt) of
diffeomorphisms of R3 with φ0 = 1 and let v = φ̇(0) denote
the Eulerian velocity at time t = 0. Replacing strains φt −1
for small times t by strain rates v we obtain (up to rescal-
ing of time and higher oder spatial terms) the rate of viscous
dissipation gs(v,v) = 1

2 HessW[1](v,v) for a given shell s.
In particular, geodesics in shell space correspond to paths of
least energy dissipation. Note the difference between elastic
energy and viscous dissipation: elastic energies are indepen-
dent of the deformation path, whereas dissipation is not. In
elastic dynamics energy is preserved and is given as a sum
of kinetic and potential (stored elastic) energy. In the case
of viscous dissipation dynamics, energy is dissipated (con-
verted) into heat due to internal friction.

4. Discrete geodesic calculus

Having established that geodesic paths, with respect to a Rie-
mannian metric arising from the Hessian of an elastic en-
ergy, are well-defined, we now use this Riemannian metric
to develop a discrete geodesic calculus on shape space. In
the smooth setting, where we consider a continuous family
(φ(t, ·))t∈[0,1] of deformations x 7→ φ(t,x) and an induced
path (s(t))t∈[0,1] in the space of shells with s(t) = φ(t,sA)
and φ(0, ·) = 1 for a given shell sA, one obtains the path en-
ergy

E [(s(t))t∈[0,1]] =
∫ 1

0
gs(t)(v(t),v(t))dt

with v= φ̇◦φ
−1 the Eulerian motion field. Minimizers of the

path energy for fixed end points s(0) and s(1) are shortest
paths which are also unit speed parameterized.

In the discrete setting this path energy integral is replaced
with a sum of elastic deformation energies between succes-
sive intermediate shapes as suggested in [HRWW12]

E[s0, . . . ,sK ] =
1
τ

K

∑
k=1
W[sk−1,sk]

submitted to COMPUTER GRAPHICS Forum (6/2014).



B. Heeren & M. Rumpf & P. Schröder & M. Wardetzky & B. Wirth / Exploring the Geometry of the Space of Shells

where (s0, . . . ,sK) is a time-discrete path with time step size
τ = 1

K andW[s, s̃] is the elastic energy for a mapping φ of s
onto s̃. In analogy with the smooth setting, we call minimiz-
ers for fixed end shapes s0 and sK time discrete geodesics.

When the shell is also discretized in space we get a fully
discrete path energy E[s0, . . . ,sK ] by replacing W[sk−1,sk]
with its discrete counterpart W[sk−1,sk]. Using a proper
discretization of an underlying smooth energy in space
and time distinguishes our approach from others such as
[FB11,KMP07]. Consequently our path energy is much less
dependent on the underlying mesh and consistent under re-
finement.

Geodesic interpolation and extrapolation. Consider the
case K = 2 with shapes s0, s1, and s2. If s0 and s2
are given, the interpolated geodesic midpoint s1 can be
found as the minimizer of the discrete path energy, s1 =
argmins E[s0,s,s2], i.e., as the zero s1 of the corresponding
Euler–Lagrange equation

0 = ∂2E[s0,s1,s2] =
1
τ

(
∂2W[s0,s1]+∂1W[s1,s2]

)
(where ∂i denotes the derivative with respect to the ith argu-
ment). If instead a starting point s0 and a direction s1−s0 are
given, the next shape s2 is found by geodesic extrapolation,
i.e., this time we have to find s2 such that the same equation,
0 = ∂2E[s0,s1,s2], holds with s0,s1 fixed.

Now consider K > 2 (see, e.g., Fig. 4). For given end
shapes s0 and sK , the interpolating shapes are found again by
minimizing E[s0,s1, . . . ,sK−1,sK ]. For given starting point
s0 and direction s1− s0, the extrapolated shapes s2, . . . ,sK
are obtained step by step, simply applying the above three-
point case iteratively. Note that the interpolated geodesic
s0, . . . ,sK and the geodesic extrapolation from s0 in direc-
tion s1− s0 coincide because the defining Euler–Lagrange
equation is the same and the minimizer of the variational
problem is unique. Indeed, for discrete shells s0,sK close to
each other, the latter is guaranteed due to Theorem 2, which
implies local strict convexity.

Notice how we may think of discrete geodesic interpola-
tion as a map from a geodesic path (s0 to s2) to a difference
vector s1− s0, while discrete geodesic extrapolation can be
seen as a map from a difference vector s1− s0 to a geodesic
path connecting s0 to s2. The smooth counterparts of these
operations, respectively, are the logarithm map, which maps
a geodesic path to an initial velocity vector, and the exponen-
tial map which maps an initial velocity to a geodesic path.
Fig. 3 shows an application of interpolation and extrapola-
tion (top). Furthermore, the rate of viscous dissipation is
plotted to show the equidistribution of dissipation along the
discrete geodesic path (bottom). Fig. 4 shows an example
based on large, nonlinear deformations. Again, the equidis-
tribution of dissipation is striking - in particular, when com-
pared to other approaches. Fig. 2 demonstrates the robust-
ness of the proposed time discrete geodesic extrapolation,

-
0.0 0.05 0.25 0.50 0.75 1.0

t

Figure 2: Shape extrapolation is applied to generate a
strong twisting of a helix (see Fig. 6 in [FB11]) with δ =√

10−5. The two gray surfaces are taken from the computa-
tional results in [FB11] (at times 0.0 and 0.25 (top), 0.0 and
0.05 (bottom)) and used as input data here.

t

− 1
3 0 1

3
2
3 1 4

3
5
3 2

0.0 1.0 2.0

Figure 3: Top: Geodesic interpolation for 0≤ t ≤ 1 of given
shells at time 0 and 1, geodesic extrapolation for t < 0 and
t > 1 (local dissipation rate is color coded as 0 1; nom-
inal shell thickness is δ = 1). Bottom: The total dissipation
rate (membrane contribution in light gray, bending contri-
bution in dark gray) stays constant along the path.

both for large time steps and given large nonlinear initial
variation as well as for many small time steps and small ini-
tial offset.
With both a discrete version of logarithm and exponential
available we can now perform not only geodesic interpola-
tion but also parallel transport, to which we now turn.

Parallel transport. The continuous parallel transport of
a tangent vector v ∈ Ts(0)S along the path (s(t))t∈[0,1]
is the tangent vector v(1) resulting from the solution of
∇ṡ(t)v(t) = 0 for t ∈ [0,1] and initial data v(0) = v, where
∇ṡ denotes the covariant derivative based on the Levi-Civita
connection. It can be approximated (still in the continuous
setting) using a Riemannian (or Levi-Civita) parallelogram
construction first used in gravitational physics and named
Schild’s ladder [EPS72, KMN00]: Given three shells sA, sB,
and sC, we can construct a fourth shell sD such that the
geodesic paths between the four shells form a geodesic par-
allelogram, i.e., the geodesics sC↔ sB and sA↔ sD share the
same midpoint s× (see Fig. 5). To compute sD we proceed as
follows: (i) compute the geodesic from sC to sB via interpo-
lation; (ii) take its midpoint s×, (iii) compute the geodesic
from sA to s×, (iv) compute sD through extrapolation from
s× with initial direction v×, where v× is the final velocity
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-
0.0 0.25 0.50 0.75 1.0 1.25 1.5

t 0.0 1.0

Figure 4: The two gray elephant surfaces are connected via a discrete geodesic with K = 4 and for δ =
√

10−5. The geodesic
is extended using geodesic extrapolation (see Fig. 11 in [WDAH10] and Fig. 5 in [FB11]). On the right the corresponding rate
of viscous dissipation is plotted for the 6 time steps. Furthermore, black lines indicate the dissipation for the corresponding
sequence from [WDAH10]. Edge lengths and dihedral angles deviate from linearly interpolated lengths and angles by at most
72% (resp. 29◦) and by at most 2.5% (resp. 1.5◦) when omitting the worst 1% edges (see Fig. 7 and 8 in [WDAH10]).

of the geodesic in step (iii) at its endpoint s×. A sequence of
N such parallelograms then transports the initial velocity of
sA ↔ sC along the path from sA to sN to the initial velocity
of sN ↔ s′N (see also Fig. 5).

sA

sB

sC

sA

sB

sC

s×

sA

sB

sC

s×

sA

sB

sC

s×
sD

sA=s0
sB=s1

sC sD

s×

sN

s′N

y y′

Figure 5: Top: Stepwise construction of a (discrete)
geodesic parallelogram (in the discrete case K = 4 such that
each discrete geodesic consists of five shapes indicated by
the black dots). Bottom: Iterative construction for the time-
discrete parallel transport of y along (s0, . . . ,sN) to y′.

The parallelogram construction can easily be transferred
to the time-discrete setup. Effectively, to compute sD we
proceed along the same steps (i) to (iv), only replac-
ing geodesics by discrete geodesics. Iterating this discrete
geodesic parallelogram construction as in Fig. 5 (the black
dots refer to discrete geodesics with K = 4), we transport the
pair (sA,sC) along the discrete path (s0 = sA, . . . ,sN) to ob-
tain the pair (sN ,s′N). The first step of the discrete geodesic
from sN to s′N then is the parallel transported first step of the
discrete geodesic from sA to sC. Figure 1 uses such a con-
catenation of geodesic parallelograms to transport a smile
along a path from a neutral to a disgusted facial expression.

Given a shell surface s and two variants s′ and s′′ of this
shell, there are different ways to combine these two nonlin-
ear shell variations in a shell s′′′ (see Fig. 6):

(A) the construction of a single geodesic parallelogram
s,s′,s′′,s′′′,

(B) the transport of (s,s′′) along a discrete geodesic from s to
s′ via the above sequence of parallelograms, or

(C) the transport of (s,s′) along a discrete geodesic from s to
s′′ via a sequence of parallelograms.

Due to the holonomy in Riemannian manifolds with non-
zero curvature, the results will generally differ (Fig. 7).

s s′

s′′ s′′′

s s′

s′′ s′′′

s s′

s′′ s′′′

(A) (B) (C)
Figure 6: There are different ways of combining two non-
linear shell variations s′ and s′′ of s to a new shell s′′′ via
geodesic parallelogram constructions (gray arrows), which
lead to different results due to the holonomy of curved spaces
(see Fig. 7).

Figure 7: Top: different results of combining an expression
of disgust (s′ in Fig. 6) with a smile (s′′), starting from a neu-
tral expression (s). Red, blue, and black correspond to (A),
(B), and (C) in Fig. 6. (B) is detailed in Fig. 1. The colored
contours and shading on the right show differences due to
holonomy.

Algorithmic details. The minimization of the discrete path
energy for the computation of discrete geodesics is per-
formed by solving the set of Euler–Lagrange equations
∂sk E[s0, . . . ,sK ] = 0 for k = 1, . . . ,K − 1 via a Newton it-
eration with stepsize control. In each Newton step the linear
system is solved using an LU factorization. The iteration is
stopped if the squared `2-norm of the Newton step decreases
below 3m(K− 1) times machine epsilon, where 3m(K− 1)
is the total number of degrees of freedom. This happens well
inside the quadratic convergence regime. To start the New-
ton iteration within its domain of convergence, we first ini-
tialize with a discrete path (sA,sA, . . . ,sA,sB) and perform
two to three Gauss–Seidel type iterations, in which we al-
ternatingly update all odd and all even shapes. For a very
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small weight of the bending term it is sometimes necessary
to first compute a geodesic with a larger weight and then use
this as initialization. Geodesic extrapolation is based on the
same Newton scheme, this time used to find a root s2 of the
nonlinear function s2 7→ ∂2E[s0,s1,s2]. Per shape it typically
only needs a handful of steps until convergence and roughly
four seconds (serially) for a mesh with 6000 nodes.

5. The geometry of shell space

Figures 1 to 4 show applications of geodesic inter- and ex-
trapolation as well as parallel transport. In the following we
will briefly discuss the nature of those tools and of the Rie-
mannian setup.

The interplay of physics and geometry. Our metric on the
space of shells and our discrete approximation of the path
energy are motivated by physics (especially by the notions
of elastic energy and viscous dissipation). Note however that
our proposed framework for shape exploration is purely ge-
ometric, based on the notion of a Riemannian manifold of
shells and Riemannian operators such as the exponential or
logarithmic map. In particular we do not perform a physi-
cal simulation, but instead compute special geometric curves
(geodesics) within a geometric space of shells. In the context
of shape animation, this framework offers a well-founded al-
ternative to performing physical simulations (which are for
instance used in [HSTP11, TSSH13]).

What are the differences? Assume, an animation direction
is given as the initial velocity of a shell. In a physical simu-
lation of an elastic shell based on Newton’s law of motion,
the elastic forces pull the shell back to the original configu-
ration so that the velocity decreases and is finally reversed:
the shell swings back and forth, performing a (potentially
nonlinear) oscillation around a rest position (see [TSSH13,
Fig. 1]). From an energetic viewpoint, the total physical en-
ergy is conserved, but it shifts back and forth between poten-
tial and kinetic energy. Damping might be added to smooth
out irregularities of the initial velocity. In the case of a purely
viscous shell there are only damping forces and no elas-
tic forces so that the motion simply decays exponentially.
In contrast to those two situations, using our geometric ap-
proach of shooting geodesics, the velocity and the energy
dissipation rate stay roughly constant (see Fig. 3, 9) so that
the initial character of the motion is maintained throughout
(as is most plainly visible in Fig. 8).

Despite the distinct differences in the velocity time pro-
files, the animation paths of physical and geometric compu-
tations will be quite similar. Indeed, the elastic model and
the Riemannian metric both prefer the same directions: The
eigenmodes of the elastic energy Hessian with small eigen-
value correspond to low frequency oscillations with little
elastic restoring force so that an initial velocity in such a di-
rection will lead to a large motion amplitude (see [HSTP11,
Fig. 1]). Likewise, these same directions are also low order
eigenvectors of our metric, meaning that they produce the

−50 0 50

Figure 8: Sample shells from the geodesic extrapolation
along an initial displacement given by the fifth non-trivial
eigenmode of the elastic Hessian. The diagram shows the
dissipation between each two consecutive shapes in the finer
resolved computation.

least dissipation for a given magnitude of motion. We refer
to Fig. 8 and 9 for a shooting of discrete geodesics in these
preferred directions.

−30 0 30

−30 0 30

Figure 9: Geodesic extrapolation from a shell along two dif-
ferent initial displacements, given by the second and fourth
non-trivial eigenmode of the Hessian of the elastic energy
with eigenvalues λ = 4.85363 (top) and λ = 5.91444 (bot-
tom), respectively. Shown are the initial shell with the cor-
responding eigenmode scaled by ±5 and the extrapolated
shells based on 10, 20 and 30 iterations of the extrapola-
tion. The diagrams display the almost constant dissipation
between each two consecutive shells. (Nominal shell thick-
ness is δ = 0.032.)

Shell space exploration. The space of shells is not flat, but
curved. So far, we know little about the local and global
curvature of shape spaces. Even though such knowledge
may not have direct applications in shape animation or ex-
ploration, it will help to understand what can be expected
from different geometric modeling approaches. For instance,
shape spaces of an elliptic character (with positive curvature)
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may exhibit multiple different shortest geodesics between
two given shapes. Also, initially parallel geodesics converge,
implying less freedom for shape deformation. On the other
hand, geodesic paths in shape spaces of hyperbolic nature
(with negative curvature) are expected to be unique, how-
ever, initially close geodesics diverge exponentially, imply-
ing instability with respect to small velocity perturbations.
Finally, if a shape space turns out to be almost flat, then after
a reparameterization of the shape space geodesics become
straight lines and all Riemannian operations become linear,
which might be exploited for efficient algorithms.

For shell space, a rough understanding of its curvature has
yet to be developed, however, Fig. 10 provides a first glimpse
into this direction. Here, a triangle of three geodesics is com-
puted between three given shells D, E, and F , as well as
its midpoint M (the point with the least average geodesic
distance to the vertices). The geodesic distances from M
to points along the triangle edges are slightly larger than
they would be in a flat Riemannian space, indicating a pos-
itive sectional curvature. (Similarly, the side lengths are
slightly shorter than expected for a flat triangle with the
same midpoint-vertex distances.) The curvature is more pro-
nounced for smaller nominal shape thickness δ. Note that
δ

2 can be interpreted as the relative weight between bend-
ing and membrane dissipation. Intuitively, the bending term
prefers paths along which the local shell curvature at each
point transitions uniformly in time from the initial to the fi-
nal value. However, since this cannot happen isometrically,
the membrane term prevents such a uniform transition, re-
sulting in a more curved shell space. Note that the shell space
curvature is not uniform. Indeed, if in Fig. 10 the shell M is
replaced by a flat hexagon, the distance relations even indi-
cate a very slight negative curvature (not displayed).

Another indication of nontrivial shell space curvature is
the phenomenon of holonomy: If a tangent vector to the
space is parallel transported along a closed curve, it will in
general not return to its initial direction (see Fig. 7). This
poses limitations on the extent to which parallel transport
can robustly be used for deformation transfer. However, the
example in Fig. 11 indicates that parallel transport still re-
mains a very robust and useful tool. Here, a shape variation is
transported along a geodesic triangle, and even though there
is a numerical difference between the starting and end point
due to holonomy, it is hardly perceptible visually.
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Appendix

Proof of Theorem 1. Let s ∈ S be a surface embedded
into R3. Since the energy W is non-negative and mini-
mized by the identity deformation (conditions (i), (ii), (iii)),
it follows that gs = Hess(W) is positive semi-definite. It
remains to show that gs is definite on the complement
of rigid transformations of s. By positive semi-definitness,
Hess(W)(v,v) = 0 if and only if Hess(Wmem)(v,v) = 0 and
Hess(Wbend)(v,v) = 0. Hence it suffices to study the null
spaces of Hess(Wmem) and Hess(Wbend). To simplify the ex-
position, we confine ourselves to the case where membrane
and bending energy densities are given by the squared Frobe-
nius norm. The general case works completely analogous.

In order to study variations, we consider a smooth 1-
parameter family (φt) of diffeomorphisms of R3 with φ0 = 1.
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To abbreviate notation, let It and IIt denote the first and sec-
ond fundamental forms induced by φt and pulled back to s,
respectively, i.e., ,

It(v,w) = Iφt (s)(dφt(v),dφt(w))

IIt(v,w) = IIφt (s)(dφt(v),dφt(w))

for vectors v and w tangent to s. In what follows, a super-
script dot denotes differentiation with respect to the t vari-
able at the point t = 0.

Lemma 1 Hess(Wmem)(φ̇, φ̇) = 0 iff φt induces an infinites-
imally isometric deformation of the surface s (iff İ|t=0 = 0).

Proof Let I = I0. Then at t = 0 we get

HessWmem(φ̇, φ̇)=
d2Wmem[φt ]

dt2

∣∣∣∣∣
t=0

=
d2

dt2

∫
s
‖ I− It ‖2ds

∣∣∣∣
t=0

= 2
d
dt

∫
s
〈It− I, İt〉ds

∣∣∣∣
t=0

= 2
∫

s
‖İt‖2

∣∣∣
t=0

ds .

The last term vanishes iff İ = 0 a.e. (everywhere due to
smoothness).

In order to investigate Hess(Wbend), we first require a
well-known fact of how to represent the second fundamen-
tal form of a surface immersed into R3. Let v and w be two
tangential vector fields to s, and let hesss be the Hessian op-
erator on the surface s induced by the first fundamental form
on s—this Hessian is not to be confused with the Hessian
Hess on shell space. Then II(v,w) = hesss(φ0)(v,w) ·n. or in
short II = hesss(x) · n, where φ0 : s→ R3 is the embedding
and n is the unit normal vector field of s, respectively. Here
hesss acts separately on each of the three components of φ0.
In particular, notice that hesss(φ0)(v,w) takes values in the
normal bundle of s.

Lemma 2 If the deformation φt induces an infinitesimally
isometric deformation of s, i.e., , if İ = 0, then

Hess(Wbend)(φ̇, φ̇) = 2
∫

s
‖hesss(φ̇) ·n‖2ds ,

where n denotes the unit normal vector field on s.

Proof We abbreviate notation by referring to nt and Ht as
the unit normal field and the Hessian operator of the surface
φt(s) pulled back to s, respectively, i.e., , nt = nφt (s) ◦φt and
for a function f : s→ R we have

Ht( f )(v,w) = hessφt (s)( f ◦φ
−1
t )(dφt(v),dφt(w)) ,

where v and w are tangent to s. Then it follows from the
previous discussion that IIt = Ht(φt) · nt . Thus at t = 0 we
have

Hess(Wbend)(φ̇, φ̇) =
d2

dt2Wbend[φt ]

=
d2

dt2

∫
s
‖Ht(φt) ·nt −hesss(φ0) ·n‖2ds

= 2
∫

s

∥∥∥∥ d
dt

(Ht(φt) ·nt)

∥∥∥∥2

ds .

Expanding gives

d (Ht(φt) ·nt)

dt
=

dHt(φ0)

dt
·n+hesss(φ̇) ·n+hesss(φ0) · ṅ .

To prove the claim, it suffices to show that both d
dt (Ht) and

hesss(φ0) · ṅ vanish at t = 0. To see that the first term van-
ishes, recall that the Hessian of a smooth function f on a
Riemannian manifold can be expressed in a local coordinate
chart (q1,q2) as

hesss( f ) =∇d f = ∑
i, j,k

(
∂

2 f
∂qi∂q j −

∂ f
∂qk Γ

k
i j

)
dqi⊗dq j ,

where the Chistoffel symbols of the Levi–Civita connection
are given by Γ

k
i j =

1
2 gkl(gil, j + g jl,i− gi j,l). By assumption

we have İ = 0. Hence the Riemannian metrics gt = It sat-
isfy ġi j = ġkl = 0 and hence Γ̇

k
i j = 0. Hence d

dt (Ht) = 0
at t = 0. It remains to show that hesss(φ0) · ṅ = 0, which im-
mediately follows from the fact that hesss(φ0) takes values
in the normal bundle of s and from ṅ ·n = 0.

We are now in the position to prove our theorem.

Proof [of Theorem 1] If the deformations φt are such that φ̇

is in the kernel of Hess(W), then φ̇ is in the kernel of both
Hess(Wmem) and Hess(Wbend). By Lemma 1, φ̇ then induces
an infinitesimal isometry, i.e., , dφ̇ is an infinitesimal rota-
tion for every point on s. Such an infinitesimal rotation can
at each point be represented by a skew-symmetric matrix or
equivalently the cross product with a vector a ∈ R3 parallel
to the rotation axis. Now let x : s→ R3 denote the restriction
of φ0 = 1 to s. Since dx acts as the identity on tangent vectors
and dφ̇ is an infinitesimal rotation, there exists a (unique)
a : s→ R3 such that dφ̇ = a× dx. By Lemma 2, we addi-
tionally have that hesss(φ̇) · n = 0. Since for any (smooth)
f : s→ R one has hesss( f ) = ∇d f , where ∇ denotes co-
variant differentiation, we obtain

0 = (∇dφ̇) ·n =∇(a×dx) ·n
= (∇a×dx+a×∇dx) ·n = (∇a×dx) ·n ,

where the last equality follows from the fact that ∇dx =
hesss x takes values in the normal bundle of s. Additionally,
observe that the symmetry of Hessians and the identity

hesss(φ̇) =∇dφ̇ =∇a×dx+a×hesss(x)

implies that (∇a× dx) is symmetric, i.e., , ∇va× w =
∇wa× v for all tangent vector fields v,w. In particular, fix
a tangential field v that does not vanish in some open subset
U ⊂ s and (locally) choose w such that v×w = n on U . Then

0 = (∇va×w) ·w = (∇wa× v) ·w = n ·∇wa

on U . Therefore, since U and v are arbitrary, ∇wa is a tan-
gential field for all tangent vector fields w; hence, ∇a× dx
takes values in the normal bundle, and from (∇a×dx) ·n= 0
we deduce that ∇a = 0. Hence a is constant and therefore
φ̇ = a× x+ b for some constant b ∈ R3 is an infinitesimal
rigid body motion in R3, which proves the claim.
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