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Abstract
Symmetry is a common characteristic in natural and man-made objects. Its ubiquitous nature can be exploited to
facilitate the analysis and processing of computational representations of real objects. In particular, in computer
graphics, the detection of symmetries in 3D geometry has enabled a number of applications in modeling and
reconstruction. However, the problem of symmetry detection in incomplete geometry remains a challenging task.
In this paper, we propose a vote-based approach to detect symmetry in 3D shapes, with special interest in models
with large missing parts. Our algorithm generates a set of candidate symmetries by matching local maxima of
a surface function based on the heat diffusion in local domains, which guarantee robustness to missing data. In
order to deal with local perturbations, we propose a multi-scale surface function that is useful to select a set
of distinctive points over which the approximate symmetries are defined. In addition, we introduce a vote-based
scheme that is aware of the partiality, and therefore reduces the number of false positive votes for the candidate
symmetries. We show the effectiveness of our method in a varied set of 3D shapes and different levels of partiality.
Furthermore, we show the applicability of our algorithm in the repair and completion of challenging reassembled
objects in the context of cultural heritage.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling —Curve, surface, solid, and object representations

1. Introduction

In recent years, the study of symmetries has attracted the at-

tention of the computer graphics and computer vision com-

munities. It is mainly due to the fact that the symmetry may

facilitate the computational understanding of visual repre-

sentations, and hence it could give support to high level tasks

such as recognition. In particular, the detection of symme-

tries in 3D geometry has a special interest since it is the first

step in the analysis process, and therefore it needs to be con-

ducted effectively and efficiently.

There are many proposals to tackle the problem of sym-

metry detection under the assumption that the complete ob-

ject is available for analysis. This assumption is strong and

may not hold for real applications in which a certain degree

of missing geometry may be evident. For example in archae-

ology, scanned pieces could have been under deterioration

for long time, or simply some portions are missing. There-

fore, it is imperative to devise algorithms for the detection of

symmetries taking into account the possible partiality of the

input object.

Clearly, the problem of detection of symmetries in partial

data is not trivial. The main difficulty is that in presence of

partiality, the center of mass of the input shape does not cor-

respond to the center of mass of the real complete object.

Additionally, we do not know a priori the amount of geom-

etry that is missing, making the problem very hard. In this

paper, we propose a method to detect symmetries in shapes

with missing geometry. Our algorithm is based on a care-

ful design of two procedures that jointly work to detect ap-

proximate global symmetries. The first component consists

of the definition of a new surface function based on a heat

diffusion process. This function characterizes local protru-

sions and allows us to select reliable points to find symmet-

ric correspondences. The second component is a partiality-

aware vote-based approach to validate the initial symmetric

correspondences over which a final set of symmetries is de-

tected. Moreover, we evaluate the robustness of our method

in a challenging application: the symmetry-based repair and

completion of cultural heritage objects.

The paper is organized as follows. Section 1.1 lists the

contributions of our research. Section 2 discusses the litera-

ture related to our work. Section 3 presents an overview of

our proposal. Section 4 defines our diffusion-based function
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and discusses its behavior. Section 5 presents our partiality-

aware vote scheme for validation of symmetries. Section 6

details our experiments and results, and also presents an ap-

plication of our algorithm to repair and completion of cul-

tural heritage objects. Finally, Section 7 draws our conclu-

sions.

1.1. Contributions

The contributions of our paper can be summarized as fol-

lows:

• We propose a new diffusion-based feature that conveys a

balanced characterization of globality and locality. Glob-

ality is necessary to find symmetric correspondences and

locality is important to be robust to partial data. Potential

symmetry planes are defined from local maxima of the

new feature function.

• We propose a partiality-aware voting algorithm to validate

the potential symmetry planes. Our algorithm computes a

support for a plane in which the votes are expected to be

consistent. Also, we propose a set of rules for discarding

inconsistent votes.

• We present a novel application in the context of cultural

heritage. We develop an algorithm to synthesize miss-

ing parts of reassembled objects using the knowledge ob-

tained for our symmetry detection method.

2. Related Works

The study of symmetries has proliferated considerably in re-

cent years in the computer graphics community, giving as

consequence many proposals to tackle the problem of detec-

tion. A comprehensive enumeration of these techniques is

out of the scope of this paper. Instead, we focus our discus-

sion on methods related to global reflectional symmetries.

For readers interested in an overall panorama on 3D symme-

try, we recommend the survey by Mitra et al. [MPWC13].

A common approach is the evaluation of symmetries as

a measure function. In their seminal work, Zabrodsky et

al. [ZPA95] proposed a symmetry measure based on the

exhaustive search in the rotational transformation space.

In this direction, Kazhdan et al. [KFR04] formulated an

efficient procedure to evaluate the symmetry measure us-

ing spherical harmonic coefficients. Similarly, Podolak et

al. [PSG∗06] devised a Monte-Carlo algorithm to sample

points in which the symmetry measure evaluation is per-

formed. Subsequently, a refinement step can be applied to

get higher precision in transformations that are local max-

ima. Alike, Martinet et al. [MSHS06] used spherical har-

monics to evaluate a symmetry measure based on shape mo-

ments. Also, Bermanis et al. [BAK10] proposed to evaluate

the symmetry by comparing volumes through an angular dif-

ference function which can be efficiently computed using the

3D Pseudo-polar Fourier Transform. Analogously, Kakarala

et al. [KKP13] described an optimization method that de-

tects symmetry planes which can be interpreted as a linear

phase in the spherical harmonic domain. More recently, Ko-

rman et al. [KLAB14] proved an upper bound on the sam-

pling density of the transformation group which guarantees

to find symmetries with high probability. An obvious limita-

tion of all these techniques is the assumption that the center

of mass of the object is a fixed point of the transformation

space. Nevertheless, this is not the case when the object is

incomplete, where the center of mass is to be shifted.

Another interesting approach to detect symmetries is the

vote-based scheme as proposed by Mitra et al. [MGP06].

The idea behind this approach is the use of self-

correspondences that may convey evidence about the ex-

istence of symmetries. For instance, Mitra et al. [MGP06]

proposed to match points with high curvature. Each pair of

points induces a transformation which is stored as a high-

dimensional point. A final clustering step in this space can

provide the more frequent transformations which derive into

symmetries. Similarly, Lipman et al. [LCDF10] developed a

voting algorithm that selects the best transformation as pos-

sible for random pairs of points. The best alignment is stored

in a symmetric correspondence matrix and its spectral de-

composition is exploited to detect symmetries. Analogously,

Xu et al. [XZJ∗12] defined an intrinsic symmetry correspon-

dence matrix. A multi-scale analysis over the scale of voting

pairs of points is formulated in order to be aware of the scale

of the symmetries. More recently, Tevs et al. [THW∗14] pro-

posed to quantify the relation between shapes based on the

regularities of symmetric parts in 3D objects. The first step

is a decomposition for a shape into a set of regions. Then, a

graph is used to represent the relation between the regions in

terms of symmetric transformations. The authors proposed

an algorithm to match two graphs which provides correspon-

dences between the regularities of given shapes.

Dealing with partial data. A few techniques have focused

the attention in the problem of symmetry detection with

missing data. Xu et al. [XZT∗09] developed a voting algo-

rithm to detect the intrinsic reflectional symmetry axis. Us-

ing the axis as a hint, a completion algorithm for missing ge-

ometry was shown. On the other hand, Jiang et al. [JXCZ13]

proposed an algorithm to find intrinsic symmetries in point

clouds by using the curve skeleton. A set of filters produces

a good set of symmetric correspondences which are finally

verified with spectral analysis. Although these two proposals

showed results for partial data, the amount of missing geom-

etry is small. In contrast, our approach is designed keeping

in mind the existence of large missing parts, turning more

challenging the problem to solve.

3. Overview

The core of our paper is the detection of symmetries in

shapes with missing geometry. Before going into the de-

tails, our intention is to provide a clear scope for our method.

132



133 

Input mesh Feature detection Validation by votes Symmetry plane 

Figure 1: Our algoritfun consists of two steps. First, a function is computed on the mesh such that the local maxima of this 
function are potential symmetric correspondences. Second, a set of candidate symmetry planes are generated and a further 
voting system determines the planes with the best chances to be symmetry planes. Both steps are designed to deal with the 
problem of missing geometry, giving a robust method as result. 

According to the classification provided in [MPWC13], our 
method is intended to detect global, approximate and extrin­
sic symmetries. It is global because the entire object is in­
volved in the symmetry evaluation. It is approximated in the 
sense that the detected symmetries are not guaranteed to be 
the exact symmetries. And it is extrinsic because we only 
focus in rigid objects. Moreover, in light of these observa­
tions, we characterize the symmetries through planes in the 
30 space. That is, in this paper we only consider reflectional 
symmetries. Therefore, our problem can be stated as the de­
tection of reflectional syrurnetry planes. 

The main problem is that we cannot assume that the center 
of mass of a given object lies in a symmetry plane due to the 
missing geometry. Obviously, this is the reason about why 
to use a vote-based approach in our context. However, the 
missing geometry complicates the voting process because a 
point sampling based on simple local features (such as cur­
vature, for instance) could not cover the surface properly. 

Our method operates in two stages that try to attenuate the 
limitations imposed by the partiality. First, we aim at detect­
ing a few reliable features that are effective to find symmetric 
correspondences and robust to missing data at the same time. 
We propose a new feature based on the heat diffusion on 
manifolds which will be proven to be effective to define lo­
cal diffusion behaviors. More interestingly, pairs of matched 
points could give rise to potential symmetry planes. 

Second, the potential symmetries require a validation in 
order to compute the final set of planes. We propose a vote­
based algorithm that is aware of the partiality. For a potential 
symmetry plane, we analyze the influence of the partiality in 
the validation process. We develop the concept of symmetry 
support for a plane in order to look for evidence for this 
plane to be a symmetry. A graphic overview of our method 
can be seen in Fig. 1. 

4. Multi-scale Local Features 

The first step of our algorithm is the detection of robust local 
features. ln order to use these features for symmetry detec­
tion of partial data, we must bear in mind two important as­
pects. First, the features need to preserve a certain degree of 
global awareness in order to enhance the matching of sym­
metric points. It would reduce the number of false positive 
matches, and therefore also the number of candidate symme­
try planes. Second, the features need to characterize the local 
geometry in a local enough way so that it is possible to deal 
with the missing data. Although both requirements seem to 
be conflicting, we believe it is possible to formulate a bal­
anced characterization to take advantage of both aspects. 

Our formulation is built on top of the theory of heat dif­
fusion on manifolds. The beat diffusion process over a com­
pact manifold M , possibly with boundary, is governed by 
the beat equation 

Clu(x,t) 
~Mu(x , t) = --Clt- (1) 

where ~M is the Laplace-Beltrami operator of M and u(. ,t ) 
is the heat distribution over M in timet. 

The fundamental solution of the heat equation is K, (x ,y ) 
called the heat kernel. This represents a solution with a point 
heat source in x and can be considered as the amount of 
beat transferred from x to y at time t supposing that the 
heat source is x. For compact manifolds, the heat kernel can 
be expressed using the eigenvalues and eigenvectors of the 
Laplace-Beltrami operator as follows: 

00 

Kt(x ,y) = [ e-A;1vi(x)vi(y) 
i=O 

(2) 

where 'A.i is the i-th eigenvalue and vi(·) is the i-th eigenvec­
tor's entry corresponding to a given point. 
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It is well known that the heat kernel is isometric invari­
ant, multi-scale, and stable against perturbations on the sur­
face. In addition, restricting the beat kernel to tbe temporal 
domain and fixing the spatial variables, we can obtain a rep­
resentation for each point on the manifold [SOG09]: 

= 
h(x,t) = K1(x,x) = [. e-A;rv;(x)2 (3) 

i=O 

Tbe value h(x,t) can be interpreted as the amount of heat 
that remains on the pointx after timet. This interpretation 
suggests that points with high values of h for large values of 
t can be considered as keypoints. However, the use of high 
values oft is associated with a global behavior, which is not 
desired in our context. On the other band, we could con­
versely evaluate h (x, t ) in low values of t , but this would 
make it sensitive to local perturbations. In order to give a 
balanced characterization and robustness, we propose a new 
function 'H.(x, t ): M x R+ -+ Ron the surface as follows 

'H.(x, t ) = fo' h (x, t )dt (4) 

The function 'H.(x,t ) associates the accumulation of heat 
up to time t to each point in the surface x. The intuition 
behind our formulation is that for low values of t, the ac­
cumulation in different times provides robustness to local 
perturbations, while still providing a global behavior. More 
formally, the evaluation of the integral in 4 yields 

(5) 

Tbe final result can be expressed in a simplified form as 

= - 2 'H.r (x) = [. f (A.; ,t )v;(x) . (6) 
i=O 

Note that Eq. 6 (in its general form as a representation of 
tilters on eigenvectors) has been already reported by Litman 
and Bronstein [LB14] as a general formulation for spectral 
descriptors. In this notation, it is easy to identify the function 

Frequency 

Figure 2: Kernel examples used in the computation of HKS 
and our feature 'H.. As t increases, the exponential decay of 
a low-pass .filter is evident. As a result, the domain with rele­
vant output values is considerably reduced, which implies a 
more global awareness. In contrast, our kernel shows a bet­
ter distribution of values in a more broad domain We believe 
this represellts a good trade-off between global and local in­
fonnation 

f (., .) as a tiller that weights the contributions of the shape 
frequencies (eigenvectors of the Laplace-Beltrami operator). 
For example the Heat Kernel Signatures [SOG09] use a low­
pass tiller and the Wave Kernel Signatures [ASCll] use a 
band-pass tilter. Our proposal can be considered as a new 
tiller that guarantees a balanced behavior of globality and 
locality. 

In our case, 'H. (x, t ) bas a different behavior. The ampli­
tude of the function f changes as t changes. In contrast to 
the low-pass and band-pass filters in HKS and WKS, our fil­
ter penalizes low frequencies for low values oft, defining a 
upper bound over all possible values for f. Tbe next propo­
sition summarizes this point (see Appendix for a proof). 

Proposition l l.et M be a compact Riemannian manifold 
and .1. M be its Laplace-Beltrami operator. Let 0 = A.o ~ A-1 ~ 
A-2 ~ .. • be the eigenvalues of dM. Then 

1- e-1.;1 

A.; 

for any t > 0 and A.;> 0. 

<t (7) 

The most important point to remark is that t controls the 
infiuence of the eigenfunctions in the computation of 'H.(x , t ) 
according to the magnitude of their corresponding eigenval­
ues. Figure 2 illustrates the behavior of our proposed filter 
compared to the low-pass filter used in the computation of 
HKS. As comparison, we can refer to the curves at t = 0.2, 
where the attenuation of our tilter is notorious in small fre­
quencies compared to the values for a low-pass filter. In ad­
dition, our filter presents a better distribution of values in 



all frequencies, compensating the exponential decay in the 
case of a low-pass filter. This can be traduced in a more bal­
anced behavior with a good trade-off between globality and 
locality. This is also the explication of why our feature is 
multi-scale. 

Figure 3 shows the result of computing our feature. The 
function 1i(x,t ) is useful to identify local maxima which 
correspond to points with a high accumulation of local heat 
In our example, it is clear that these points can be used to 
evaluate the symmetry, even when a considerable part of 
the geometry could be missing. Also as an example, note 
how our method is able to detect repeatable local structures, 
which is a desired property to take into account in matching 
in general. 

For our symmetry detection algorithm, once we have 
computed the function 1i(x ,t ) for every point in the mesh, 
we select the local maxima in the 2-ring neighborhood. For 
all our experiments, t is set to 0. 01 of the surface area. 

5. Vote-based Symmetry Detection 

The second step of our algorithm is the detection of symme· 
try planes. Let S = { s 1 , s2 , ... , sn} be the set of points de­
tected in the previous stage. Points in S could be evidence of 
the existence of symmetries, so the matching between them 
is useful to generate good symmetry hypotheses. For this 
reason, we consider pairs of points in S as generators of our 
candidate planes. Let s; and s j be two points inS with i :f= j. 
These points define a unique plane as the set of equidistant 
points to both points. We define a plane with the coefficients 
of its general form, that is Pij = [abc d), where the normal 
vector N/>;i = (a ,b,c) = (s;- Sj )/lls;- sjll2· Furthermore, 
the valued can be obtained as d = - (n,(s; +sj)/2} since 
the average point between s; and Sj belongs to Pij. It is worth 
to mention that the plane is considered as a candidate if and 
only if the generating points have a similar feature 1i(x,t). 
That is, Pij is a candidate plane if 11i(s;,t) - 1i(sj,t)l ~ p. 

An important detail about the computation of the sym­
metry plane is the orientation of the plane. Given a pair of 
points, there are two planes (with opposite directions) that 
represent the bisector plane. In order to deal with this, we 
agree to always take a pairs; and Sj such that i < j. 

The next step consist of accumulating more evidence for 
each candidate plane in order to validate whether it is a real 
symmetry plane or not. For this purpose, we use the curva­
ture in each point on the surface to produce a voting system 
In this point, it is necessary to use the information of the 
candidate plane as well as taking into account that the in­
put shape can have missing data. More specifically, if we 
assume Pij as a symmetry plane of a partial mesh, it is ex­
pected that the amount of geometry on either side of the 
plane differs considerably. For this reason, we propose to 
compute a support for the analyzed candidate plane. The 
support consist of two planes parallel and equidistant to Pij 
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Figure 4: A pair of generating points s; and Sj defines a 
bisector Pij. The plane support guaralllees the search of 
valid points for the voting scheme. In additior~ voting points 
slwuld preserve certain properties (as v~ and v~ ): consis­
tent distance to P;j, consistent normals and angle to bisec­

tor. Clearly, the pair fanned by v~ and v~ do not hold these 
properties. 

such that the part with less geometry is completely contained 
in this support. To compute the support, it is enough to com­
pute the distance to the parallel planes and use it as refer­
ence to the following steps. Having the plane coefficients 
P;j = [abc d), the signed distance of a point v E M is de­
fined as distP;i ( v) = avx + bvy + cvz +d. The plane support 
is finally computed as 

support(Pij) = min(l max distP;i (v)l,l min distpii(v))l) 
vEM vEM 

(8) 

The support is important to filter the points that will be 
used to vote for a plane. Our selection of samples to vote is 
based on a simple rule that uses the curvature and the sup­
port Given a plane Pij . the samples to vote for it are the 
vertices v on the mesh such that ( K1 ( v) + K2 ( v)) / 2 > o and 
ldistpii(v) l < support(Pij). where K1 and K2 correspond to 
the maximum and minimum curvature, respectively. In all 
our experiments, we set o to 0.01. 

Subsequently, every pair of sample points is tested for evi­
dence of the plane Pij. Let us illustrate the ideas behind these 
tests before formally defining them. Figure 4 shows a 20 
version of our problem. After generating the potential plane 
and its support, we are interested in evaluating certain char­
acteristics of the voting pairs. For example, some interesting 
characteristics would be the consistent distance to the plane, 
the normal consistency, the angle formed by the plane nor­
mal and the segment between the voting pair, just to name 
a few. For example, in Figure 4, the lower pair fulfills all 
the aforementioned characteristics, and therefore this pair is 
a good evidence that the plane could coincide with a sym-



Figure 3: H(x, t) and its local maxima. Left: The feature values increase as the color goes from blue to yellow and to red.
Center: the local maxima are potential references of symmetries, even with missing geometry. Right: local repeatable patterns
could be useful in matching tasks.

metry plane. In contrast, the upper pair is not consistent in

distance, normals and angles, hence it can be rejected from

the analysis for the evaluated plane.

In our algorithm, given two sample points vq and vr, we

test the following criteria in order to ensure that the pair is a

real evidence:

• Both sides of the plane. Points should be in different

sides of the plane. That is, the pair is rejected if

sign(distPi j (vq)) �= sign(distPi j (vr)).

• Coherence on plane distance. Points should be approx-

imately at the same distance from the plane. That is, the

pair is rejected if

||distPi j (vq)|− |distPi j (vr)||> θ.

• Orientation to plane. Points should be disposed in such

way that they form a line orthogonal to the plane as much

as possible. That is, the pair is rejected if

(1−|〈 �NPi j ,(vq − vr)/‖vq − vr‖2〉|)> α.

• Consistency of normals. Normals of points should also

be symmetric. Here we only consider the consistency of

directions. For instance, if the normal of point vq is out-

ward the plane Pi j, the normal of vr should also be out-

ward Pi j. Therefore, the pair is rejected if

sign(〈 �NPi j , �Nvq〉) = sign(〈 �NPi j , �Nvr 〉).
• Geometric similarity. Points should have a similar char-

acterization. That is, points are rejected if

|H(vq, t)−H(vr, t)|> ρ.

If a pair of samples vq and vr passes all test for a plane Pi j,

the consistency of the tests can be used to compute a weight

which can be accumulated as evidence of symmetry for Pi j
(w(Pi j) = 0 before running the algorithm). Formally,

w(Pi j) = w(Pi j)+wd ×wn ×ws (9)

where wd , wn and ws are respectively related to distance,

normal, and similarity consistency, and are defined as

wd = exp(−(|distPi j (vq)|− |distPi j (vr)|)2)

wn = exp((|〈 �NPi j ,(vq − vr)/‖vq − vr‖2〉|−1)2)

ws = exp(−(H(vq, t)−H(vr, t))2).

Once the votes have been computed, we can use them to

determine the plane or a set of planes depending on the ap-

plication. In our results, we specify the selection rule for

each shown example. Furthermore, in all our experiments,

the thresholds for the test are set to θ = 0.1× the diagonal of

the bounding box, α = π/18 and ρ = 0.4.

6. Results and Applications

In this section, we present the results of our method and its

application in the context of cultural heritage.

All our experiments were performed on watertight trian-

gular meshes. We compute the Laplace-Beltrami operator

using the approach of Belkin et al. [BSW08] and use only

300 eigenvalues and eigenvectors. For the computation of

H(x, t), we discard eigenvalues equal to zero and their cor-

responding eigenvectors. For the computation of principal
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Figure 5: Symmetry planes detected in varying degrees of missing geometry.

curvatures, we use the method of normal cycles proposed

in [CSM03].

Our first result shows the robustness of our method to

missing geometry. Figure 5 depicts the detection of the sym-

metry plane in shapes with varying degree of missing data. In

the case of the armadillo, we performed a boolean operation

to gradually remove some parts. Interestingly, the detected

symmetry plane remains approximately unchanged, despite

the degree of partiality. On the other hand, for the human

shape we removed approximately half of the shape with a

boolean operation as well. For this example, our feature is

still able to detect reliable local points in the head and ears,

which leads to a good detection after the voting algorithm.

For the results in Fig. 5, we selected the plane with the high-

est accumulated weight (see Eq. 9). Also, in order to test the

reliability of our method to very large missing parts, we re-

moved a large part of the Armadillo model and detect the

symmetry plane (the result can be seen in Fig. 6). Note that

we have removed geometry in both sides of the symmetry

plane. This result demonstrates that our method can reliably

combine the local feature detection and the support compu-

tation to detect symmetry planes in severe damaged objects.

An interesting and particular case is shown in Figure 7.

The cake shape corresponds to a reassembled object from

pieces, so there is missing data specially in regions with

fractures. For this experiment, we applied a Poisson recon-

struction [KBH06] to the aligned fragments in order to ob-

tain a watertight mesh. Moreover, the object presents a rota-

tional symmetry, which means that there are many symmetry

planes. In this case, we noted that every potential symmetry

plane obtained a high weight, and hence we decided to select

the planes with a weight above 0.8 of the maximum weight.

As can be seen, for similar cases, our method could be used

to detect symmetry axes (the intersection of planes) as well.

More results are presented in Figure 8. The objects in this

experiment were also obtained by a Poisson reconstruction

of reassembled pieces. For the first example (gargoyle), we

aimed at evaluating whether our algorithm is robust to the

Figure 6: Our algorithm is robust to missing geometry in
both sides of the symmetry plane. It takes advantage of the
local features still present in the model.

Figure 7: Left: a cake shape with many reflectional sym-
metry planes. Right: planes detected with our method which
nearly share the symmetry axis of the shape.
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Figure 8: Left and center: planes detected with our al­
gorithm in shapes with varying level of detail. Right: the 
approximate main symmetry plane is detected in the head 
which has missing geometry and small local patterns. 

level of detail. The low resolution mesh was obtained with 
a Poisson reconstruction in 6 octree levels and the high res­
olution was obtained with 10 octree levels. We can observe 
that our method was able to detect the approximate symme­
try plane regardless of the resolution of the model. This fact 
can be attributed to our feature detection algorithm, which is 
still useful to detect local protrusions in low resolution mod­
els due to the use of accumulation of local heat distribution. 
On the other hand, the head model is a challenging shape 
because it contains smooth regions as well as a very local 
repeatable pattem In addition, it also presents missing ge· 
ometry which can be observed at the top of the head Still, 
our method was able to handle the surface variations, mainly 
due to the robust detection of the pattern which induces the 
symmetry. 

6.1. Completion of Cultural Heritage Objects 

Our previous experiments have shown the effectiveness of 
our algorithm to detect symmetry planes. In this section, we 
present a challenging application that can take advantage of 
our results. The idea is to use the detected approximate sym­
metry planes to repair or complete (in some degree) the miss­
ing geometry of scanned cultural heritage objects. This sce­
nario is useful to eventually repair the real object using the 
computational model as guidance or use recent advances in 
30 printing to produce a repaired replica for exhibition. 

The data obtained for this application belongs to the 
Nidaros Cathedral in Trondheim, Norway. Each piece was 
individually scanned and subsequently the fragments were 
aligned using a reassembly algorithm (similar to [HFG*06]). 
Next, we performed a Poisson reconstruction to obtain a wa­
tertight mesh that represents the reassembled object. 

After detecting the approximate symmetry planes, it is 
possible to do the reflection transformation to synthesize 

Figure 9: Column base with missing geometry due to frac­
tures. The overlap between the original shape and the sym­
metric one shows the benefo of using our method to repair 
CH objects. 

missing geometry. However, since the symmetries are ap­
proximate, the reflection does not necessarily match the ob­
ject with itself. For this reason, a final local registration (an 
iterative re-weighting variant [RLOl]) step is performed to 
completely align the object with its symmetric counterpart. 

Figure 9 depicts a column base that contains two well­
defined symmetry planes. In this case, we use the rule about 
preserving all the planes with weight above 0.8 of the max­
imum weight. As can be observed, our algorithm approxi­
mately detects the two symmetry planes. The result of ap­
plying the reflection and the local registration is also shown. 
The original shape and its symmetric are shown overlapped, 
with the colored being the result of the transformation. Note 
that this method allows us to recover some features that are 
lost in the original object due to fractures. 

A more challenging shape is presented in Fig. 10. For this 
case, our algorithm detected three symmetries which are re­
lated to the three sphere-like local protrusions in the shape. 
Here we show three possible completions performed for 
each symmetry plane detected In particular for this shape, 
our method takes advantage of the careful design of the two 
stages of our algorithm. For example, our feature detection 
stage selects symmetric points as can be seen in Figure 3 
thanks to the balanced characterization of globality and lo­
cality. Also, the third symmetry plane may only be detected 
if we focus the voting scheme to the region determined by 
the plane support. Otherwise, there would be a Jot of spuri­
ous votes making difficult the correct detection. It is worth 
to mention that the three symmetry planes correspond to the 
only three planes that remain after the selection of the gen­
erating points and the voting scheme. 

Limitations 

Our method is based on the ability of finding good candi­
date features. For this reason, our method is not suitable 
for feature-less shapes. In addition, if it is not possible to 
recognize at least a pair of symmetric features, the method 
could not compute candidate planes. Moreover, in feature-
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Figure 10: A challenging embrasure shape. The resulting synthesized geometry is consistent with the original object, and 
therefore the completion generates plausible objects. 

less shapes the voting scheme could not work due to the fact 
that it is based on high-curvature points. Nevertheless, we 
believe that our method may perform well in most of shapes 
in real applications as shown in the completion of cultural 
heritage objects. 

7. Conclusions 

In this paper, we presented an algorithm to detect symme­
try planes in objects with partial data. Our method is com­
posed of two stages: the feature detection and the vote-based 
validation. We proposed a new multi-scale diffusion-based 
surface function which exhibit a good trade-off between lo­
cality and globality. This balance has proved to be effective 
to select points in local protrusions and their symmetric cor­
respondences. This fact facilitates the generation of the ini­
tial set of planes which can be considered as hypotheses that 
need to be validated. Precisely, the reliability of the potential 
planes is well complemented with the second stage where we 
aimed at building a voting system for validation. The defini­
tion of the plane support and the verification rules guarantee 
the reduction of false positive votes. As consequence, the 
combination of reliable multi-scale features and a partiality­
aware voting scheme have proven to be effective to deal with 
the problem of missing geometry. In the future, we plan to 
extend our approach to detect intrinsic symmetries. Further­
more, we also plan to focus the attention in symmetries with 
respect to axes (10 ) unlike the current proposal that only 
utilizes symmetries with respect to planes (20 ). 
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Appendix A

Proof of Proposition 1 . The proof consists in the demon-

stration that the function f (x) = (1− e−xt)/x is strictly de-

creasing and therefore the maximum value occurs when x
approaches zero on the right. To prove that f (x) is strictly

decreasing, we need to prove that f ′(x) < 0 for x > 0. The

derivative f ′(x) yields

f ′(x) = e−xt(xt +1− ext)

x2
.

Given that the terms e−xt and x2 are always positive for x >
0, then f ′(x)< 0 if and only if

(xt +1− ext)< 0.

This inequality is true for any x > 0 and t > 0. This can

be proved if we replace ext with its power series

ext = 1+ xt +
(xt)2

2
+

(xt)3

6
+O(x4).

Now that we know that f (x) is decreasing for any x > 0,

the maximum value occurs in the neighborhood of x = 0. To

calculate its maximum value, we need to evaluate the limit

of the function when x tends to zero. Formally,

lim
x→0+

1− e−xt

x

As the limit is indeterminate in x = 0, we apply the

l’Hôpital’s rule to evaluate it, which yields

lim
x→0+

te−xt = t.

This result proves that t is an upper bound of f (x) when

x > 0 and t > 0.
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