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Abstract

Increasingly, companies are creating product advertisements and catalog images using computer renderings of
3D scenes. A common goal for these companies is to create aesthetically appealing compositions that highlight
objects of interest within the context of a scene. Unfortunately, this goal is challenging, not only due to the need
to balance the trade-off among aesthetic principles and design constraints, but also because of the huge search
space induced by possible camera parameters, object placement, material choices, etc. Previous methods have
investigated only optimization of camera parameters. In this paper, we develop a tool that starts from an initial
scene description and a set of high-level constraints provided by a stylist and then automatically generates an
optimized scene whose 2D composition is improved. It does so by locally adjusting the 3D object transformations,
surface materials, and camera parameters. The value of this tool is demonstrated in a variety of applications
motivated by product catalogs, including rough layout refinement, detail image creation, home planning, cultural
customization, and text inlay placement. Results of a perceptual study indicate that our system produces images
preferable for product advertisement compared to a more traditional camera-only optimization.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation 1.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—

Physically based modeling

1. Introduction

A growth application for computer graphics is creation
of images for product advertisements and catalogs [Ent12,
Soul2, Stul4]. As photorealistic rendering algorithms have
improved, it has become practical to synthesize images that
are indistinguishable from photographs for many types of
scenes commonly found in product advertisements (e.g.,
kitchens, bathrooms, living rooms, etc.). As a result, several
furniture and home goods companies are beginning to create
product images for their catalogs by rendering 3D models
rather than photographing physical objects [Soul2]. For ex-
ample, IKEA has reported that 75% of scenes shown in its
most recent catalog were rendered from 3D models [Stul4].

There are many advantages to creating catalog images from
3D models [Ent12]. Rendering virtual scenes is much less
expensive than photographing real scenes because it does not
require building physical sets in large photo studios, storing
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physical objects in large warehouses, and scheduling actors,
stylists, and photographers to meet for photo shoots. More-
over, digital assets make it easier to customize images in a
variety of ways, such as producing multiple images of the
same scene with different objects of interest, adapting scene
composition to the resolution and aspect ratio of the display
device, adapting the size and placement of text labels for dif-
ferent languages.

Despite these advantages, producing good product images
from 3D models is still difficult. Based on interviews with
professionals who work on product catalogs, we learned that
the typical workflow for a stylist (person who designs scenes
for product images) is to first create an approximate scene
layout with the appropriate objects (furniture, accessories,
etc.) in roughly the desired configuration (e.g., a sofa with
an end table on the left, a lounge chair on the right, and a
coffee table with some plants and coasters sitting on top).
Based on this rough layout, the stylist will then carefully re-
fine the positions, orientations and materials of objects as
well as the camera viewpoint to compose several different
images of the scene that highlight different objects of inter-
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est, fit different display devices (e.g., iPhone, desktop, print,
etc.), and in some cases, target different cultures (e.g., IKEA
makes 62 variants of its catalog for 43 countries). This re-
finement step is challenging because it requires taking into
account the image-space position, size, visibility, and color
contrast of objects of interest, as well as the overall composi-
tion of each image. As a result, stylists often spend multiple
days refining the initial rough scene layouts to produce all
the necessary product images.

In this work, we present a tool that facilitates the creation of
product images by automatically refining rough scene lay-
outs to produce good compositions. Our tool starts with an
approximate scene description provided by a stylist that in-
cludes which objects should appear in the scene, which ob-
jects rest upon which other objects, and which materials can
be used for which objects, plus an initial configuration for
object positions/orientations, surface materials, lighting pa-
rameters, and (optionally) camera views. Our tool then op-
timizes the camera view, object transformations and surface
materials to meet user-specified design goals (e.g., highlight
these objects of interest, fit the image within a specific form
factor, leave space for a text box) while maintaining the com-
positional quality of the image.

The main contribution of our work is an optimization ap-
proach that takes into account a large variety of design con-
straints and image composition rules that are important for
producing effective product images. We define a (highly
non-convex) energy function that models these criteria and
then introduce an iterative optimization procedure that min-
imizes the energy. One key feature of our method is that we
simultaneously manipulate object transformations, surface
materials, and the camera view, all of which have a signifi-
cant impact on the quality of the resulting image. We show
that our approach produces better results than a more tra-
ditional camera-only optimization, and we also demonstrate
how our tool can help create product images for a variety of
practical applications.

2. Related Work

Our work draws upon previous work in image composition
and aesthetics, image analysis and optimization, virtual cam-
era control, and automatic scene synthesis.

Image composition and aesthetics: Our work is inspired
by composition “rules” that have been established to guide
photographers and graphics designers towards better scene
compositions and aesthetics [Arn88] [Bet56] [Cli73] [GT90]
[Kra05] [MB88] [Tay38]. Well-known examples include the
“rule of thirds,” visual balance, diagonal dominance, and
color contrast. Although previous work has considered sub-
sets of these rules for automatic image composition, one of
our key contributions is in determining a set of rules suitable
for product images and applying these rules to a challeng-
ing 3D scene optimization problem. Compared to existing

methods, our approach considers a larger set of 3D scene
parameters — object transformations, surface materials, and
the camera view — that are important for generating effec-
tive product images.

Image analysis and optimization: Several papers have
used these rules to quantify [DJLW06, DW10] and enhance
the compositional and aesthetic quality of images. How-
ever, all previous methods operate only on edits to 2D im-
ages: for example, rotating and cropping images [KMMOS,
LCWCO10, JWL12], or adjusting locations of foreground
regions [BSS10, LFNO4] — they do not optimize 3D scene
parameters, such as cameras, materials, and/or object trans-
formations, as our system does. Our work is also related to
the technique that allows the user to alter the composition af-
ter 3D rendering [GriO1], but our system is able to automati-
cally optimize the composition by refining 3D scene layouts
and materials.

Camera optimization: Several methods have incorporated
principles of image aesthetics and composition in optimiza-
tion algorithms for camera control in 3D rendering systems
[OHPL99] [GRMSO01] [CON08] [BMBTO00] [Bar06]. While
these papers provide motivation for our work, they consider
only camera control — we additionally optimize object trans-
formations and surface materials, which can significantly
improve image compositions, but require solving a more dif-
ficult optimization problem.

Scene optimization: Several recent papers have proposed
methods for automatically placing objects in scenes to pro-
duce plausible furniture layouts based on examples and de-
sign guidelines [YYT* 11, FRS*12, MSL*11]. These meth-
ods focus on scene plausibility without concern for any par-
ticular camera viewpoint and/or image composition princi-
ples. As a result, they produce scenes that may not support
generation of aesthetic images from any camera viewpoint.
Our work is also related to arrangement synthesis based on
aesthetic relations [MSSH13]. Instead of optimizing rela-
tions among objects, our goal is to optimize the 2D com-
position produced by a 3D scene layout.

We believe that ours is the first system to optimize aesthet-
ics and composition of rendered images with simultaneous
control over camera parameters, object transformations, and
surface materials. We investigate this optimization problem
for the novel application of image synthesis for product cat-
alogs.

3. Overview

The core of our work is a method for optimizing 2D compo-
sitions of rendered 3D scenes by adjusting camera parame-
ters, object transformations, and surface materials.

Our system works with a database of 3D object mod-
els, where each model is annotated with an object class
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(e.g. chair, table) and a list of possible materials. Each ob-
ject class is associated with a set of 1-4 canonical views,
which can be manually specified or predicted automatically
[BTBV99, GRMS01, SLF*11]. Some object classes are also
associated with a set of semantic spatial constraints. For ex-
amples, picture frames on walls should not be rotated, and
the distance between a dining chair and a dining table should
be maintained.

Given the model database, a stylist begins the process of
creating a set of product images by specifying a scene con-
figuration, which consists of a set of object models, light
sources, and a rough location/orientation for every object.
With the rough scene in place, the stylist can instruct our
system to create a specific image by specifying an image
configuration, which consists of desired aspect ratio and fo-
cus objects Oy to highlight. The stylist may optionlly specify
initial camera parameters and context objects O¢ that should
remain visible for context.

From this input, our system optimizes the scene descrip-
tion to generate a set of rendered images. In particular, our
method optimizes the following scene parameters (plus other
application-specific variables described in Section 6), with
the degrees of freedom listed in parentheses:

e Camera (6): position (3), direction (2), and field of view
(1) (camera roll is constrained to be zero).

o Object transformations (3 per object): position of the ob-
ject centroid on its support surface (2) and rotation of the
object around the normal of its support surface (1).

e Materials (I per object): choice of a material/texture def-
inition amongst a list of possible candidates.

Our system optimizes these parameters according to an en-
ergy function that accounts for image composition, aesthetic
principles, and object focus, while maintaining 3D spatial
constraints and 2D image space layout constraints.

The following sections describe our energy function and op-
timization procedure in detail.

4. Energy Function

Our energy function estimates how effectively an image ad-
vertises the product(s) it depicts.

To design the energy function, we interviewed professionals
responsible for creating scenes for popular product catalogs,
worked with them to identify a set of principles important
for product image composition, and encoded how well those
principles are satisfied into a mathematical error function.
We interviewed two professionals: 1) a professional stylist
who lays out scenes for Pottery Barn catalogues, and 2) the
lead of image synthesis for IKEA catalogues. They identified
twelve different factors as critical for composition of product
images. The following lists these factors, grouped roughly
into six categories, along with an explanation of why each is
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important (Figure 1). Mathematical details of how each one
is encoded as a term in our energy function are deferred to
Appendix A for brevity.

e Object placement within the 2D frame. For product ad-
vertisements, some of the most significant factors affect-
ing image quality are the positions of focus objects, which
we encode with the following terms.

— Rule of thirds. In general, focus objects should align
with vertical or horizontal lines that divide the view-
port into thirds and/or be centered at the intersec-
tions formed by them [BEO4] [Bar06] [BDSGO04]
[DILWO06] [GRMSO01] [LCWCO10] [War03].

— Centeredness. For some product images (e.g.,
zoomed views of single objects), focus objects should
appear in the center of the image [Arn88§].

— Clearance. Since other objects should not compete
with the focus objects in the composition, we intro-
duce a term to penalize objects that are close to focus
objects.

e Object saliency within the 2D frame. The visibility and
image-space size of objects contribute to their perceived
importance [BMBTO00] [Bar06] [BFHO1] [OHPL99].

— Visibility. An object is perceived as less important if
it is partially occluded by another object or partially
clipped by the frame. Thus, focus objects should be
more visible than context objects.

— Object size. Similarly, focus objects should take up
more image space than context objects, since larger
objects are perceived as more important.

e Object constraints within the 3D scene. Scene plausi-
bility and physical laws both impose constraints on object
positions. We therefore introduce several terms to enforce
these constraints.

— Semantic constraints. Semantic spatial constraints
that are specified in the model database should be
satisified during the optimization.

— Collision relationships. Object inter-penetrations
should be avoided to improve the physical plausibil-
ity of the scene.

— Support relationships. The support relationships that
exist in the input scene layout must be maintained dur-
ing the optimization.

e Camera placement. Product images generally depict
scenes from viewpoints that are “natural” for people. We
introduce two terms that capture the notion of natural
viewpoints.

— Canonical views. In most product images with one fo-
cus object, stylists favor canonical views of the object
class [BTBV99, GRMSO1, SLF*11].

— Typical views. Product images that depict large scenes
with multiple focus objects often use camera view-
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Off/On

Milk I

Visibility (Rack full of dishes)

Visual balance (Potted plant)

Off/On

Canonical view (Five-level shelf)

Figure 1: Effects of disabling energy function terms. For each energy term, we compare the result with the term disabled (left)
to our result (right). The focus object(s) is specified in the parentheses. Examples showing the effect of all terms can be found

in the supplemental material.

points that match how a human would typically see
the scene.

e Image composition. Several well-established composi-
tion guidelines are used by stylists to create aesthetically
pleasing images. We have included several in our system.

— Visual balance. Images whose “center of mass” is
close to the center of the image frame generally have
better aesthetics [Arn88] [LCWCO10] [LFNO4].

— Color contrast. Greater color contrast at object con-
tours can help a viewer understand boundaries be-
tween shapes in a scene [KHROO1] [WL11].

e Regularization. Finally, we add a regularization term that
encourages small changes to the scene with respect to the
initial configuration provided by the stylist.

The large number of terms in this energy function reflects
the inherent complexity of composing a good product im-
age. The necessity of each and every term has been con-
firmed by our experts and validated experimentally. As an
example, Figure 1 shows the effects of removing some of the
energy terms: each omission yields a product image of infe-
rior quality (results of experiments omitting every individual
term can be found in the supplemental material). Overall, our
conclusion is that composition of product images is very dif-
ficult as many competing considerations must be balanced.

5. Optimization

Our optimization procedure searches for camera parameters,
object placements, and surface materials that minimize the
energy function.

This is a difficult optimization problem for several reasons:
1) there are many free variables (six for the camera, three
for each object transformation, one for each surface with
multiple candidate materials); 2) some of the variables are
continuous (camera and object transformations) while others
are discrete (surface materials); and 3) the energy function is

highly non-convex, with strong dependencies between mul-
tiple variables (e.g., camera and object movements). As a
result, we can only hope to find a good local minimum.

Our approach is to decompose the problem into two simpler,
more tractable optimizations that we interleave in an iterative
algorithm. Within each iteration, the first step is to optimize
the discrete choices of materials with camera parameters and
object transformations fixed. Then, we optimize the contin-
uous camera parameters and object transformations with the
materials fixed. The iterations terminate when neither step
changes the scene significantly in the same iteration.

5.1. Discrete optimization

‘We use a discrete steepest-descent algorithm to optimize ma-
terials. The input to the algorithm is a scene and a list of can-
didate definitions for each surface material, and the output is
a selection of one candidate definition for each material that
minimizes the energy function. Note that the color contrast
term (Ecc, defined in Appendix A) is the only one affected
by material switches. Higher color contrast for focus objects
corresponds to a lower overall energy.

The algorithm first builds a list of visible objects with mul-
tiple candidate materials. Then, it iteratively optimizes the
materials for each such object in order from the one with the
lowest to the highest color contrast. For each object, the al-
gorithm selects the material switch that produces the highest
color constrast. The algorithm stops iterating over the ob-
jects when no material switches are possible to improve the
color contrast further, which usually occurs within 2-3 itera-
tions through all objects.

5.2. Continuous optimization

We use a continuous steepest-descent algorithm to optimize
camera parameters and object transformations. The follow-
ing paragraph describes how the direction and magnitude of
each step is computed.
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Since the energy function contains terms whose partial
derivatives are difficult to compute analytically (e.g., visi-
bility), we compute the derivative of the energy with respect
to each free variable via finite differences. Of course, a brute
force implementation of centered differences for each vari-
able would be extremely slow: a typical scene has approx-
imately 150 free variables (3 for each of ~50 object trans-
formations plus 6 camera parameters), and thus the energy
would have to be computed 300 times for each steepest de-
scent step. Instead, we use a technique similar to stochas-
tic gradient descent. Specifically, we keep estimates for all
partial derivatives and re-estimate only a subset after most
steps. Specifically, every k steps, we estimate partial deriva-
tives for all variables, except ones for transformations of ob-
jects outside the view frustum, and make a move along the
direction of steepest descent determined by all partial deriva-
tives. We also build a list of objects T that have non-zero
partial derivatives. Then, during the intervening steps, we
re-estimate partial derivatives only for the camera param-
eters and k randomly selected objects from 7' and make a
steepest descent move based on these derivatives. We choose
k= \/m, which provides a nice trade-off between effi-
ciency and accuracy, leveraging the fact that fewer objects
have significant effect on the energy as the optimization con-
verges. To compute the magnitude of each steepest descent
step, we conduct a line search along the direction of the es-
timated derivative.

5.3. Timing

The full optimization procedure takes approximately 20
minutes for the most complex examples in this paper. The
discrete optimization step is usually very fast (<10 sec-
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Figure 2: Snapshots of an interactive session (top row) and the results of refining them by our optimization tool (second row).
In the first session (left), the user’s goal is to achieve the composition in Figure 3 left, while in the second session (right), her
goal is to achieve Figure 3 right. The plots on the bottom show the evaluation of these scenes using our energy function, with
the blue representing the energy of interactive snapshots and the red points representing our optimized results. Note that the
dotted section of the lefthand blue curve has been compressed to save space.

onds), since there are relatively few (~10) candidate materi-
als in most scenes. The continuous optimizations are slower,
since there are many possible object transformations in most
scenes (~60 objects per scene in our examples) and com-
puting partial derivatives for each transformation variable
requires rendering the scene multiple times. In our experi-
ence, computing partial derivatives takes ~90 seconds for
all variables (every k steps), but only ~10 seconds for our
randomly chosen subsets (intervening steps), at no observed
accuracy difference. All times are reported for a 2660 MHz
Intel Core i7 processor with 8 GB of memory.

6. Applications

In this section, we describe several applications of our scene
optimization framework. These applications were chosen
based on the suggestions of the same two professionals we
interviewed to determine the relevant rules for creating ef-
fective product images.

6.1. Refining rough compositions

The primary application of our system is to facilitate the re-
finement stage of digital catalog image creation. Given a set
of focus objects and a rough scene configuration as initial-
ization, we can apply the optimization procedure described
in the previous section to automatically adjust the camera,
object positions, and materials.

To evaluate whether our system can assist this application,
we ran an informal experiment in which we asked a user
with formal training in image composition to go through the
full process of creating and refining a scene for a product im-
age using an interactive modeling tool, and then investigated
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how our tool could have helped during the modeling pro-
cess. We instructed the user to create a 3D scene motivated
by an image highlighting a dining room table and chair in
the IKEA catalog (Figure 3 left), which she could refer to
as she modeled. During the session, she started with a set
of objects, candidate materials, and a random camera view-
point (Figure 2, A0), and then edited the scene interactively
to achieve the final result shown in Figure 3 left. We then
asked her to further refine the composition to recreate the
image in Figure 3 right, which highlights the three goblets
on the dining table. The experiment was performed exactly
once with no feedback from the system regarding composi-
tion quality.

During these interactive sessions, we logged a “snapshot”
scene file every 10 seconds representing the user’s progress
(several examples are shown in the top row of Figure 2).
After the session was finished, we used the snapshot scenes
to: 1) analyze whether our energy function explains changes
made interactively by the user, and 2) to study at what point
in the modeling process our optimization procedure could
have been used to assist the user by refining the scene auto-
matically.

The blue curve in the plot at the bottom of Figure 2 shows
the value of our energy function for each snapshot of the
user’s interactive session. Note that for each session, the
curve reveals two phases: a period of “large-scale layout”
when the scene energy goes up and down (A0 — A47 and
B0 — B11), followed by a period of “fine-scale refinements”
where the energy decreases almost steadily (447 — A92 and
B11 — B39). This behavior suggests that the energy func-
tion correctly captures image quality differences of improve-
ments made by the user.

The second row of images in Figure 2 shows the results of
running our optimization procedure on each of the snapshot
scenes shown in the top row, and the red dots in the plot be-
low show the energy function of the optimized results (con-
nected by a green curve). Note that the optimized results of
the snapshots (bottom row) captured in the latter half of each
user session (A47-A92 and B11-B39) are qualitatively sim-
ilar to the final scene created by the user (top-right image),
and their corresponding energy function values are compa-
rable, or even less. These results suggest that more than half
of the time the user spent on scene refinement could have
been off-loaded to the computer.

6.2. Generating detail images from an overview

In many cases, catalogs provide an overview image that
shows how various objects can fit together in a room, and
then one or more detail images that focus on individual
products of interest. Detail images are almost never sim-
ply cropped and zoomed-in versions of the overview image.
Stylists typically choose different viewpoints and move ob-

Figure 3: Overview and detail images in IKEA catalog. In
addition to the overview image on the left, IKEA provides
a detail image that advertises the glasses on the table. Note
how the viewpoint and object positions are adjusted from the
overview image (reprinted with permission from the 2013
IKFEA catalog).

(a) Overview (b) Speaker
Figure 4: Detail images generated from overview. From an
overview image of a living room (a), we automatically gen-
erate detail images that highlight the speaker (b) and shelf
(c). Notice how the chair moves to the right in (b) and to the
left in (c) to provide an unobstructed view of the focus object

(results without moving objects can be found in Figure 9).

(c) Shelf

jects slightly in order to highlight the shape and relevant fea-
tures of the focus object (e.g. Figure 3).

To reduce this effort, stylists can use our system to auto-
matically create detail images. For each detail object, our
optimization framework initializes all object positions to the
arrangement in the overview image and generates a set of
candidate detail images using each canonical view of the de-
tail object as a different starting point for the camera. By de-
fault, we choose the candidate image with the lowest energy
as the result.

As a test of our method, we generated detail images for three
scenes: a kitchen, study, and living room. For each scene,
we generated detail images for 20 random objects. In many
cases, our optimization was able to put the camera close to
canonical views only by moving objects that would other-
wise occlude the detail object. For example, the gray chair is
moved to different positions in Figure 4b and Figure 4c in or-
der to reduce occlusions for different focus objects. Overall,
most of our detail images produce reasonable compositions,
and our perceptual study (Section 7) indicates that our full
optimization produces better results than camera-only opti-
mizations in a large majority of cases.
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(¢) Camera-only (optimal) (d) Camera-only (initial as (b))
Figure 5: Optimizing without a starting camera for a room
planner application. Our system starts by sampling plausi-
ble cameras to generate a set of initial views (a), which are
then optimized (b). Running camera-only optimization over
all initial views yields (c), while starting from the same ini-
tialization as (b) yields (d).

6.3. 3D views for room planner

Home furnishing companies have recently started to provide
online tools that let users create arrangements of furniture
customized for their own rooms, e.g. IKEA’s Home Planner.
After designing a room in this manner, users often want im-
ages of the room to share with others and to help them eval-
uate the design. Thus, another application of our system is to
provide an automated solution for generating well composed
images of user-designed rooms.

After generating the 3D arrangement of objects, the user se-
lects a set of focus objects (likely the objects he is consid-
ering for purchase) and then asks our system to generate a
composition. Unlike the previous two applications, we do
not expect the user to provide an initial viewpoint for the
scene. As a result, we modify our optimization to first search
globally for the best camera parameters, which we then use
as an initialization to our full optimization.

For our global camera search, we first generate a set of “plau-
sible” initial camera parameters. We sample camera posi-
tions within the walls of the room at roughly 2 ft intervals
and restrict the height to be at human eye level; we take 100
samples for the camera direction with a polar angle between
7t/2 (looking horizontally) and /2 + 0.28 (looking slightly
down); and we consider 4 uniformly spaced field-of-view
values from 0.3 to 0.6. We then prune very poor samples
based on the fractional image-space area of every focus ob-
ject bounding box within the viewport (threshold = 50%).
Next, we do k-means clustering (with k = 4) of the camera
parameters. Within each cluster, we pick the camera with
the lowest energy as the initial viewpoint and run our opti-
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mization. Finally, we pick the optimized composition with
the lowest energy as our result. Without parallelizing the op-
timization for different initial viewpoints, the entire process
took 40 to 60 minutes in our experiments.

We used this optimization procedure to generate the results
in Figure 5. Here, we chose the couch, coffee table and ot-
toman as the focus objects. In the final composition (Fig-
ure 5b), all of the focus objects are visible and the image
provides a good overview of the scene from a plausible cam-
era angle. For comparison, we show the result of a camera-
only optimization in Figure Sc, which uses a different initial
viewpoint than Figure 5b. In Figure 5d, we show the camera-
only result generated from the same initial viewpoint as im-
age (b). With the capability of moving objects, our full opti-
mization is able to achieve a better balance between multiple
factors, and achieve a better overall composition.

6.4. Object replacement

Multinational furniture companies like IKEA usually cus-
tomize their catalog images for different countries to match
cultural preferences. This customization often involves
choosing different materials or replacing objects within a
scene. In many cases, the size and shape of new objects
can be significantly different from the original, which means
that a stylist will have to spend a significant amount of ad-
ditional effort adjusting the camera parameters and object
positions to achieve a good composition for each customiza-
tion. As with the previous applications, our optimization
framework can automatically make these adjustments to re-
duce the amount of human effort required to perform these
cultural customizations.

Figure 6 shows an example where we replace the grey seat,
side table and coffee table. When we swap in the new ob-
jects, there is a collision between the chair and plant, and
in general, the composition feels cramped. When we opti-
mize the composition, the collision is resolved and the cam-
era pulls back to keep all the relevant objects in the frame.

=

(a) Original

(b) Objects replaced

(¢) Optimized
Figure 6: Object replacement. From the original composi-
tion (a) the chair, side table and coffee table are replaced
(b). Our optimization eliminates collisions and produces a
better composition for these objects (c).

6.5. Text-incorporated composition

Most catalog images have text overlays that describe the de-
picted scene. Such text is typically positioned over regions
with nearly constant color so that it is easy to read and of-
ten appears in roughly the same location on every page (e.g.,
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(a) Input

(b) Ours
Figure 7: Retargeting for different text layouts. The artist
provides a rough position for the text box and specifies the
champaign bottle and the goblet as focus objects. Our op-
timization adjusts object positions, viewpoint and text po-
sitions to increase contrast, reduce clutter and remove oc-
clusion of the focus objects. By contrast, only optimizing the
camera produces an inferior result. Note how the readability
of the text is reduced due to the fruit bowl.

(¢) Camera-only

corners) so that the viewer knows where to look to find tex-
tual information. Our optimization framework can automat-
ically position text based on all of these criteria.

In addition to a set of focus objects and an initial composi-
tion, the stylist also specifies a set of rectangles R where she
would like overlay text to appear in the frame. Our system
treats each rectangle as just another object in the scene, but
one that only has a 2D position and can only move within
the viewport.

We apply the visibility and inertia terms to text rectangles as
well. Specifically, the overlapping region of a focus object or
a context object with a text rectangle is treated as occlusion.

We introduce two extra terms to make the text with constant
color stand out. First, we use a contrast term Ej. to keep the
background light or dark, so the text can be made a contrast-
ing color. Second, we use a variance term Ej, to keep a low
variance in luminance within each rectangle to reduce clut-
ter behind overlaid text. The mathematical definitions of Ey¢
and E;y are given in Appendix B.

Figure 7 presents a composition optimized with two different
initial positions for the text. Notice how the objects in the
scene are moved to create low contrast, low variance regions
of the image where the text can be overlaid.

6.6. Retargeting for different aspect ratios

Our system can also automatically retarget catalog images
to aspect ratios that are appropriate for different display for-
mats. Simple cropping is usually not sufficient to create a
good retargeted composition because the relative arrange-
ment of objects in image space remains fixed. In contrast,
our optimization framework has the ability to adjust camera
parameters and object positions to produce good composi-
tions for different aspect ratios. For this application, we use
the viewpoint and object positions from the input compo-
sition as initialization and solve for a new image with the
specified dimensions.

In Figure 8, we start with the optimal composition in one
aspect ratio and then retarget it to another. For comparison,
we generate images using our optimization method but with-
out adjusting object positions. Notably, the greater flexibility
creates better retargeted images.

(b) Ours

Figure 8: Retargeting for different aspect ratios (focus ob-
Jects: champagne bottle and goblet). We start with the initial
aspect ratio 1:2 (left), and retarget it to a different aspect
ratio 4:3 (middle). We compare our result to the one where
only the camera is optimized (right).

(a) Input

(¢) Camera-only

7. Perceptual Study

A natural question to ask when considering our system is
whether the additional freedom afforded by moving objects
makes a positive impact on the results, or if — to the contrary
— similarly good results could be obtained by performing a
camera-only optimization. We investigated this question by
asking people to compare 36 pairs of compositions created
using our optimization procedure with object movement en-
abled (our method) and disabled (camera-only).

Camera Only

Our method

Figure 9: A subset of the image pairs compared in our per-
ceptual study. Our system is able to satisfy multiple compo-
sition constraints simultanuously, which cannot be achieved
by changing viewpoint only. Note visibility in row I and
clearance for milk carton in row 2.

Study design: Our selection of scene compositions to com-
pare includes all the examples shown in Section 6 of the pa-
per, plus thirty detail images generated for different objects
in three scenes (living room, study, and kitchen). For each of
the three scenes, we selected — from among all the large fur-
niture and a random subset of the smaller objects — the ten
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Figure 10: Amazon Mechanical Turk Study results. We asked participants to compare 36 pair of images generated with full

optimization (top) and camera-only optimization (bottom). Bars represent the proportion of participants who favored each
image (dark blue: full, red: camera-only, light grey: no preference).

objects where the detail image generated with camera-only
optimization differed most from the full optimization.

We showed these pairs of scene compositions to study partic-
ipants in randomized order, with images in each pair flipped
left-right randomly. For each pair, the user selected a radio
button to indicate that one composition was better at show-
casing the specified focus objects (listed in the title), or that
the two compositions are of the same quality (see a sample
perceptual study web page in the supplemental material).

‘We administered the study to two groups: experts who work
professionally on scene layout for catalog images, and non-
experts.

The first group was recruited through personal contacts and
completed a single-page web-based survey without compen-
sation. Given the small number of experts in this field, we
were only able to administer the survey to four participants.

The second group was recruited through Amazon Mechan-
ical Turk, and each participant was compensated 10 cents.
To exclude ‘lazy’ participants from our results, we tested
the consistency of each participant’s responses. Specifically,
each participant completed a multiple-page (one comparison
per page) survey, where each comparsion was asked twice,
with compositions swapped left-right. We excluded any in-
put from participants for each question where their two an-
swers for the same pair were inconsistent, and we excluded
all input from any participant whose answers were inconsis-
tent for more than 25% of the questions. After running the
study for 200 participants, these consistency checks yielded
49 to 75 answers per comparison.

Study results: Results of the expert study and the Amazon
Mechanical Turk study are summarized in Table 1 and Fig-
ure 10 respectively. Generally, we find that full scene op-
timization is preferred to camera-only optimization. If the
“no preference” answer is treated as half a vote for our op-
timization result and half a vote for camera-only, our opti-
mization results received > 75% of the votes in 20 cases,
50%-75% of the votes in 13 cases, and < 50% of the votes
in 3 cases in the Mechanical Turk study. With a significance
level of 0.05, our method is significantly preferred in 26
cases, while the camera-only optimization is significantly
preferred in 2 cases. In the remaining 8 cases, the null hy-
pothesis (i.e. no preference) cannot be rejected. Note that the
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Holm-Bonferroni method was used in the analysis to control
the familywise error rate in our experiments. According to
comments provided by participants, the main benefits of our
full optimization are that it moves objects to avoid unwanted
occlusions, generates better contrast, and avoids awkward
camera views in the final composition.

ID Ours | Cameraonly | No preference
Expert 1 22 12 2
Expert 2 17 14 3
Expert 3 22 11 3
Expert 4 21 12 3

Table 1: Expert study. Our method is preferred in general.

8. Conclusion and Future Work

In this work, we have introduced a technique for optimiz-
ing 2D compositions of 3D scenes that adjusts camera pa-
rameters, object transformations, and surface materials. Our
results and user evaluation show the benefits of optimizing
over all of these scene parameters simultaneously. In par-
ticular, the comparisons between images generated by only
adjusting the camera and those generated by our full opti-
mization clearly indicate that moving objects and altering
materials significantly improves the quality of compositions
in many cases. We have demonstrated how our optimization
framework benefits a variety of applications related to the
creation of digital catalog images.

Our system has several limitations. First, the current im-
plementation of our optimization procedure does not run
at interactive rates. This is largely because speed has been
sacrificed for flexibility in our prototype; we believe a
production-oriented implementation could likely run orders
of magnitude faster. In particular, the computation of partial
derivatives, which is the bottleneck of the speed of our opti-
mization, is highly parallelizable, because partial derivatives
with respect to different free variables could be computed in-
dependently. Second, we use OpenGL rendering during our
optimization, which does not account for global illumination
effects that can impact the composition of the final image.
Third, there may be additional composition rules that could
improve the quality of the results. Early on in the project, we
implemented energy terms for diagonal dominance, symme-
try, and focusing with vanishing points, but found them less
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useful in our target applications. Using our system to system-
atically investigate which energy terms are most effective for
which applications would be an interesting topic of further
study.

Given that companies are increasingly relying on computer-
generated imagery for catalogs and other product advertise-
ments, there are many opportunities for future work related
to the automated generation of such images. For example,
we imagine new advertising applications that choose fur-
niture arrangements based on how a room will look from
key viewpoints (e.g., the front door). Film, game, and real-
estate companies could automatically optimize scenes for
sequences of camera viewpoints (e.g, for movie shots or vir-
tual tours). On-line advertisers could adapt product images
to wide varieties (millions) of user preferences with automat-
ically optimized aesthetics. We believe composition-aware
scene modeling is a useful approach for all of these applica-
tions and as such represents a promising research direction
for the computer graphics community.
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Appendix A: Definition of energy terms
Our energy function is the summation of the value of each
energy term as introduced in Section 4.
E = Ert +Ece +Ecl +Esa+

Es+Eco+ Esu+Ecv+ (1

Etv + Evb + Ecc + Eir
In this section, we will provide the definition of each energy
term. Symbols used in the definition can be found in Table 2.

In the rest of this section, we use w to represent the weight
of the term with the same subscripts.

o Rule of thirds.

2

2 2
Rv;;)z )y <;1V2dh(02(1’i))2+::2dv(62(13i))>

0;€0r

Ert =

where w and & are the width and height of the bounding
box of P;, respectively, and dj, and d stand for minimum
distance to the closest horizontal and vertical third lines
respectively.

o Centeredness.

Eoe = e d> (Co(F),Ca(P))?
R o,»gbf 2 (C2(F),C2(Py))

e (Clearance. For an object O;, we consider its signed dis-
tance to the bounding circle of a focus object in image
space (a negative distance means O; is inside the bound-
ing circle), and normalize the distance by the radius of the
bounding circle in order to avoid favoring small objects.
We use r(0O;) to denote the minimum of all the distances,

d(Ca(P),C2(P))) — R(P))
R(P))
The clearance term is then defined as,

E,— % Z (efmax{O,r(Oi)}z+max{077r(0i)}2>
0,€0r

r(Oi) - OInElSF
i

(© 2015 The Author(s)

Computer Graphics Forum (©) 2015 The Eurographics Association and John Wiley & Sons Ltd.

F The 2D image frame (viewport)

(0] The set of all objects

Or/Oc¢ Focus/context objects

O; An object in set O

P; O;’s projection into image space

V; the part of P; visible to the camera

V() Volume in scene space

A() Area in image space

B(-) Boundary contour in image space

F() Projection onto XY plane in scene space
R(-) Diagonal radius

Ca(4)/C5(%) Centroid in screen/scene space
dy(+,-)/ds(-,-)  Euclidean distance in screen/scene space

Color difference in L*ab space

Table 2: Symbols used in the energy function definition.

where N = |0\ Og|. The max {0, —r(Oi)}2 term handles
the case where O; is inside a focus object’s bounding cir-
cle.

Object size. To quantify the effect of object size on
saliency, we introduce the following term:

Z+(0;) = max {O,r— jE‘;)) }2

where A(V;) is the area of the visible part V; of O;, r is the
minimum required size of O;. We describe how we choose
r later.

Visibility. To quantify the effect of visibility on saliency,
we use the following term:

AVi)
A(P)
where A(P;) is the total area of the object projection P;
assuming no occlusions by other objects or clipping by
the image frame. A(V;) and A(P;) can be computed effi-
ciently using hardware occlusion queries [GRLMO3]. We
introduce the term Z(0;) to encourage objects outside the
frame to move towards the center of the frame:

P(05) = { d(C2(F),Co(P))?, if A(Vi) =0

0, else

Visibility and object size are both essential for focus ob-
jects. However, for context objects, we observe that there
are two scenarios. If the context object is small compared
to the focus object, visibility is important while its abso-
lute size in the viewport is not (e.g. items on the dining
table in Figure 3 left). On the other hand, if the context
object is largely occluded, it must maintain some mini-
mum size in the composition. To handle these cases, we
compute both energies ¥, and ., for each context object
and select the minimum. Thus, the complete form of our
object saliency energy term is

Esa:st Z (%f(oi)+<ysf(0i))+
0,€0r

Wse Z min{%,(0;),%.(0;)}
0;€0¢

4,(0;) :max{o,r— }2+@(0i)
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There are four parameters that reflect parameter r in
the visibility term 7. In all experiments, we set vy =
100%, sy = 10%,vc = 80%,5c = 5%.

Semantic constraints. We consider two types of con-
straints. The first type is defined for a single object class,
which constrains the object to only transform in a sub-
space in 3D, e.g. a picture frame cannot rotate. We im-
plemented it as hard constraints — i.e. the degrees of free-
dom are reduced in the optimization. The second type is
defined for a pair of object classes, which constrains the
change of the pairwise distance between two objects, e.g.
the distance between a dining table and a dining chair
cannot change drastically in the optimization. We imple-
mented it as soft constraints using the method similar
to [BS95,MSL*11]:

Ev=ws Y 0:d5(C3(0:), T (C3(0))))*
{Oi,Oj}GC

where C is a set of constrained object pairs, and Ti_l is
the initial transformation from the scene space into the
local coordinate frame of object O;, and 6; ; controls how
much the spatial relationship can change. G; ; can be set
by the stylist empirically in practice, and we set 6; ; = 1
by default in all of the results shown in this paper.
Collision relationships.

V(0iNO;
Eco =Wweo Z 7(\}10 J)

0,€0 0;€0 ( l)

A(Vi)>0 A(V;)>0
Support relationships. We infer the support relationships
in the input scene layout by using the method similar to
[FSH10]. Then we penalize placement of an object off its
support object by measuring the fraction of its projected
area outside its support surface [FRS*12]:

AFO)NF(S)
Esu = wsu -
O,ZE’O( A(}—(Ol)) )

where §; is the object supporting object O;.

Canonical views. We manually defined a set of 1-4
canonical view directions for each object class [BTBV99,
GRMSO01], and then deviations from them are measured
as:

Ecy = wey miin [1(6,0) — (équ)z)H

where 59,4)) is the view direction of the camera, and

i,0;)} are canonical view directions for the object
class.

Typical views.
Erv = wen(h—ho)” + wead”

where £ is the height of camera off the floor, hg = 5ft is
the typical height of a human eye, and ¢ is the pitch of
the camera (where O is horizontal). This term penalizes
viewpoints that deviate from a typical human eye height
and tilt the camera upwards/downwards.

e Visual balance.
2
Wyb LG (P)APR)
Ep= - d2<CzF VT
= REE e\ T Am)
We penalize by the distance between the frame centroid
and the center of mass of all objects in the frame.
e Color contrast.

Wee 1

2
0,€0r peB(V;) <avgq€N(p)\Vic(p,q)) +e

Ecc =

where N(p) \ V; denotes the neighborhood of pixel p, ex-
cluding the visible pixels in V;.
e Regularization.

2 2 2 5 2
Eir =wir ) (’2+y‘2+’2>+2 p [’i]z
.

0,0 \% O Or i=0

where (x;,y;,8;) describe the translation and rotation
of object O;, respectively, and ¢; describe the change
to camera parameters, with ¢; = 0.5,6, = 0.5,6. =
[0.17,0.17,20,20,20,0.17] controlling the flexibility of
object movement and camera manipulation.

These energy terms are weighted by coefficients that adjust
for scale differences and control their effects on the final re-
sults. By default, the weights are set to w;r = 10000, we, =
10000, w; = 500, wgr = 10000, wse = 500, wgr = 100, weo
= 10000, wg, = 10000, wey = 10000, we, = 10000, weq =
10000, wy;, = 20000, wee = 1.0, and wj- = 1.0. These weight-
ings were determined empirically and are kept the same for
all examples in this paper, except that wee = wey = 0 for
overview images of scenes (e.g., session A in Figure 2, Fig-
ure 5, 7 and 8), and w;y = w, = wea = 0 for zoomed-in
images of specific objects (e.g., session B in Figure 2, Fig-
ure 4 and 6). It is not expected that a user has to tweak these
weights to get good results for specific scenes.

Appendix B: Terms for text-incorporated composition

In this section, we define the two extra terms used in text-
incorporated composition.

o Text contrast.
1

1
Eic=w min
e fCR,'gR wb=w,b A(Ri) PER d; (p, Wb)2 +&

where p is a pixel in the rectangle R;, d;(-,-) is the differ-
ence between the luminance of two pixels, w is white and
b is black, w;e = 2.0.

o Text variance.

a 1
Lg, = AR p;eiL(p)

Ery = wry Z ! Z (L(P) _L;?[)Z

R;€ER A(Ri) PER;

where wy, = 10000.
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