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Figure 1: A polygonal object developed by using cambial growth against an obstacle.

Abstract
We present a botanical simulation of secondary (cambial) tree growth coupled to a physical cracking simulation
of its bark. Whereas level set growth would use a fixed resolution voxel grid, our system extends the deformable
simplicial complex (DSC), supporting new biological growth functions robustly on any surface polygonal mesh
with adaptive subdivision, collision detection and topological control. We extend the DSC with temporally coherent
texturing, and surface cracking with a user-controllable biological model coupled to the stresses introduced by the
cambial growth model.

1. Introduction

D’Arcy Thompson [Tho42] demonstrated that the history of

a natural object is revealed by its form. This is well-known

for trees in temperate geographic regions, as the history of

their development is represented by their growth rings. Much

of the shape of trees is thus dictated by the growth docu-

mented by these rings.

The field of computer graphics includes many explo-

rations in the study of primary "apical" tree growth, most

notably through L-systems [PL91] and recently through en-

vironmental factors [MP96,PHL∗09]. These works simulate

the entire tree, focusing on the introduction and elongation

of branches as opposed to their thickening. Fewer studies

can be found in computer graphics (though many exist in the

botanical literature) about the secondary "cambial" growth.

Cambial growth is the process that increases a tree’s girth

so that it can support more branches and leaves, transport

more water and nutrients, and produce wood and its tree-

ring structure. Cambial growth also produces familiar tree

features such as crotches, bulges, burls and knobs. A sim-

ulation of cambial growth would provide designers and an-

imators with a time-saving tool for producing such effects

on a large forest scenery scale, as well as "enchanting" any

computer graphics shape model by synthesizing such famil-

iar woodgrown features. To the best of our knowledge an

automatic tool that would allow simulation of wood-like ap-

pearance of general polygonal mesh objects does not exist.

A new cambial growth model (Sec. 4) based on recent ad-

vances in robust meshed surface propagation is introduced.

This new model derives biologically motivated growth func-

tions that transfer a variety of natural botanical processes

(Sec. 3.1) into the shape morphology of offsetting. We

also incorporate obstacle collision detection with the novel

method of embedding obstacles directly into the surface
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propagation data structure (Sec. 4.5), along with botanically

motivated collision response. We also incorporate user con-

trol into the growth model to support species-dependent be-

havior simulation, environmental effects and natural image

synthesis. Unlike previous work, we do not focus exclusively

on tree modeling, but also on small wood-like features that

enhance ordinary polygonal meshes.

We combine this cambial growth model with an exist-

ing surface fracture model in Sec. 5, extended with specific

botanical stress computations and responses, to simulate the

realistic appearance of bark. A key observation motivating

our coupling of cambial growth and bark cracking is that

cambial growth causes lateral expansion which produces

stress that we use in our cracking simulation to produce a

visually plausible bark model. We also introduce the notion

of woodification, a process of converting ordinary everyday

meshed geometric objects into a tree-like appearance, with

familiar woodgrown features and cracked bark textures. Our

cambial growth simulation on trees and other objects can

also be reversed (Sec. 4.3), to infer the growth history and

therefor the growth rings of a scanned real-world tree or any

other object.

Figure 1 shows an example produced by our framework.

The input tree trunk is a simple polygonal-mesh cylinder,

along with a user-positioned obstacle (a sign) also embed-

ded in the simulation propagation data structure. The simula-

tion computes the cambial growth of the tree as it grows and

adapts around the obstacle, maintaining a coherent texture

parameterization (Sec. 4.6) and supporting bark that cracks

based on growth stress. This result compares well to real-

world examples, such as Fig. 2 (left).

Figure 2: Two real-world examples of wood grown around
obstacles.

Our system, summarized in Fig. 3, operates directly

on polygonal meshes. Our growth model is based on the

deformable simplicial complex (DSC) [Mis10, MB12] re-

viewed in Sec. 3.2. The DSC simulates surface evolution

directly and robustly on a polygonal mesh lying along the

boundary between an interior and a exterior tetrahedral

meshes. The DSC evolves the shape model over time using

a biological growth function, which creates stress that our
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Figure 3: System Overview. A polygonal model is converted
to a tetrahedral mesh during preprocessing. The mesh is
evolved by using our developmental model and, at the same
time, is covered by cracks and checked for collisions in the
surrounding environment. The user can control the definition
of the cracks and the growth function.

cracking model uses to simulate bark fractures on the sur-

face. The user can control the simulation by sketching areas

to increase, reduce, or modify the growth direction (Sec. 4.4)

and by sketching stresses during the simulaton to guide bark

cracks (Sec. 5).

In summary, this work includes the following novel con-

tributions:

• a robust polygonal cambial growth model based on the

DSC,

• new biological user-controlled growth functions,

• a reversible growth function for inferring tree rings from

the shape of an existing tree,

• persistent texturing of a DSC evolving mesh, and

• a physical cracking model coupled to lateral growth stress.

2. Related Work

Woodification relates to the results in simulation of natural

phenomena, fracture simulation and surface propagation.

Bark modeling has evolved from phenomenological ap-

proximations to more botanically faithful simulations. Bloo-

menthal [Blo85] parameterized a branching tree model to

support realistic bark texturing. Hart and Baker [HB96] pa-

rameterized an implicit tree model using particle flows from

the trunk to the branches. Lefebvre and Neyret [LN02] pa-

rameterized the surface of a branching tree model using hor-

izontal strips, which were procedurally fractured and propa-

gated to generate a bark texture.

A variety of procedural, implicit, and texture synthesis

methods have been used to model bark and branching junc-

tions geometrically [Opp86, Har97, GMW04, WWL∗03].

Federl and Prusinkiewicz [FP96] simulated a bark crack-

ing texture by using a mass-spring network and associated

finite-element model [FP04], which they applied to a layered

model [FP02] for capturing the stresses and strains while

growing differential cambial layers. Hirota et al. [HTK98]

similarly applied a layered mass spring model to simulate

cracked appearance of bark. Pfaff et al. [PNdJO14] restruc-

ture a surface mesh to mimic tearing and cracking of thin

sheets. Our approach is based on a surface model as well,

however it does not focus on thin layers.
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Biological growth modeling includes methods constructed

from statistical models on field measurements, e.g., [PR95,

SDPLV06,CMF∗10] and pure simulation-based approaches.

Cambial growth is part of such growth processes and can

be described by an offsetting operation that is supported by

the level set method [KB93, Set99, OF02]. Here, a growth

function is defined over a surface; typically, however, only

on voxel grid models with fixed resolution that is much too

low for our approach. Nevertheless, there have been attempts

to simulate such growth: Buchanan [Buc98] visually sim-

ulated woodgrain and growth rings with a user-controlled

growth function. Mann et al. [MPW07] computed cambial

growth with level sets that encompassed growth around ob-

stacles and curvature-dependent growth functions. Sellier et
al. [SPH11] coupled a level-set cambial growth model with

an apical (e.g., L-system) growth model, and used the re-

sult to investigate various botanical hypotheses. Similarly,

Mizoguchi et al. [MM11] used a combination of L-systems

and cell subdivision to simulate the development of trees by

using polygonal meshes.

Surface propagation is commonly implemented using the

level set method, which operates on a volumetric represen-

tation for robustness, but suffer appearance artifacts and ad-

ditional volumetric work for a surface simulation, which can

be reduced by adaptive and compressed level set methods,

(e.g., [HNB∗06]). Surface meshes can also be robustly prop-

agated, (e.g., [Jia07]). We utilize the deformable simplicial

complex (DSC) [Mis10, MB12] which also maintains an in-

terior and exterior tetrahedral mesh. The DSC allows us to

operate directly, robustly and adaptively on a surface mesh,

which avoids cuberille voxel grid artifacts.

Our interactive interface supports shape modeling by

painting a growth function on a polygonal surface model.

Previous work simply propagated mesh vertices without

concern for mesh topology, and limited growth rates to

amounts small enough to avoid shocks, collisions, and

foldovers [Mat02, CN06]. We show that the interface now

runs robustly using the DSC method. Furthermore, we are

able to maintain a parametrization on the deforming shape.

This is done by using weighted primitive coordinate sys-

tems [WWM87,Ped95]. Rasmussen et al. [REN∗04] creates

textures with level sets by attaching texture coordinates to

advected particles. The method fails when the topology of

the surface changes, e.g., if wood grows around an obstacle.

Cracking and fracture modeling includes mesh-

less [PKA∗05], tetrahedral [SDF07], and real-time [PO09]

methods. We utilize a surface-based method [IO06] that

relies on a stress field over a surface mesh and extends a

previous tetrahedral FEM approach [OH99]. This method

is capable of simulating ceramic glaze, mud, or glass. We

introduce a new way to initialize the stress field interactively

and evolve it during the growth process.

3. Background

This work simulates cambial growth using the deformable

simplicial complex. In this section both are reviewed.

3.1. Cambial Growth

Wood and bark grow primarily because of new cells that

are added to the plant surface at its cambium layer [Bai23,

Lar94], demonstrated by trees when they grow around obsta-

cles as shown Fig. 2. The cambium generates new interior

xylem wood cells that transport water and exterior phloem

living tissue bark cells that transport sugar, both in vertical

"fusiform" and horizontal "ray" configurations. The interior

"heartwood" eventually dies but continues to serve as a struc-

tural support for the tree.

Cambial growth forms visible growth rings in temperate

geographic regions due to differences between lighter thin-

walled cell springtime earlywood and darker thick-walled

cell autumnal latewood [Wil84]. Trees must support the

mass of extensive branching structures designed to gather

photosynthate. A growing tree is able to regulate its cam-

bial growth to support limbs through the production of "re-

action wood". Softwood species generate compression wood

that supports from below, whereas hardwood species gener-

ate tension wood that suspends from above [Mat91].

The (cork) cambium also produces exterior vertical

fusiform cork cells that form the protective layer of the bark.

As the cambium circumference grows, it stresses the outer

smaller-circumference cork-cell layers, which then shed,

peel or crack vertically along the fusiform cell walls [Wil84].
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Figure 4: The DSC method propagates surface mesh ver-
tices, using interior/exterior tetrahedral meshes to detect
collisions, and can maintain contact between components.

3.2. The Deformable Simplicial Complex

We simulate such cambial growth with a configurable offset-

ting deformation using the deformable simplicial complex

(DSC). The DSC [Mis10, MB12] deforms a surface mesh

directly by moving its vertices xi, usually along the surface

normal ni controlled by a speed function s(xi, t) evaluated at

the vertex position at different time steps

ẋi = s(xi, t) ·ni. (1)
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The function can control the speed function to orient the di-

rection of reaction wood growth and the resulting eccentric-

ity of the growth rings. Whereas level sets only grow in their

normal direction, the DSC can grow in any user defined di-

rection and can support both the lateral growth of the cam-

bium in the normal direction and the apical growth of meris-

tems in the tangential direction. Hence, the DSC provides

the flexibility to simulate all aspects of tree growth with a

single method.

The DSC also overcomes the common roadblocks of

Lagrangian surface mesh deformation caused by self-

intersections (e.g., fold-overs) by maintaining interior and

exterior tetrahedral meshes that conform to the surface tri-

angle mesh. Both local and global self-intersections of the

surface mesh are detected by inverted tetrahedra in these in-

ternal and external tetrahedral meshes.

The method robustly grows a surface mesh by moving

each of its vertices (in arbitrary order) to its destination. If

this motion would invert a tetrahedron in the internal or ex-

ternal mesh, then the vertex motion is temporarily limited

to the point where it yields a degenerate (flat) tetrahedron,

which is removed by a local retesselation allowing the ver-

tex motion to continue. The amount of re-tesselation needed

can be controlled by the time step, which determines how far

a vertex moves relative to its neighbors, furthermore smooth-

ing of the interior/exterior meshes improves performance.

We can adaptively refine and coarsen the surface mesh to

improve mesh quality without undue computation.

Fig. 4 demonstrates DSC propagation, and how it pro-

vides control over geometry and topology. Geometric con-

trol is provided by adaptive remeshing options. A big ad-

vantage of the DSC over voxel level set approaches is that it

provides complete control of the surface topology. When the

two interfaces in Figure 4 meet, they preserve their shared

boundary instead of merging as they would with a level set

approach. The DSC can support both merging and precise-

contact surfaces, but the latter is needed for simulating cam-

bial growth, e.g., when different limbs overlap.

4. Simulation of Cambial Growth

To simulate cambial growth, we embed our input watertight

polygonal surface mesh in a tetrahedral mesh, generated by

TetGen [Si07]. The DSC evolves this representation using

a supplied surface growth speed function in the direction of

the surface normal. This section describes how we include

biological growth properties into the speed function, how we

can reverse growth to predict a tree’s prior development, and

how we extend DSC to manage obstacles and texture. The

stress due to cambial expansion is significant enough to pro-

duce cracking in the cork, but not enough to affect tree shape

or growth rate, and so is not included in our macroscopic

growth function. The stresses that affect the growth rate have

been accounted for in our reaction wood approximation. Un-

like some previous work (e.g., [CN06,MPW07]), we did not

incorporate curvature into our growth model. Curvature has

been used to regulate growth in e.g., the level set method

to smooth shocks it but is not needed for the DSC. We did

incorporate curvature in the reversed growth function to pre-

dict growth history where stems emerge from branches, in-

stead of appearing out of thin air and joining branches, as

described in Section 4.3.

4.1. Allometric Growth

Allometric growth simulates how the rate of tree growth

varies with the age of the tree. The rules of allometry and

the field of forest mensuration produce data-driven models

of tree growth based on field measurements. They have mod-

eled cambial growth as a single-parameter Weibull distribu-

tion function [LS11]

s(t) = ctc−1
exp(−tc), (2)

where t represents time of growth and c > 0 is a species-

dependent parameter (we use c = 2 in our experiments). The

parameter represents the stretching strength associated to the

surface growth.

Figure 5: Graph of the allometric growth function defined in
Eq. (2) over value t (proportional to age) for different values
of species parameter c.

Figure 5 shows the plot of this function for varying c, in-

dicating a peak "prime of life" growth rate which marks the

transition from a juvenile period of increasing growth rates

into a mature period of declining growth rates. Use of this

function is an approximation, as the function accounts for

all tree growth instead of just cambial growth.

4.2. Structural Growth

We approximate the growth of reaction wood through an ec-

centricity parameter e to define the function:

se(t,x) = (1+ e · n̂(x) · ŷ) · s(t), (3)

where ŷ is a unit vector that points upwards in vertical direc-

tion and n̂ a unit vector in the direction of the normal. The

compression wood of softwood trees is modeled by negative

eccentricity, whereas the tension wood of hardwood species

is modeled by positive eccentricity.

364



a) b)

Figure 6: (a) Annual growth rings generated by intermedi-
ate cambial meshes demonstrate positive eccentricity to sim-
ulate the growth of tension wood. (b) Positive eccentricity
(transparent white) overlays non-eccentric growth (red).

Figure 6(a) shows the inner structure of the wood with

growth rings that were generated by compositing successive

cambial meshes of the growth model. The positive eccen-

tricity (Eq. (3)) simulates the growth of extra wood at places

with high tension. Figure 6(b) shows the growth of such re-

action wood, in this case positive eccentric tension wood

(transparent white), in comparision to the ordinary growth

(in red). Note that a complete growth model would couple

cambial growth for reaction wood with the apical growth of

e.g., an L-system to better estimate the structural needs of

the branching skeleton and hence the growth rate of the re-

action wood [MBH03]. These effects are omitted here since

we concentrate on the details of the cambial wood produc-

tion.We furthermore neglect factors such as light, water con-

centration, and wood density for our model.

4.3. Reversed Growth

Our cambial lateral growth model operates on an initial

polygonal surface mesh. A full apical growth model, e.g.,

an L-system, would grow tree limbs from their sapling radii,

but would also require significant growth of the tangential

meristem. Since we want to concentrate on lateral growth,

we model an adult tree surface, and simulate its growth

both forward and backward in time. We simulate forward

growth with varying dilation using the above-mentioned

growth speed functions. To obtain a tree’s growing history

we use backward simulation by applying a number of suc-

cessive erosion operations on the adult tree. We thus negate

the speed function and in this way model the interior annual

growth rings by inverse growth (Figure 6). Note that such

negative growth should include a small proportion of curva-

ture in its speed function to avoid unrealistic sharp "shock"

features [Set99].

Figure 7: Visualization of the brush tool. Left: The purple
region shows growth directions to be modified interactively.
Right: the growth magnitude and direction of the ears and
back have been modified by dragging the green normal vec-
tors.

4.4. User-Defined Growth

The above-described growth functions work in a fully au-

tomatic way and can be controlled only by their input pa-

rameters and the user interface at runtime. To provide extra

control, we allow the user to interactively modify the growth

function on the growing surface. Such user-defined growth

can be defined when the object is created or applied dur-

ing each iteration by letting the user sketch changes to the

growth function on the surface of the object.

A ray-casting technique is used to change the growth by

user interaction with the value and direction of the growth

function depicted as length and direction of vectors at the

vertices as shown in Figure 7. A Gaussian filter defines the

spatial decay of the brush, which is used to alter the values

on the surface.

4.5. Growth Around Obstacles

Trees grow around obstacles, such as nearby fences or sign

posts (Figure 2). When the cambium and the obstacle col-

lide, the cambium continues to grow around the obstruction,

eventually absorbing it into the interior of the tree.

We utilize the DSC data structures to simplify the colli-

sion detection and response within our cambial growth sim-

ulation. Recall that DSC maintains an external tetrahedral

mesh that conforms to the growing surface mesh used to

simulate our cambial growth. This external tetrahedral mesh

also conforms to the boundaries of any obstacles (which is

also how DSC fluids handle obstacles [EMB11, MEB∗12]).

The DSC propagates each moving front vertex until it

reaches a tetrahedral face. If this face is also the face of an

obstacle embedded in the external mesh, then that vertex is

“frozen” at the point of collision. The DSC will do the same

for the associated tetrahedrons in the external mesh, such
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that the front propagation process cannot alter these vertices

any longer. Figure 8 shows the reaction of the simulation to

an obstacle. The volume of the obstacle is shown in red. As

soon as the front hits the volume, its vertices are frozen and

the rest of the mesh continues to grow. Thanks to the subdi-

vision feature of DSC, the interaction with an obstacle can

be modulated to create a smooth wrapping.

Figure 8: Different frames for the exterior tetrahedral mesh
(blue) for a tree surface (gray) along with a box obstacle
(red) during the growth.

Even though vertices move only in their normal direction,

differences in growth rate due to obstacle collision affect

the normal direction since they change the relative position-

ing of neighboring vertices. Hence normal growth produces

growth components tangential to the original normal direc-

tion, as seen in Figure 1, where the tree grows around the

sign and begins to cover it.

If the growth continues the front will eventually surround

the obstruction and intersect with itself. Since the DSC can

maintain precise contact after self collision (Figure 4) by a

similar “freezing” procedure than when fronts collide, the

front in this case creates a crease wound that realistically

persists through future growth iterations. Figure 1 shows a

result of such a simulation.

4.6. Persistent Texture Coordinates

Our growth simulation is initialized with a mesh that is pa-

rameterized to support texture mapping. As the mesh ex-

pands due to its growth, the original parametrization is also

propagated. However, the DSC approach moves front ver-

tices until they create an degenerated external tetraedral

mesh with subsequent inversion. At this point DSC performs

a local remeshing, which can result in vertex insertions and

deletions, and various edge swaps. Such adaptations require

an update of the parametrization.

When an existing vertex is deleted, its texture coordinates

are removed. When a new vertex is inserted, we interpolate

its texture coordinates from its neighborhood. When a vertex

moves, we decompose the motion into the tangent and the

bi-normal components, by using the Gram-Schmidt process,

with respect to the vertex normal. Normal motion preserves

texture coordinates, whereas tangential space spatial motion

Figure 9: Texture coordinates are preserved after DSC prop-
agation and numerous remeshing operations.

requires a proportional movement of the corresponding tex-

ture coordinates. The amount of this motion can be either

computed from the spatial motion using the texture Jacobian

∂u/∂x, or reinterpolated from the neighborhood. In all of our

experiments no visible numerical dissipation on the texture

maps were visible.

As the cambial surface grows, so will the texture Jacobian,

which magnifies the texture. This growth is primarily due to

the insertion of new cells of the same size, so cellular details

in the base texture should not greatly expand. We realize this

phenomenon with a mip-map of textures of increasing res-

olution that maintain a constant pixel resolution of cellular

details. Figure 9 shows how texture coordinates are updated

after remeshing and growth by using DSC.

5. Surface Cracking Model

The cambial growth model from Section 4 expands the sur-

face over time, creating tension which is eventually relieved

by creating cracks. We simulate such behavior by using the

physically-based approach of Iben et al. [IO06]. This algo-

rithm uses a stress field defined over a triangle mesh and

evolves it over time. Stress is distributed from regions of

higher stress to regions of lower stress. Each simulation step

computes the separation tensor to represent the forces act-

ing on the vertices of the mesh. If the stress exceeds a user-

given threshold, a new crack edge is inserted perpendicular

to the separation tensor’s maximum eigenvector. We encour-

age crack propagation by adding additional stress at the tips

of crack edges, which makes them prone to grow in a subse-

quent steps, instead of creating and merging nearby cracks.

In comparison to related methods it offers a large amount of

user control and the possibility to initialize the stress field

heuristically. This allows to create different crack patterns

appearing on bark of different species. Patterns emerge due

to the initialization of the stress and develop during the sim-

ulation. If no stress is specified, the stress field is initialized

as an equilibrium. Working directly on surface meshes, in

contrast to some previous work [LN02], allows for an easier

coupling between the growth modeling and crack simula-

tion.
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Stress is initialized on the input mesh either by a prede-

fined pattern [IO06] or interactively sketched on the mesh or

texture as seen in Figure 11. The direction in which the user

has placed strokes is used to initialize the stress orientation.

In Figure 10 we compare our results for the cracks with pho-

tographs of tree bark from different species. We removed ex-

isting cracks in the photographs with the technique presented

by [BSFG09] and used the remainder as input texture. The

stress was initialized by a set of predefined patterns.

During the growth simulation the DSC method can per-

form local changes to the mesh. The cracking and stress in-

formation stored in the vertices and faces of the mesh has to

be transferred to the evolved mesh in order to achieve coher-

ence in the final results. To track those local changes, every

vertex within the DSC is assigned an unique identifier. If

new vertices are added or the identifier is lost due to vertex

deletion, a local proximity-based similarity model is used

to identify corresponding vertices in subsequent evolution

steps of the meshes. This also allows us to track faces and

their stored stress information. With this, cracks and stress

tensors can be transferred between evolved meshes at con-

secutive time steps. If a corresponding face cannot be found

in the previous mesh, the stress in this face is interpolated

from the local neighborhood. In case the cracking model in-

troduces new edges and vertices, these have to be created

in the subsequent mesh as well. We set time steps for the

evolution and cracking small enough that only a few local

remeshing operations are necessary and tracking is most of

the time possible.

The growth process introduces additional stress, measured

as the displacement of a triangle barycenter between subse-

quent DSC time steps. The user can freely define the map-

ping between the displacement and the stress increment. In

each step, this increment is added to the stress that was trans-

ferred from the previous time step of the evolution. Addi-

tionally, the stress in regions with high curvature can be in-

creased, resulting in more cracks in strongly curved regions.

The curvature tensor is determined [CSM03] and added to

the stress tensor.

The edges associated with cracks are divided into con-

nected components for rendering. Each connected compo-

nent of edges represents a single crack. The width of the

crack is determined per-vertex based on the distance to the

nearest endpoint of its crack component. Hence cracks open

more in the middle. We use displacement mapping to cre-

ate the depth of the cracks. The depth also correlates with

its width: The closer to the crack edge, the larger the dis-

placement, creating a V-shaped profile. Both the depth and

the width of the cracks are modulated by noise to add a re-

alistic natural variance. The mesh is also refined near crack

ridges to improve displacement mapping quality. The prop-

erties of a crack including its appearance can change, so we

use full dynamic displacement mapping instead of static dis-

placement maps.

Real World Synthetic

Figure 10: Comparison between photographs of tree bark
(left) and synthetic results rendered with the cracking model
(right). Stress tensor initialization creates different patterns.
Top: vertical stress. Middle: horizontal stress. Bottom: mix.

Figure 11: An example of user-defined cracks (left) and the
resulting cracks on a surface (right).

Figure 11 shows an example of user-defined cracks. A

user sketched stroke influences the formation of cracks along

the corresponding triangles of the mesh, shown in yellow

on the left. The direction of the stroke is used to initial-

ize the orientation and magnitude of the stress tensors: The

outer product of the vector orthogonal to the stroke direction

through the triangle is used as the stress tensor at the center

of this triangle. Thereby the main direction of the stress ten-

sor in the selected triangles is oriented to produce the painted

crack path. The resulting crack pattern follows the location

and direction of the user input, as shown on the right.
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6. Implementation and Results

Our system is implemented in C++, using OpenGL and

GLSL for rendering, and the 3D DSC library [Bær14,Chr14]

for surface propagation. All results were generated on a 2.0

GHz Intel Xeon E5 2620 CPU with 32GB RAM, and ren-

dered with a 2GB Nvidia Quadro 4000 GPU.

Tables 1, 2, and 3 list parameters used in the simula-

tions. The DSC parameters tradeoff speed with quality. Val-

ues that increase simulation speed created deformed tetrahe-

drons whereas values that increase precision slowed down

the simulation. In all simulations the time step was set to

one. Cracking parameters were chosen in a range proposed

by the original authors. Fig. 1 shows frames from the anima-

tion of successive growth of a tree trunk model against a sign

obstacle. The DSC method smoothly and robustly adapts the

cambium around the sign geometry embedded in its exter-

nal mesh. Figures 12, 13, 14 and 15 show a variety of other

cambial growth examples.

Model (Figure) vi v f S t [s] t/S [ms]

Tree Close-up (Fig. 1) 10k 39k 200 32,4 162

Tree Rings (Fig. 6) 6k 5k 100 3,6 36

Hand (Fig. 12) 7.3k 7.9k 200 5,4 27

Kitten (Fig. 12) 5.5k 8.7k 200 5,4 27

Bunny (Fig. 15) 4.0k 6.6k 200 3,0 15

Knot (Fig. 15) 8k 13k 200 4,5 22.5

Memento (Fig. 15) 7.6k 8.1k 200 7,2 36

Table 1: Performance statistics showing the number of ini-
tial vertices vi final vertices v f and iterations S, as well as
the computational time t and average time per time step t/S.

Model (Figure) Speed Growth Subdivision Length

Tree Close-up (Fig. 1) 0.01 0.3

Tree Rings (Fig. 6) 0.01 0.2

Hand (Fig. 12) 0.01 0.3

Kitten (Fig. 12) 0.02 0.4

Bunny (Fig. 15) 0.01 0.4

Knot (Fig. 15) 0.05 0.3

Memento (Fig. 15) 0.02 0.2

Table 2: Growth parameters, selected to best tradeoff per-
formance with mesh quality.

Table 1 shows the computation time of our method. The

table shows the number of the initial vertices, number of

the vertices at the end of the simulation, number of itera-

tions, overall time of simulation, and the average time per

step. The most time-demanding operation of the simulation

is incurred by the DSC library when it checks propagated

vertices against tetrahedra. The number of vertices has in-

creased for the forward growth simulations because of the

adaptive nature of the DSC method. The example in Fig-

ure 6 was generated by using inverse growth and therefore it

ends with fewer vertices.

Model (Figure) CPI RPI α ESA [π]

Tree Close-up (Fig. 1) 10 0 0.6 0.4

Hand (Fig. 12) 8 1 0.4 0.5

Kitten (Fig. 12) 15 5 0.3 0.3

Bunny (Fig. 15) 3 1 0.2 0.5

Knot (Fig. 15) 10 5 0.54 0.3

Memento (Fig. 15) 15 5 0.6 0.3

Table 3: Cracking parameters. CPI: Cracks introduced into
the mesh per iteration. RPI: Relaxation steps per iteration.
α: Amount of stress added to the tips of the crack edges
([0,1]). ESA: Angle under which a newly created crack edge
snaps onto an existing edge.

Our single-core implementation was designed primar-

ily to prove the concepts and image quality, and not for

speed and interactive rendering. Similarly, our simulation

is built on a beta DSC library that focuses on robust La-

grangian mesh propagation, and has not yet been optimized

for speed. We expect DSC to eventually run in linear time,

given a constant bound on the number of tetrahedra tra-

versed by a moving vertex, and a constant bound on the

number of tetrahedra involved in a local remeshing oper-

ation. Similar performance concerns were reported when

DSC was introduced [Mis10] and used for fluid simula-

tion [EMB11, MEB∗12].

We found the method ran in acceptable computational

times on meshes consisting of several thousands of ver-

tices. The cambial growth simulation can handle even larger

meshes, given that the DSC can control the introduction of

new vertices. We tuned the growth speed to acquire a sta-

ble vertex advection and the subdivision length threshold to

introduce few new triangles, which reduce the number of

topology checks by the DSC in each iteration. All parame-

ters used for the growth of the models shown in this paper

are depicted in Table 2.

The cracking model, on the other hand, can introduce

many more vertices depending on its parameters which

could result in significantly longer computation times if not

properly tuned. Parameters used for the cracking simulation

of the models are shown in Table 3. For a more detailed de-

scription of the cracking parameters see [IO06].

7. Conclusions

We have introduced a framework for user-controlled woodi-

fication of polygonal meshes. A polygonal mesh is converted

to a tetrahedral mesh and is evolved by using deformable

simplicial complexes. The mesh development can be con-

trolled by a biologically-motivated growth function based on

the Weibull function or by a user-defined growth function

sketched on the mesh surface. The evolving mesh can col-

lide with objects in the scene and with itself while geometri-

cal and topological changes are consistently maintained. The

growth generates stress on the surface that is alleviated by
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Figure 12: Images from the sequence of two evolving objects with their initial mesh on the left and the final evolved mesh on
the right.

Figure 13: A tree growing around a fence obstacle at different evolution steps. The model adapts to the existing obstacle.

Figure 14: User-defined growth: Left: The initial mesh and a uniform growth function, indicated by the uniform length of the
normal vectors. Right: the user altered the growth function, which causes a significant distortion of the mesh during growth.
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Figure 15: Growth sequences of complex geometries.
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cracks and the cracks can also be painted on the surface by

modifying the stress map. We have shown that our method is

capable of growing objects around obstacles, creating com-

plex woodified geometries, predicting growth rings, and re-

producing different bark structures. These tools also support

interactive control to enable artists to intuitively influence

these processes. One of the main limitations of this method

is that the growth and cracking parameters depend on mesh

resolution. A finer mesh requires a different set of param-

eters than a coarser mesh to produce similar results. The

transfer of cracks between meshes of different simulation

steps can also create errors due to local remeshing opera-

tions. This is especially conspicuous when using an uneven

growth speed over the mesh.

Another limitation is the time needed for robust DSC

growth, and so an obvious avenue for future work is optimiz-

ing the DSC method. The retesselation that occurs as each

vertex propagates through a tetrahedral mesh face makes the

approach robust, but also time consuming.

The DSC also includes an internal tetrahedral mesh that a

future simulation could use to simulate interior cracking.

An interesting problem to explore would be incorporating

different surface features, such as knots, defects, or cellular-

based surface features such as moss or lichen to the simula-

tion. Our cambial growth is always in the normal direction,

but a more detailed simulation would represent the orienta-

tion of the fusiform cells, to more accurately simulate cam-

bial growth around obstacles and wounds.
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