
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Implicit Formulation for SPH-based Viscous Fluids

Tetsuya Takahashi1,2 Yoshinori Dobashi3,2 Issei Fujishiro4 Tomoyuki Nishita2,5 Ming C. Lin1

1The University of North Carolina at Chapel Hill, USA
2UEI Research, Japan

3Hokkaido University, Japan
4Keio University, Japan

5Hiroshima Shudo University, Japan

Figure 1: Viscous fluids simulated with our implicit formulation. Left to right: caramel sauce coiling with a particle view in
the inset; a dragon consisting of particles with different viscosities; melted chocolate buckling with a particle view in the inset.

Abstract
We propose a stable and efficient particle-based method for simulating highly viscous fluids that can generate
coiling and buckling phenomena and handle variable viscosity. In contrast to previous methods that use explicit
integration, our method uses an implicit formulation to improve the robustness of viscosity integration, therefore
enabling use of larger time steps and higher viscosities. We use Smoothed Particle Hydrodynamics to solve the full
form of viscosity, constructing a sparse linear system with a symmetric positive definite matrix, while exploiting the
variational principle that automatically enforces the boundary condition on free surfaces. We also propose a new
method for extracting coefficients of the matrix contributed by second-ring neighbor particles to efficiently solve
the linear system using a conjugate gradient solver. Several examples demonstrate the robustness and efficiency
of our implicit formulation over previous methods and illustrate the versatility of our method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is becoming in-
creasingly popular for simulating fluids because of its attrac-
tive features including automatic conservation of mass, im-
plicit tracking of surfaces with frequent topology changes,
and no need for grid structures or meshes. SPH has been
developed in various directions, e.g., enforcing fluid in-
compressibility [BT07, SP09, ICS∗14], handling fluid-fluid
and fluid-solid interactions [MSKG05,SSP07,SP08,BTT09,
AIA∗12, HLW∗12, RLY∗14], and improving computational

efficiency and saving memory usage [APKG07, IABT11,
SG11, OK12], and is recognized as a state-of-the-art fluid
solver in computer graphics [IOS∗14].

Over the past decades, various SPH methods have been
proposed and used for a variety of fluid effects in the lit-
erature. However, most of these SPH methods assume that
fluid is inviscid or slightly viscous; thus an effective SPH
method that can simulate highly viscous fluids has not yet
been established although we see various viscous materials
(e.g., honey, caramel sauce, melted chocolate, lava, machin-
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ery oils, and bodily fluids) and their characteristic behaviors
on a daily basis. There are two main reasons for this; First,
previous SPH methods, e.g., [MCG03, MSKG05, SSP07],
drop off-diagonal components of viscous stress tensor to
simplify the viscosity term and consequently fail to gener-
ate rotational viscous fluid behaviors, such as coiling and
buckling, due to neglect of the boundary condition on free
surfaces, while leading to inaccurate handling of variable
viscosity. This is also true for XSPH [Mon89] and artificial
viscosity [Mon92] as they are essentially same as the Lapla-
cian form in simplifying the viscosity term. Since the sim-
plified term is described by Laplacian operator, in this paper
we refer to this term as Laplacian form of viscosity and the
original, unsimplified term as full form of viscosity. Second,
previous SPH methods, e.g., [PPLT06,ASP∗14], suffer from
a restriction on available time steps because of their explicit
viscosity integration schemes. Andrade et al. [ASP∗14] pro-

posed a condition on time steps ∆t ≤ 0.1 ρh2

8µ (∆t: time step,
ρ: fluid density, h: kernel radius, and µ: dynamic viscosity)
to perform numerically stable simulations of viscous fluids
with the full form, and this condition makes it difficult to
simulate viscous fluids within a reasonable time when higher
viscosity and resolutions (smaller kernel radii) are used.

To address the two problems above, we propose a new
SPH-based method that uses implicit viscosity integration
for the full form for robustly simulating highly viscous flu-
ids. Our method offers the following advantages:

• It is efficient, allowing for use of larger time steps and
finer spatial resolutions than explicit integration.
• It is robust and stable, even with large time steps and high

viscosities.
• It can generate coiling and buckling phenomena and han-

dle variable viscosity.

We exploit the variational principle that automatically
enforces the boundary condition on free surfaces to derive
our implicit formulation, constructing a sparse linear sys-
tem with a symmetric positive definite matrix. To efficiently
solve the linear system, we also propose a novel method
for extracting coefficients of the matrix that includes con-
tributions from first-ring neighbor particles and second-ring
neighbor particles (neighbor particles’ neighbor particles).
Figure 1 demonstrates viscous fluids, simulated using our
implicit formulation.

In Eulerian methods, we can easily discretize the full
form (divergence of Jacobian of velocity) at a time using
finite difference due to the staggered stress arrangement as
in [BB08]. On the other hand, in SPH, we first need to com-
pute Jacobian of velocity, and then compute divergence of
Jacobian of velocity, separately applying SPH formulations
to both steps. Although computing these two steps is easy
for explicit integration [PPLT06, ASP∗14], significant com-
plexity is involved with implicit integration, and we need to
take into account contributions from both of first-ring and
second-ring neighbors to construct a linear system. Because

of this complexity unique to SPH discretization and deriva-
tion of the implicit formulation, no work has been proposed
regardless of the apparent simplicity of the idea in adopting
implicit integration and demand for robust SPH-based sim-
ulators. To the best of our knowledge, our method is the first
SPH method that uses implicit integration for the full form
of viscosity, and is also the first method that extracts matrix
coefficients contributed by second-ring neighbors.

2. Related Work

Eulerian viscous fluids. Carlson et al. [CMVHT02] first en-
abled stable simulations of highly viscous fluids with free
surfaces by solving the Laplacian form of viscosity using
implicit integration. Later, Rasmussen et al. [REN∗04] pro-
posed an implicit-explicit scheme for the full form of vis-
cosity to correctly handle variable viscosity at the expense
of numerical stability. Batty and Bridson [BB08] proposed a
fully implicit viscosity integration scheme for the full form,
making it possible to take larger time steps, handle variable
viscosity, and generate coiling and buckling. This method
was extended by Batty and Houston [BH11] for an adap-
tive tetrahedral fluid simulator. In the work of Stomakhin et
al. [SSJ∗14], a viscosity term was also solved using implicit
integration in the framework of Material Point Method.

Lagrangian viscous fluids. We categorize Lagrangian
methods into five groups: Lagrangian Finite Element Meth-
ods (Lagrangian FEM), dimensionally reduced discrete
methods, spring-based methods, deformation-based meth-
ods, and SPH methods. Our method belongs to the SPH
methods.

Lagrangian FEM has been used to accurately simulate vis-
cous fluids, and various developments have been done in the
literature. Bargteil et al. [BWHT07] proposed an efficient
remeshing method to reduce the cost of time-consuming
remeshing process, and Wojtan and Turk [WT08] improved
the remeshing method of Bargteil et al. [BWHT07]. Wicke
et al. [WRK∗10] proposed a local remeshing method to keep
the number of tetrahedra small. Clausen et al. [CWSO13]
proposed a Lagrangian FEM that can handle elastic, plastic,
and fluid materials in a unified manner.

To accurately simulate viscous threads and sheets, Bergou
et al. [BAV∗10] and Batty et al. [BUAG12] proposed dimen-
sionally reduced discrete methods and generated coiling and
buckling, respectively, limiting the dimension of materials
that they can simulate.

Spring-based methods have been used because of its
conceptual simplicity. Miller and Pearce [MP89] and Ter-
zopoulos et al. [TPF91] proposed a spring-based model that
computes repulsion and attraction forces between particles.
Clavet et al. [CBP05] extended this model to simulate ma-
terials that exhibit elasticity, viscosity, and plasticity. Taka-
hashi et al. [TNF14] also simulated such materials in a uni-
fied framework of Position-based dynamics.
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Gerszewski et al. [GBB09] proposed a deformation-based
method that approximates motions of neighbor particles
based on deformations of particle configurations for repro-
ducing elastoplastic materials. Their method was extended
by Zhou et al. [ZLKW13] to improve its numerical stabil-
ity using implicit integration and by Jones et al. [JWJ∗14] to
handle varying mass materials.

Desbrun and Gascuel [DG96] used SPH to simulate vis-
cous materials. Müller et al. [MCG03] proposed the Lapla-
cian form of viscosity and simulated slightly viscous fluid.
The Laplacian form was also used in [MSKG05, SSP07].
Paiva et al. [PPLT06] proposed the full form of viscosity
and accurately simulated viscous fluids. The full form was
also used in the work of Andrade et al. [ASP∗14]. Rafiee et
al. [Raf07] presented a method based on a Maxwell model
to simulate coiling of viscoelastic fluids. Dagenais et al.
[DGP12] simulated viscous fluid motions by adding extra
forces that move particles to their original positions. In As-
trophysics, Monaghan [Mon97] and Laibe and Price [LP12]
used pair-wise implicit formulations for artificial viscosity.
Their methods consider only pair-wise particles for implicit
integration, and thus can be numerically unstable. In Com-
putational Mechanics, Fan et al. [FTZ10] proposed an im-
plicit scheme for simulating viscous fluids using SPH. How-
ever, they computed viscous stress with gradient of velocity,
not Jacobian of velocity, and hence their method is essen-
tially equivalent to a method that uses the Laplacian form.

Paiva et al. [PPLT06] and Andrade et al. [ASP∗14] solved
the full form of viscosity. However, our method differs from
theirs in that theirs used explicit integration whereas ours
uses implicit integration to improve the robustness of the
simulation and enable use of larger time steps with higher
viscosities and finer spatial resolutions than these methods.

3. Fundamentals for Simulating Viscous Fluids

Formulations. We aim to simulate incompressible, highly
viscous fluids using SPH. In the Lagrangian setting, the
Navier-Stokes equations for particle i can be described as

ρi
dui

dt
=−∇pi +∇· si +

ρi

m
Fext

i , (1)

si = µi

(
∇ui +(∇ui)

T
)
, (2)

where ρi denotes density of particle i, t time, ui = [ui,vi,wi]
T

velocity, pi pressure, si viscous stress tensor, m mass (we
use a constant mass for all particles), Fext

i external force,
and µi dynamic viscosity. The combination of the second
term on the right side in Eq. (1), and Eq. (2) is the full
form of viscosity and is required to handle variable viscos-
ity [REN∗04] and rotational behaviors [BB08]. We sepa-
rate the terms in Eq. (1) to independently solve them, taking
the standard approach of operator splitting as with Eulerian
methods [BB08, BH11], and enforce fluid incompressibil-
ity using a particle-based incompressible fluid solver, e.g.,
[SP09, ICS∗14].

To generate rotational behaviors by solving Eq. (1), we
need to consider the boundary condition that there is no trac-
tion on free surfaces [BB08]. In other words, as a bound-
ary condition for Eq. (1), we must satisfy (−piI+ si)ni = 0
(ni: normal to the free surface). As with [BB08,SSJ∗14], we
decouple these terms and independently enforce the bound-
ary condition for pressure −piIni = 0 (we enforce this by
setting pressures of surface particles to 0), and for viscos-
ity sini = µi

(
∇ui +(∇ui)

T
)

ni = 0. Since our method is
based on the variational principle, the boundary condition
for viscosity is automatically enforced by solving Eq. (1)
(see e.g., [BB08, SSJ∗14]).

Algorithm. First, we apply only external force Fext
i and

obtain first intermediate velocity u∗
i . Then, we solve viscos-

ity using our implicit formulation (see § 4) and obtain second
intermediate velocity u∗∗

i with intermediate viscous stress
tensor s∗∗i :

u∗∗
i = u∗

i +
∆t
ρi
∇· s∗∗i , (3)

s∗∗i = µi

(
∇u∗∗

i +
(
∇u∗∗

i
)T
)
. (4)

Next, to enforce fluid incompressibility, we compute pres-
sure pi using a particle-based fluid solver with the bound-
ary condition for pressure, and compute pressure force Fp

i
[Mon92]. Finally, particle velocity ui and position xi =
[xi,yi,zi]

T are integrated using Euler-Cromer scheme. We
summarize a full procedure of our method in Algorithm 1.

Algorithm 1 Procedure of our method
1: // j: neighbor particle of i
2: // Wi j: kernel with a kernel radius h
3: for all particle i do
4: find neighbor particles
5: for all particle i do
6: apply external force u∗

i = ut
i +∆tFext

i /m
7: for all particle i do
8: solve viscosity using Eqs. (3) and (4) // § 4
9: for all particle i do

10: compute pi using a particle-based fluid solver
11: for all particle i do

12: compute Fp
i =−m2

∑ j

(
pi
ρ2

i
+

p j

ρ2
j

)
∇Wi j

13: for all particle i do
14: integrate particle velocity ut+1

i = u∗∗
i +∆tFp

i /m
15: integrate particle position xt+1

i = xt
i +∆tut+1

i

Unlike [BB08] that enforces fluid incompressibility twice,
we enforce fluid incompressibility once in one simulation
step as in [BH11] because our method can sufficiently main-
tain incompressibility over all simulation steps (when fluid
incompressibility was enforced with a tolerable density er-
ror of 0.1%, the maximum density deviation was lower than
0.5%), and we observed indiscernible differences between
enforcing incompressibility once and twice.
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4. Implicit Formulation for Full Form of Viscosity

In this section, we first describe how to solve the viscos-
ity term using implicit integration in the SPH framework
while constructing a linear system (§ 4.1). Next, we explain
sparsity of the coefficient matrix (§ 4.2), and our solver and
coefficient extraction method for the system (§ 4.3). Then,
we give implementation details and show our algorithm for
solving our implicit formulation (§ 4.4).

4.1. Implicit Integration for Full Form of Viscosity

We derive an SPH-based implicit viscosity formulation from
Eqs. (3) and (4). Hereafter, we drop the symbol ∗∗ for read-
ability.

Since the boundary condition for viscosity is automati-
cally enforced because of the variational principle [BB08,
SSJ∗14], we directly discretize Eqs. (3) and (4) using im-
plicit integration in the SPH framework:

ui = u∗
i +m∆t ∑

j

(
si

ρ2
i
+

s j

ρ2
j

)
∇Wi j, (5)

si = µi ∑
j

V j

(
(u j−ui)∇W T

i j +∇Wi j(u j−ui)
T
)
. (6)

By substituting si in Eq. (6) into Eq. (5) and arranging the
terms in these equations, we obtain an implicit formulation:

ui + m̂∑
j

(
µ̂iQi j + µ̂ jQ jk

)
∇Wi j = u∗

i , (7)

Qi j =

 2∑ j ai j,xui j qi j,xy qi j,xz
qi j,xy 2∑ j ai j,yvi j qi j,yz
qi j,xz qi j,yz 2∑ j ai j,zwi j

 , (8)

qi j,xy = ∑
j

(
ai j,yui j +ai j,xvi j

)
,qi j,xz = ∑

j

(
ai j,zui j +ai j,xwi j

)
,

qi j,yz = ∑
j

(
ai j,zvi j +ai j,ywi j

)
,

where m̂ = m∆t, µ̂i = µi/ρ
2
i , k is a neighbor par-

ticle of j, ai j = [ai j,x,ai j,y,ai j,z]
T = V j∇Wi j =

V j[∇Wi j,x,∇Wi j,y,∇Wi j,z]
T , ui j = ui−u j, vi j = vi−v j, and

wi j = wi −w j. Qi j is symmetrical due to the symmetrical
property of si. This implicit formulation Eq. (7) is a linear
system and can be rewritten in a matrix form as CU = U∗

(C is a coefficient matrix and U = [. . . ,ui,vi,wi, . . .]
T ). Let

N denote the number of fluid particles, the size of C is
3N×3N, and that of U is 3N×1. We assign serial numbers
(id) to particles to specify locations in a coefficient matrix.

4.2. Sparsity of Coefficient Matrix

In SPH, particle i interacts with its neighbor particles within
its kernel radius, namely inside of its kernel sphere. Since
our formulation requires viscous stress of particles i and j
to compute velocity update for particle i using Eq. (5), not
only i’s neighbors Ji (a set of particle j) but j’s neighbors Ki j

h

2h

Mi

Ki j∗∗ Ji Ki j∗

k∗(i)
j∗

k∗∗

xi
j∗∗

Ji

h

2h

Ki j∗

i

Ki j∗∗

j∗j∗∗
xi

Mi

Figure 2: Illustration for first- and second-ring neighbors.
Left: particle i (green) directly interacts with i’s first-ring
neighbors Ji (particle j colored in orange) inside of i’s ker-
nel sphere with its radius h shown as a green circle. Right:
particle j∗ (purple) has neighbor particles (within j∗’s ker-
nel sphere shown as a purple circle), which are second-ring
neighbors Ki j∗ for particle i. Possible second-ring neighbors
for particle i exist within the largest Minkowski sum (Mi) of
Ji and Ki j, which is a sphere shown as a red circle, and Mi’s
center and radius are xi and 2h, respectively.

(a set of particle k) must be taken into account. In short, we
need to include contributions from first-ring neighbors Ji and
second-ring neighbors Ki j to compute i’s velocity update and
construct a linear system. This setup is illustrated in Figure
2. Assuming that particles i and j are spherically surrounded
by others, i and j generally have 30-40 first-ring neighbors
within their kernel radius h [SP09]. Since particle j can ex-
ist anywhere within i’s kernel sphere, the total number of
second-ring neighbors of particle i without overlaps can be
240-320. This is because the maximum (total) number of
second-ring neighbors of i without overlaps is smaller than
the number of particles within the largest Minkowski sum
of i’s kernel sphere and js’ kernel spheres, and the largest
Minkowski sum Mi is a sphere whose center is xi and radius
is 2h. Since all particles in Ji and Ki j are included in Mi,
each particle can interact with up to 320 particles. Hence,
non-zero values for each velocity component can be 960, as
there are 320 particles in Mi and each has three velocity com-
ponents. Although this number is much larger than the num-
ber of non-zero values in grid-based methods, and particle-
based methods that involve only first-ring neighbors, our co-
efficient matrix is still a sparse matrix.

4.3. Solver and Coefficient Extraction

Solver. Since the linear system constructed by our formula-
tion is sparse and also symmetric positive definite, we use
a conjugate gradient (CG) solver (though we also tested Ja-
cobi method and Modified Incomplete Cholesky Conjugate
Gradient (MICCG), they did not work well. See § 6). Unlike
the CG method described in [Ihm13], which repeatedly com-
putes matrix coefficients in the CG algorithm by performing
extra particle scans without storing the coefficients, we ex-
plicitly construct and preserve a coefficient matrix, namely
extract all coefficients in the matrix. This approach enables
us to efficiently perform the CG method without extra loops,
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Figure 3: Numerical stability test with different combi-
nations of time steps and viscosities. (a) initial state, (b)
explicit integration [ASP∗14] with ∆t = 5.0× 10−6 s and
µ = 1,000.0 kg/(s·m), (c) explicit integration [ASP∗14] with
∆t = 1.3× 10−3 s and µ = 1,000.0 kg/(s·m), (d) implicit
integration (our method) with ∆t = 1.3× 10−3 s and µ =
1,000.0 kg/(s·m), (e) explicit integration [ASP∗14] with
∆t = 5.0× 10−6 s and µ = 50,000.0 kg/(s·m), and (f) im-
plicit integration (our method) with ∆t = 1.0× 10−4 s and
µ = 50,000.0 kg/(s·m).

thereby improving the performance of the solver. In addi-
tion to this advantage, extracting all coefficients allows us
to use preconditioning techniques, e.g., algebraic multigrid
(AMG), and external libraries, separate solver code from
others to improve programming maintainability, and take
full advantage of GPGPU, parallelizing matrix-vector multi-
plications (in both rows and columns).

After a coefficient matrix is constructed, we solve the lin-
ear system with the CG method. We terminate iterations in
the CG algorithm when a relative residual becomes smaller
than a convergence criterion η.

Coefficient extraction. By substituting Qi j in Eq. (8), we
can rewrite Eq. (7) for x component of ui, ui as

ui + m̂∑
j

µ̂i

(
2∇Wi j,x ∑

j
ai j,xui j +

∇Wi j,y ∑
j
(ai j,yui j +ai j,xvi j)+∇Wi j,z ∑

j
(ai j,zui j +ai j,xwi j)

)
+µ̂ j

(
2∇Wi j,x ∑

k
a jk,xu jk +∇Wi j,y ∑

k
(a jk,yu jk +a jk,xv jk)

+∇Wi j,z ∑
k
(a jk,zu jk +a jk,xw jk)

)= u∗i . (9)

Then, we further convert Eq. (9) into the follow-
ing equation to straightforwardly extract coefficients
cuiui ,cviui ,cwiui ,cu jui ,cv jui ,cw jui ,cukui ,cvkui , and cwkui : cuiui

cviui

cwiui

T  ui
vi
wi

+∑
j

 cu jui

cv jui

cw jui

T  u j
v j
w j

+

∑
k

 cukui

cvkui

cwkui

T  uk
vk
wk

= u∗i ,

cuiui = 1+ m̂µ̂i
(
2ωi j,xαi j,x +ωi j,yαi j,y +ωi j,zαi j,z

)
,

cviui = m̂µ̂iωi j,yαi j,x,

cwiui = m̂µ̂iωi j,zαi j,x,

cu jui = m̂
(
−µ̂i(2ai j,xωi j,x +ai j,yωi j,y +ai j,zωi j,z)+

µ̂ j(2∇Wi j,xα jk,x +∇Wi j,yα jk,y +∇Wi j,zα jk,z)
)
,

cv jui = m̂
(
−µ̂iai j,xωi j,y + µ̂ j∇Wi j,yα jk,x

)
,

cw jui = m̂
(
−µ̂iai j,xωi j,z + µ̂ j∇Wi j,zα jk,x

)
,

cukui = −m̂∑
j

µ̂ j(2∇Wi j,xa jk,x +∇Wi j,ya jk,y +∇Wi j,za jk,z),

(10)

cvkui = −m̂∑
j

µ̂ j∇Wi j,ya jk,x, (11)

cwkui = −m̂∑
j

µ̂ j∇Wi j,za jk,x, (12)

where αi j = [αi j,x,αi j,y,αi j,z]
T = ∑ j ai j and ωi j =

[ωi j,x,ωi j,y,ωi j,z]
T = ∑ j∇Wi j. We use cuiui to denote a co-

efficient of ui to ui, and cviui a coefficient of vi to ui, and
similarly define other coefficients. The other components (y
and z) and 2D version can be straightforwardly derived. By
scanning particles i, j, and k, we extract all coefficients for
the linear system (see Appendix A for details).

4.4. Implementation Details and Algorithm

We summarize procedures of our implicit formulation in Al-
gorithm 2. To handle solid boundaries, we use solid parti-
cles arranged on object surfaces. When fluid particles col-
lide with solid particles, we use explicit viscosity integra-
tion for fluid particles with low viscosity while using Dirich-
let boundary condition similar to [BB08, SSJ∗14, ASP∗14],
namely setting averaged solid particle velocities usolid to
fluid particles if viscosity of the fluid particles is higher than
a criterion µDirichlet. As a structure of a sparse matrix, we use
compressed sparse row (CSR) and reserve sufficient mem-
ory for each particle so that the matrix construction can be
parallelized over particle i.

Algorithm 2 Algorithm for solving viscosity
1: assemble the matrix // see Appendix A
2: solve the linear system with CG
3: for all fluid particle i do
4: if µDirichlet < µi∧ neighbor solid particle exists then
5: enforce solid boundary condition ui = usolid

5. Results

Implementation. We implemented our method in C++ and
parallelized it using Open MP 2.0. We adopted SPH ker-
nels proposed in [MCG03] and used surface tension force
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Table 1: Simulation parameters and performance. N: the number of particles, µ (kg/(s ·m)): dynamic viscosity of particles,
∆t (s): time step, and tvisc (s) and t total (s): simulation time for viscosity and total simulation time per frame, respectively.

Figure Viscosity form Integration N µ ∆t tvisc t total

3 (b) Full Explicit 5.5k 1,000.0 5.0×10−6 6.3 51.7
3 (c) Full Explicit 5.5k 1,000.0 1.3×10−3 0.0 0.5
3 (d) Full Implicit 5.5k 1,000.0 1.3×10−3 15.0 15.4
3 (e) Full Explicit 5.5k 50,000.0 5.0×10−6 2.9 40.1
3 (f) Full Implicit 5.5k 50,000.0 1.0×10−4 361.4 366.1
5 Full Implicit 47.4k up to 800.0 1.0×10−4 815.2 836.1
6 (a), (c) Laplacian Implicit up to 19.6k 600.0 2.0×10−4 20.4 59.3
6 (b), (d) Full Implicit up to 46.5k 600.0 2.0×10−4 287.1 314.1
7 (a), (c) Full Implicit up to 34.6k 100.0 2.0×10−4 135.4 142.0
7 (b), (d) Full Implicit up to 23.4k 600.0 2.0×10−4 116.3 120.7

presented in [BT07]. We adopted Implicit Incompressible
SPH (IISPH) [ICS∗14] as an incompressible fluid solver and
used the fluid solid coupling method proposed in [AIA∗12].
We used a variant of the z-index neighbor search method
presented in [IABT11]. In addition to our viscosity formu-
lation, we also used artificial viscosity to stabilize simula-
tions [Mon92].

Setting. We executed all the scenes on a PC with a 4-
core Intel Core i7 3.40 GHz CPU and RAM 16.0 GB, and
rendered all the figures using a physically-based renderer,
Mitsuba. We used fixed time steps and set a convergence cri-
terion as η = 1.0×10−4. Simulation parameters and perfor-
mance are listed in Table 1, where the surface reconstruction
and rendering are not included in performance measurement.

5.1. Numerical Stability

To verify the numerical stability of our implicit formulation
over the previous method [ASP∗14] that uses explicit viscos-
ity integration, we performed a simple test, as shown in Fig-
ure 3, where a viscous bunny was dropped onto the ground,
and the initial state is shown in Figure 3 (a). In this scene,

we chose ∆t satisfying the viscosity condition (∆t ≤ 0.1 ρh2

8µ )
given in [ASP∗14], and used IISPH as a fluid solver of
[ASP∗14] for fair comparison. The method of [ASP∗14] can
generate a plausible behavior of the bunny with a small time
step and low viscosity, as shown in Figure 3 (b). However,
when a large time step or high viscosity is used, their method
easily fails to simulate the bunny, as shown in Figures 3 (c)
and (e). By contrast, our implicit method successfully simu-
lates the bunny with a much larger time step (Figure 3 (d)),
and with a large time step and high viscosity (Figure 3 (f)).

5.2. Performance

We compared performance of our method and the previous
method [ASP∗14] in Figure 4 using the bunny scene shown
in Figures 3 (b) and (d). Because of our robust implicit for-
mulation, we can take a 260.0 times larger time step than the
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Figure 4: Performance profile for Figures 3 (b) and (d).

Figure 5: A dragon consisting of particles with different vis-
cosities from 0.0 to 800.0 kg/(s·m). Light (dark) green parti-
cles represent low (high) viscosity.

method of [ASP∗14], and our computation is 3.4 times faster
than theirs although per step cost of our implicit method is
more expensive than that of explicit methods. Since time
steps for [ASP∗14] are restricted by the viscosity condi-
tion above, our method can be more advantageous for scenes
with higher viscosities and finer resolutions.

5.3. Variable Viscosity

Figure 5 illustrates an example of a dragon consisting of
particles with different viscosities from 0.0 (light green) to
800.0 kg/(m·s) (dark green). Particles flow at different rates
depending on particle velocities.

5.4. Buckling and Coiling

We performed a buckling test to demonstrate that our im-
plicit formulation can generate buckling of a viscous mate-
rial while the Laplacian form with implicit integration fails
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Figure 6: Buckling test for comparison of our method with
the Laplacian form using implicit integration. (a) Laplacian
form with meshes. (b) our method with meshes. (c) Laplacian
form with particles. (d) our method with particles.

Figure 7: Coiling test for different viscosities. (a) Low vis-
cosity with meshes. (b) High viscosity with meshes. (c) Low
viscosity with particles. (d) High viscosity with particles.
Light (dark) green particles represent low (high) viscosity.

to generate a buckling phenomenon. Figure 6 illustrates a
dropped chocolate onto the ground, where (a) and (c) are
simulated with the Laplacian form, and (b) and (d) are with
our formulation. The chocolate simulated with the Laplacian
form does not bend, and exhibits unnatural fluid flows re-
gardless of its high viscosity. By contrast, our implicit for-
mulation successfully generates natural chocolate buckling.

We also performed a coiling test with different viscosi-
ties in Figure 7. In this scene, we poured caramel sauce with
low and high viscosity onto the ground. While caramel sauce
with low viscosity ((a) and (c)) behaves similar to the re-
sults generated with the Laplacian form in Figures 6 (a) and
(c), caramel sauce with high viscosity exhibits a coiling phe-
nomenon ((b) and (d)).

6. Discussions and Limitations

Robustness. Our implicit formulation significantly im-
proves the robustness of viscosity integration and allows
us to avoid the time step restriction for explicit integra-
tion [ASP∗14]. Our method introduces a much more relaxed
restriction on time steps, which depends only slightly on
viscosity and spatial resolutions. Consequently, our method
may not generate plausible fluid behaviors, when very large
time steps and very high viscosity and resolutions are used,
even though an implicit formulation for the Laplacian form
(which is unconditionally stable) can perform stable simula-
tions with the same condition.

From our experiments, we deduce that one decisive fac-
tor for this weaker robustness is due to second-ring neigh-
bors. To examine the factor, we consider solving differen-
tial equations with Laplacian operator by using SPH for-
mulations for Laplacian, and also solving the equations by
separating Laplacian into divergence and gradient, apply-
ing SPH formulations for both of divergence and gradi-
ent operators, and including second-ring neighbors, because
β∇2

φ≈∇·(β∇φ) (β and φ are arbitrary quantities), and this
decomposition is numerically similar to the relation of the
Laplacian form µ∇2u and full form ∇ · (µ∇u+ µ(∇u)T ).
We actually tested these with the Laplacian form of viscosity
and heat equations, and as expected, we observed numerical
instability with larger time steps and higher coefficients and
resolutions when Laplacian operator was decomposed while
we were able to perform stable simulations with undecom-
posed Laplacian operator under the same condition.

Solver. In addition to CG, we tested Jacobi method and
MICCG to solve our linear system. Although we were able
to solve the system using the two solvers, there are a few
problems to note. First, Jacobi method worked for slightly
viscous fluids with smaller time steps under low spatial
resolutions. However, since the convergence rate of Jacobi
method is slow, Jacobi method failed to solve the system
with large time steps and high viscosity and spatial resolu-
tions that can make a coefficient matrix ill-conditioned. In
contrast to Jacobi method, MICCG worked for such an ill-
conditioned matrix, and the rate of convergence was actu-
ally faster than our CG solver. However, MICCG requires
Cholesky factorization that is costly (and difficult to paral-
lelize), especially with our matrix that includes a great num-
ber of non-zero values (see § 4) although serial forward and
back substitution steps are not so slow compared to other
steps in the CG algorithm. In our experiments, Cholesky fac-
torization occupied more than 90% of computational time
for our viscosity solver including coefficient extractions,
and therefore our non-preconditioned CG solver was more
than 6 times faster than MICCG. A similar behavior that
the incomplete Cholesky preconditioner performed worse
due to the cost of constructing a preconditioning matrix for
particle-based methods (many non-zeros) was also reported
in [HLW∗12].
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Performance. Solving our viscosity formulation gener-
ally occupies more than 90% of the whole computational
time, and this weakens one of our advantages of efficient
computation with larger time steps. Our viscosity formula-
tion consists of extracting coefficients through triple loops
and solving a linear system, and they occupy around 30%
and 70% of computational time, respectively, for Figure 3
(f). To accelerate the speed of coefficient extractions, an effi-
cient algorithm for extracting coefficients involving second-
ring neighbors would be useful. One possible fast algorithm
is to avoid triple loops when extracting coefficients, and
we can avoid them by using precomputations for particle
k. However, these computations require additional storage
and scans over the storage, making coefficient extractions
more complex. Consequently, benefits of the precomputa-
tions over our method can be lost, or extracting coefficients
with the precomputations can be more costly than ours. As
for solving a linear system, using a faster solver or a low cost
and effective preconditioner would be helpful.

Memory. Preserving a coefficient matrix requires a large
memory (e.g., 12 GB memory for 500k particles, due to 1k
of 8 byte double values for 3 velocity components of 500k
particles). However, this is not a big issue with current mem-
ory capacity, given advantages explained in § 4.3.

Scalability. Another issue to note is that the size of a ma-
trix grows proportionally to the number of particles. It has a
scaling factor larger than grid-based methods and particle-
based methods that involve only first-ring neighbors. On
larger scenes with up to 200k particles, the memory usage
and computational cost for coefficient extraction increased
at nearly 1.0x linear-scale with respect to the number of
particles – similar to grid-based methods and particle-based
methods involving only first-ring neighbors – whereas com-
putational cost for solving linear system increased at around
1.1x scale. This is because increased number of particles
requires more CG iterations and thus more computational
time. Although computational cost might increase superlin-
early when more particles are used, using AMG precondi-
tioners (which cannot be used without explicit matrix preser-
vation) can potentially address this problem.

7. Conclusion and Future Work

We proposed a new SPH-based implicit formulation for the
full form of viscosity. Our method enables efficient and
stable viscous fluid simulations with larger time steps and
higher viscosities and resolutions than previous methods that
use explicit integration while handling variable viscosity and
generating coiling and buckling. We additionally presented a
novel coefficient extraction method for a sparse matrix that
involves second-ring neighbors to efficiently solve a linear
system with a CG solver. By taking advantage of our implicit
formulation and coefficient extraction method, we achieved
an accelerated performance by a factor of 3.4.

For future work, we plan to implement our method using

GPGPU techniques to accelerate constructing and solving
the linear system. In particular, our explicit matrix preserva-
tion allows us to take full advantage of dynamic parallelism,
fully parallelizing matrix-vector multiplications. Addition-
ally, finding better solvers, efficient and effective precondi-
tioners as well as fast coefficient extraction methods would
be promising. Similar to improving memory and computa-
tional efficiency for enforcing incompressibility in SPH flu-
ids, using multi-sized particles, domain decomposition, and
background grids could also further optimize performance.

Our coefficient extraction method can be applied to not
only SPH, but also other point-based methods that involve
second-ring neighbors (IISPH [ICS∗14] and mesh smooth-
ing [DMSB99]). Extending our method to accelerate such
problems could also lead to interesting future research di-
rections.
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Appendix A: Details of Coefficient Extraction

Due to complexity of extracting coefficients and similarity
of computing coefficients, we divide them into three groups:
Gi (cuiui ,cviui , and cwiui ), G j (cu jui ,cv jui , and cw jui ), and Gk
(cukui ,cvkui , and cwkui ).

By scanning particle j once from particle i, we can easily
compute and extract coefficients in Gi.

Since computing coefficients in G j requires ai j and ωi j
(summation of ∇Wi j over particle j), and ∇Wi j and α jk
(summation of Vk∇W jk over particle k), we need to com-
pute ωi j and αi j (we can access α jk from particle j if αi j
is computed in a previous loop) in advance using another
loop unlike the case of Gi. Therefore, we first compute ωi j
and αi j in the first loop and then use them to compute and
extract coefficients in G j in the second loop. Computed ωi j
and αi j can also be used to obtain coefficients in Gi.

To compute coefficients in Gk, we need to access parti-
cle k from particle i. However, since particle k is a neigh-
bor of particle j, we cannot directly access particle k from
particle i. Hence, we access particle k via particle j. In that
case, however, we cannot take a sum of quantities com-
puted between particles i and j at particle k (another scan
for particle j at particle k leads to quadruple loops, which
are costly and make coefficient extractions more complex).
Therefore, we decompose coefficients cukui ,cvkui , and cwkui

without taking a sum over particle j and separately extract
coefficients at particle k. Assuming that we are accessing
particle k∗ via particle j∗, we can write a part of coefficients
cukui | j∗k∗ ,cvkui | j∗k∗ , and cwkui | j∗k∗ for cukui ,cvkui , and cwkui

from Eqs. (10), (11), and (12) as
cukui | j∗k∗ = −m̂µ j∗

(2∇Wi j∗,xa j∗k∗,x + ∇Wi j∗,ya j∗k∗,y +∇Wi j∗,za j∗k∗,z),

cvkui | j∗k∗ = −m̂µ j∗∇Wi j∗,ya j∗k∗,x,

cwkui | j∗k∗ = −m̂µ j∗∇Wi j∗,za j∗k∗,x.

By adding the part of coefficients above to the matrix at par-
ticle k while also scanning particle j from particle i, we can
extract all coefficients of the matrix.

Adding coefficients to the matrix separately does work.
However, this approach is inefficient because we generally
use structures specialized for a sparse matrix, e.g., CSR and
Coordinate list, and adding values to such structures fre-
quently is costly. To avoid this, we use auxiliary storage,
which is associated with particle i, to preserve coefficients
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Figure 8: Illustration of computational flow for extracting
coefficients in Gk. Particle k is accessed from particle i via
particle j. At particle k, parts of coefficients in Gk are added
to a cell in particle i’s storage, whose id matches k’s id, as
shown by red arrows. Black arrows represent accessible par-
ticles and storage.

from particle k to i with k’s id. We add parts of coefficients
to i’s storage at particle k, grouping them based on k’s id
to minimize the number of adding coefficients to the ma-
trix. Then, after scans over particles j and k from particle i
are finished, we add coefficients in Gk to the matrix using
the storage. In our experiments, minimizing the number of
access to the matrix using the auxiliary storage accelerated
our coefficient extractions by a factor of 4.5 as compared to
adding coefficients to the matrix directly at particle k. A flow
for coefficient extractions for Gk is illustrated in Figure 8.

We also perform similar procedures
explained above to extract coefficients
cuivi ,cvivi ,cwivi ,cu jvi ,cv jvi ,cw jvi ,cukvi ,cvkvi , and cwkvi for
vi and cuiwi ,cviwi ,cwiwi ,cu jwi ,cv jwi ,cw jwi ,cukwi ,cvkwi , and
cwkwi for wi. We show our algorithm for coefficient
extraction in Algorithm 3.

Algorithm 3 Algorithm for coefficient extraction
1: initialize a matrix
2: for all fluid particle i do
3: compute µ̂i,ωi j and αi j
4: compute m̂
5: for all fluid particle i do
6: initialize storage for uk,vk, and wk
7: add cuiui ,cviui ,cwiui ,cuivi ,cvivi ,cwivi ,cuiwi ,cviwi , and

cwiwi to the matrix
8: for all fluid particle j do
9: compute∇Wi j and ai j

10: add cu jui ,cv jui ,cw jui ,cu jvi ,cv jvi ,cw jvi ,cu jwi ,cv jwi ,
and cw jwi to the matrix

11: for all fluid particle k do
12: compute a jk
13: add cukui ,cvkui ,cwkui ,cukvi ,cvkvi ,cwkvi ,cukwi ,cvkwi ,

and cwkwi to the i’s storage with k’s id
14: for all i’s storage do
15: add cukui ,cvkui ,cwkui ,cukvi ,cvkvi ,cwkvi ,cukwi ,cvkwi ,

and cwkwi to the matrix using the storage
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