N

N

CPH: a compact representation for hierarchical meshes
generated by primal refinement

Lionel Untereiner, Pierre Kraemer, David Cazier, Dominique Bechmann

» To cite this version:

Lionel Untereiner, Pierre Kraemer, David Cazier, Dominique Bechmann. CPH: a compact represen-
tation for hierarchical meshes generated by primal refinement. Computer Graphics Forum, 2015, 34
(8), pp-155-166. 10.1111/cgf.12667 . hal-01162098

HAL Id: hal-01162098
https://hal.science/hal-01162098
Submitted on 21 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

https://hal.science/hal-01162098
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Volume xx (200y), Number z, pp. 1-13

CPH: a compact representation for hierarchical meshes
generated by primal refinement

L. Untereiner? and P. Kraemer' and D. Cazier' and D. Bechmann'

Université de Strasbourg, ICube, CNRS, France
2Inria, Villers-1&s-N ancy, F-54600, France

Abstract

We present CPH (Compact Primal Hierarchy): a compact representation of the hierarchical connectivity of surface
and volume manifold meshes generated through primal subdivision refinements. CPH is consistently defined in
several dimensions and supports multiple kinds of tessellations and refinements, whether regular or adaptive. The
basic idea is to store only the finest mesh, encoded in a classical monoresolution structure that is enriched with
a minimal set of labels. These labels allow traversal of any intermediate level of the mesh concurrently without
having to extract it in an additional structure. Our structure allows attributes to be stored on the cells not only on
the finest level, but also on any intermediate level. We study the trade-off between the memory cost of this compact
representation and the time complexity of mesh traversals at any resolution level.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Object hierarchies—
Boundary representations 1.3.6 [Methodology and Techniques]: Graphics data structures and data types—

1. Introduction

In the past decade multiresolution representations have
become very popular in the computer graphics commu-
nity [DFSO0S5]. In this context an object is represented as
a hierarchy of nested meshes encoding different levels of
detail. In the case of surface meshes, this representation
gives access to multiresolution geometry processing tools
like multiresolution edition, compression or signal process-
ing. In the volumetric case, it is used for Free Form Defor-
mation [CGC*02] or to speed-up mechanical simulation for
the modelling of physical phenomena [BHU10].

Many of the algorithms used in such applications rely on
an underlying topological structure that must be able to per-
form neighborhood queries on each level of the mesh hier-
archy. Several kinds of tesselations (triangle, quad, tetrahe-
dron, hexahedron, ...) must be supported by this structure
as different algorithms may use different kinds of elements.
Moreover, given the growing complexity of the objects han-
dled by modern applications, the representation of the con-
nectivity should be as compact as possible.

When the hierarchy is generated through a subdivision
process, the design of the topological structure can bene-
fit from the intrinsic regularity of the mesh. In this context,

submitted to COMPUTER GRAPHICS Forum (3/2016).

we propose CPH (Compact Primal Hierarchy), an innova-
tive compact representation for mesh hierarchies generated
by regular or adaptive primal refinements. It supports both
surface and volume meshes and a wide variety of tessella-
tions. The basic idea is to store only the finest version of
the mesh in a standard monoresolution topological structure
augmented with a minimal set of labels. These labels allow
traversal of any of the coarser versions of the mesh without
having to extract it into an additional data structure. Switch-
ing from one level to another, or even performing concurrent
traversals at different levels of the mesh, is performed at no
additional storage cost. Compared to a representation that
would provide an explicit encoding of the connectivity at
each intermediate level, the on-the-fly traversal of the differ-
ent versions of the mesh is achieved at the expense of some
time complexity overhead. We provide a precise analysis of
both memory savings and time overhead in a theoretical and
practical way.

The hierarchical meshes handled by the CPH representa-
tion result from the following process. Given a base mesh
M° and a subdivision process S, the recursive process de-
fined by M H_g.m produces a hierarchy of subdivision
meshes. For surfaces, primal refinements first insert a vertex
into each edge and then split faces. All faces can be refined

2 L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

(b) 1-to-n split of arbitrary
polygons

(a) 1-to-4 split of triangles

Figure 1: 2-dimensional primal subdivision patterns.

(a) tetrahedral split

\

W
o A

e N

A
v
\

\‘l‘,.—"
i
A
e
v

4

)

-t

. W
\
2

\ 7

T
'
N
%=
Ay

(b) 1-to-n split of arbitrary polyhedra.

Figure 2: 3-dimensional primal subdivision patterns.

using the 1-to-n split (figure 1b). Triangles can also be re-
fined using the specific 1-to-4 split that preserves triangular
faces (figure 1a). Both strategies are compatible within the
same surface mesh. For volumes, primal refinements start
by applying a primal surface refinement on each polyhedron
and then split volumes. All volumes can be refined using the
1-to-n split (figure 2b). Tetrahedra can also be refined using
the specific tetrahedron split (figure 2a).

The remainder of the paper is organized as follows. In sec-
tion 2 we give an overview of existing structures for the rep-
resentation of such hierarchies. Section 3 is dedicated to the
presentation of the CPH representation. The management
of attributes within the hierarchy is explained in section 4.
Section 5 details the time complexity of the resolution level
traversals both theoretically and in practical experiments. Fi-
nally, we propose in section 6 a practical compact encoding
of the representation and compare its memory cost to that of
existing structures.

2. Related work

A common approach for the representation of multiresolu-
tion meshes [DFMO02, DFKPO05] involves a coarse base mesh
equipped with an additional hierarchical data structure.

A flexible strategy that has been defined for both cellu-
lar and simplicial complexes [DFPP97, DFPP99] consists
in storing a set of local modifications in nodes whose de-
pendencies are encoded in a directed acyclic graph (DAG).
Access to a topological representation of a particular ver-
sion of the mesh is achieved through the maintenance of
an extracted mesh that is stored in an additional monores-
olution structure and corresponds to an active front in the
DAG. Each modification in the active front — like increment-
ing or decrementing the desired resolution level — gives rise
to the application of the corresponding updates in the ex-
tracted mesh. Concurrent access to several versions or reso-
Iution levels leads to the maintenance of several fronts along
with their associated extracted mesh.

Tree-based structures [Sam90,L.S00] are more specialized
structures adapted to a specific type of tesselation and refine-
ment. The quadtree and octree data structures are naturally
derived from the nested hierarchy of meshes generated by
the application of a primal subdivision process on a surface
or volume mesh. These structures allow traversal of the mesh
that corresponds to a given resolution level without having to
extract it into an additional mesh structure. However, not all
the cells of the mesh (vertices, edges, faces, volumes) are
explicitly represented, leading to difficulties with the man-
agement of attributes on these cells. As these structures are
specialized for a given type of tesselation and refinement,
they cannot be used to represent hierarchies in which sev-
eral refinements are used, as in the quad/triangle subdivi-
sion [SLO3].

[KCB09, UCB13] present another approach to handle
multiresolution meshes based on a multiresolution extension
of combinatorial maps. This representation stores the set of
combinatorial maps that represent the mesh at each level of
the hierarchy. Therefore it allows an efficient, direct and con-
current access to the topology of the mesh at any desired
level. Its flexibility allows the support of a wide range of pos-
sible tessellations and refinements. However, as it explicitly
stores the connectivity of the different resolution levels, its
memory cost can be considered prohibitive in some applica-
tion contexts.

Panozzo and Puppo [PP11] propose an adaptive subdivi-
sion surface scheme that computes the geometry of the ver-
tices in an adaptively refined quad mesh consistently with
the regular Catmull-Clark scheme. In order to be able to re-
trieve the stencils required for the computation of the ge-
ometry without maintaining a complex hierarchical struc-
ture, they propose a compact encoding of the mesh hierar-
chy in a standard monoresolution mesh data structure. Us-
ing a small amount of additional information, this structure
allows traversal of any intermediate level without having to

submitted to COMPUTER GRAPHICS Forum (3/2016).

L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy 3

extract it in an additional mesh data structure. However, as
genericity is not their primary goal, this compact structure is
restricted to quadrilateral surface meshes and does not sup-
port subdivision on triangular or volume meshes.

3. The CPH representation

Our objective is to design a structure that is as flexible as
the representation proposed in [KCB09, UCB13] while be-
ing as compact as the one proposed in [PP11]. The CPH
representation supports surface or volume meshes, any type
of tessellation and any of the aforementioned subdivision
schemes. Each level of the hierarchy is directly and concur-
rently available without having to extract it into an additional
mesh data structure. A simple parameter determines the res-
olution level that is dynamically traversed by the proposed
algorithms. Attributes are managed for any type of cell at
any intermediate level.

For their flexibility and consistency in several dimensions,
we decided to base the CPH representation on combinatorial
maps, for which we give a short introduction.

3.1. Combinatorial maps

A mesh describes the cellular decomposition of a geomet-
ric object such as a curve, a surface or a volume. In the
case of manifold object representation, many data structures
have been proposed to encode the topological information of
these meshes at different dimensions. For example, the half-
edge [Wei85] data structure for surface meshes and the half-
face data structure [LT97] for volume meshes are widely
used.

These structures find their roots in the notion of combi-
natorial maps described in 1960 by Edmonds [Edm60]. It
has been extended by Lienhardt to represent the subdivision
of n-dimensional quasi-manifolds [Lie91]. An n-map M is a
n+ 1-tuple (D, 1,92, ..,0,) where D is a finite set of enti-
ties called darts and ¢1,9», ..., 9, are relations between these
darts.

Darts linked with relation ¢; form closed oriented cycles
(top of figure 3). Relation 0 is a one-to-one relation between
darts that links closed cycles pairwise through a common
edge to form a surface mesh (middle of figure 3). Relation
03 is a one-to-one relation between darts that links surfaces
pairwise through a common face to form a volume mesh
(bottom of figure 3).

Unlike most data structures, cells of the subdivision (ver-
tices, edges, faces, volumes, etc.) are not explicitly repre-
sented but rather defined as sets of darts. Figure 3 illustrates
these different sets for 1, 2 and 3-dimensional maps. These
sets of darts are formally defined as orbits on D. For ex-
ample, in a 3-dimensional map, the face of d is the orbit
< 01,03 > (d) (in red in figure 3), i.e. the set of all darts that
can be reached from d by applying ¢ and ¢3 relations.

submitted to COMPUTER GRAPHICS Forum (3/2016).

NyANA W

./

|

x

—_—

Figure 3: 1, 2 and 3-dimensional maps. Cells are represented
by subsets of darts. In each case, the vertex of the dart d is
highlighted in blue, its edge in green, its face in red and its
volume in orange.

Each dart belongs exactly to one orbit of each dimension
and thus represents simultaneously a vertex, an edge, a face
and a volume of the mesh. Each cell is also equally repre-
sented by any of its darts. For example, the four green darts
in the 3-dimensional map in figure 3 are all representatives
of the same edge of the volume mesh. The actual cells can be
explicited through an indexing process that relates them with
their attributes. For each type of cell where attributes are de-
sired, all the darts representing the same cell are associated
with a common index. Clearly, the indexing of the cells of
any dimension is completely optional. If the cells of one or

4 L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

< \ i |

- \ o

‘i ? //\\ > ::‘i—,»é_z//x / 1 7 \ <
/ ::T\—l—’ = T/
Figure 4: A 2-dimensional map has been adaptively subdivided twice. The insertion level of the darts is illustrated with colors:

black, blue and yellow for darts inserted on levels 0, 1 and 2. The left figure illustrates the subset of darts D? defining the map
of level 2. The subsets of darts D' and D° defining the maps of levels 1 and 0 are highlighted on the middle and right figures.

even all dimensions are not indexed, the cellular decompo-
sition and its topology are still completely defined. Indeed,
cell enumeration and neighborhood traversals are performed
using exclusively the darts and their relations.

3.2. Objectives

The construction of the hierarchy starts with a coarse mesh
represented by the combinatorial map M = (D0 q)], ,q>,,)
At each subdivision step, the refinement operators add new
darts to the map and modify their relations, thus defining the
successive combinatorial maps M' = (D', ¢}, ..., ;).

The basic idea used in the CPH representation 1s to store
only the finest combinatorial map M* = (D, q>1,)
Given this fine combinatorial map, the challenge is to re-
cover the intermediate versions M’ of this map using the
least amount of additional information and without needing
any additional data structure. For a given level i, we have
to reconstruct two pieces of information: the set of darts D'
and the relations between these darts q)"l R ...,q)f,. With this in-
formation available, level i can be considered and directly
traversed exactly like a classical combinatorial map.

3.3. Dart sets

The refinement process adds new darts at each subdivision
step. At each level i, the map is then defined by D', the set
of all darts inserted between levels 0 and i. To be able to re-
construct each D' as a subset of DF, darts are labeled with
their insertion level. D' is then defined by the set of all darts
whose insertion level is inferior or equal to i. Figure 4 il-
lustrates this principle with a small 2-dimensional example
mesh.

The amount of information needed to encode this inser-
tion level depends on the maximum number of desired reso-
lution levels.

3.4. Dart relations

Now that we have defined D' for each resolution level, the
next step is to reconstruct the ¢Y,...,0, relations on these
darts.

3.4.1. 2-dimensional case

The first relation to reconstruct is (1)’1 that defines the oriented
faces as cycles of darts within D'. Figure 5 shows a detail
extracted from figure 4. In this example, we try to traverse
the map at level 0. The darts of DY are highlighted in bold
black. Starting from dart d1, the next dart in this oriented
face at level 0 is d2. The process that reconstructs the q;‘f
relation has to jump over several darts to go from d1 to d2.

The basic idea is to go through all vertices that were suc-
cessively inserted in the original level 0 edge during the re-
finement process until finding a dart of the level being con-
sidered. For each intermediate vertex, some incident edges
must be skipped to get back on the original edge and con-
tinue the path. The number of edges to skip depends on the
refinement algorithm used in the incident face. In the face of
d1, two edges were connected in each new vertex (triangular
refinement). In the face of d3, a single edge was connected
in each new vertex (quad refinement). In order for the algo-
rithm to be generic and to know where to stop in the edge
skipping process, the original edges are identified using la-
bels.

()1
dl .
/W_/
\d4 ' i

Figure 5: The (])’1 relation is defined by a path in DF between
two darts of D' that followed each other in a face of level i
before it was subdivided. This path follows the original level
i edge across the vertices that were inserted by the subdivi-
sion process.

submitted to COMPUTER GRAPHICS Forum (3/2016).

L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy 5

P a—] —

Po—] E——
—i > W

R
I
S
i
UGN P

Figure 6: Edge labels are used as a guide to reconstruct q>§
relations. Only three different labels are needed to be able to
distinguish an original edge from all edges connected to it
during the refinement steps.

A first approach consists in assigning a unique edge label
to each edge on the coarse mesh. At each refinement step,
the label of a subdivided edge of level i is copied on the two
resulting edges of level i + 1. New labels are given to the
new edges created by the subdivision process (shown in red
in figure 1). The resulting labels can be used to identify the
original edges of the mesh and thus successfully reconstruct
the ¢} relations on each resolution level i. However, this ap-
proach has a strong limitation: the total number of uniquely
identifiable edges is limited to the number of available la-
bels. As our goal is to design a compact structure, the mem-
ory space used for these edge labels should be as small as
possible.

In the q)’i reconstruction algorithm, the original edge only
has to be distinguished from the ones that were connected
in the intermediate vertices during the successive refinement
steps. Thus, the label of each edge only needs to be dif-
ferent from the labels of the edges that are connected to it
during the refinement. There is no need for a global label
uniqueness. It follows that in the case of triangular 1-to-4
refinement, three different labels are sufficient. Indeed, each
new edge connects two pre-existing edges from which it has
to be distinguished. In the case of polygonal 1-to-n refine-
ment, two different labels are sufficient as each new edge is
connected to only one pre-existing edge. Figure 6 shows the
edge labels used in the example mesh. At level 0, all labels
are initialized to the same value. At each subdivision step,

submitted to COMPUTER GRAPHICS Forum (3/2016).

the label of a new edge is chosen as the smallest label differ-
ent from those of the edges it connects.

In a map with k subdivision levels, the algorithm to com-
pute ¢/ (d) for a given dart d, with i € [0,k] is the following:
1: function phi’ (d)

2: finished < false

3: | < edgeLabel(d)

4 it <—d

5: repeat

6: it ok (ir)

7: if insertionLevel(it) < i then

8 > DART OF D' FOUND

9 finished < true
10: else
11: > SKIP EDGES AROUND VERTEX
12: while edgeLabel(it) # [do
13: it 9 (05 (it))

14: end while

15: end if

16: until finished

17: return it

18: end function

Let us point out that the only pieces of information used
in this algorithm to reconstruct relation ¢; at level i are the
insertion level, the edge label and the relations between the
darts on level k (lines 6 and 13).

The second relation to reconstruct is ¢§ that links faces
pairwise through a common edge. This relation can be de-
fined from the ¢} relation. For a given dart d, ¢»(d) is the
dart that represents the same edge as d but in the adjacent
face. This dart is also part of the next vertex in the face of d.
In the example of figure 7, ¢g(d1) = d3. Going from d1 to
d3 can be done by going first from d1 to d2 = ¢ (d1) which
represents the next vertex in the face of d1 on level 0. Then,
using relations on level k, from d2 to d3 = ¢% (0% | (d2))
which represents the next face around this vertex in counter-

Figure 7: The ¢§ relation is defined by the composition of the
¢/ relation and a counter-clockwise turn around the reached
vertex using level k relations.

6 L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

) d2
] —ad3

dl e
//\//H H
=

Figure 8: In a 3-dimensional map, the (])’1 relation is also defined by a path in DF between two darts of D' that followed each
other in a face of level i before its subdivision. The ¢% relation is defined using the ¢} relation and a counter-clockwise turn

around the reached vertex.

clockwise order. The ¢_ relation used here is the inverse
of the ¢; relation, i.e. ¢_(d) is the predecessor of d in the
cycle formed by the ¢; relation. For any level i and any dart

d € D', we have 05 (d) = 05(0* | (¢/ (d))).

With D', ¢ﬁ and ¢§, we have completely defined any inter-
mediate resolution level as a map M’ = (D', ¢} ,95). Thereby,
just by choosing a value for i € [0,k], all the cells of the
mesh of intermediate level i along with their neighborhood
relations are available and can be traversed as in a classical
combinatorial map.

3.4.2. 3-dimensional case

Similarly to the 2-dimensional case, the first relation to re-
construct is (])’1 Figure 8 shows a detail of an adaptively sub-
divided mesh. The original mesh (a cube) has been subdi-
vided twice. The second step has been performed adaptively
on only one volume of the level 1 mesh.

The basic idea is similar to the 2-dimensional case: go
through all vertices that were successively inserted in the
original edge during the refinement process until finding a
dart of the level being considered. For each of these in-
termediate vertices, some incident edges must be skipped
to get back on the original edge and continue the path. 3-
dimensional refinement operations also add new faces. For
each incident edge to skip, some incident faces must also
be skipped to get back on the original face and continue the
path. The number of edges and faces to skip depends on the
refinement used in the volume. In order for the algorithm to
be generic and to know where to stop in the edge and face
skipping process, the original edges and faces are identified
using labels. In the volume of d1, a single edge was con-
nected to each new vertex (quad refinement) and a single
face was connected to each new edge (hex refinement).

With the same compactness objective in mind, we ex-

tend the 2-dimensional optimal labeling to the 3-dimensional
case. Primal volume refinements start by a surface refine-
ment of each volume. Edge labels are thus treated in the ex-
act same way as in the 2-dimensional case. In the case of
polyhedral 1-to-n refinement, edges connected to the central
vertex can take any label as they are not connected to any
pre-existing edge.

The original faces must be distinguished from the ones
that were connected to the intermediate edges during the suc-
cessive refinements steps. Thus the label of each face must
only be different from the labels of the faces that are con-
nected to it during the refinement. It follows that in the case

Figure 9: Some of the face labels are used as a guide to re-
construct ¢} relations. In the general case, only four different
labels are needed to be able to distinguish an original face
from all faces inserted in it during the refinement steps.

submitted to COMPUTER GRAPHICS Forum (3/2016).

L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy 7

of tetrahedral refinement, four different face labels are suffi-
cient. Indeed, each newly inserted face connects three exist-
ing faces from which it has to be distinguished. In the case of
polyhedral 1-to-n refinement, three different labels are suf-
ficient as each new face is connected to only two existing
faces. At level 0, all labels are initialized to the same value.
At each subdivision step, the label of a new face is chosen
as the smallest label different from those of the faces it con-
nects. Figure 9 shows some of the face labels used in the
example mesh.

The 3-dimensional algorithm for ¢ (d), for a given dart d,
is the following:

1: function phll (d)
2: finished < false
3 el < edgeLabel(d)
4: it<d
5: repeat
6 it + o (ir)
7 if insertionLevel (it) < i then
8 > DART OF D' FOUND
9 finished < true
10: else
11: > SKIP EDGES AROUND VERTEX
12: while edgeLabel(it) # el do
13: Sl < faceLabel(it)
14; ir2 + ok (ir)
15: > SKIP FACES AROUND EDGE
16: while faceLabel(it2) # fl do
17: ir2 05 (0% (ir2))
18: end while
19: it + ok (ir2)
20: end while
21: end if
22: until finished
23: return it

24: end function

The ¢§ definition given in the 2-dimensional case
still stands in the 3-dimensional case. We have 05(d) =
050 (0% (d))). The ¢} definition is defined following the

5 (01 (¢ (a))).

With D', ¢1 ¢2, (])3, we have completely defined any in-
termediate resolution level as a map M' = (D', ¢}, 05,05).
Again, just by choosing a value for i € [0,k], all the cells
of the mesh of intermediate level i along with their neigh-
borhood relations are available and can be traversed as in a
classical combinatorial map.

same approach, and we have 04 (d) =

4. Attribute management

As already mentioned in section 3.1, attributes can be associ-
ated to the cells of a combinatorial map through an indexing
process. All the darts representing a same cell are associated
with a common index that is used to retrieve the correspond-
ing values in a set of attribute tables.

submitted to COMPUTER GRAPHICS Forum (3/2016).

The CPH structure allows the association of attributes to
each cell of the mesh at each intermediate level of the hierar-
chy. Due to the properties of primal refinements, vertex and
other cell attributes are not managed in the same way.

4.1. Vertex attributes

Primal refinements leave vertices unchanged: no other cell
is connected to an existing vertex. This means that the set of
darts that defines a vertex never changes from its insertion
level to the maximum level. Thus, a vertex is associated with
a single index through all the levels of the hierarchy.

In order to associate different attributes with a vertex on
each level where it is present in the mesh, the CPH struc-
ture can maintain an intermediate indirection table. For each
vertex, this table contains a set of indices that point to the
actual vertex attribute tables. The size of this set of indices
is (k—1) where k is the maximum level and / is the insertion
level of the vertex. The attribute values of a vertex on level i
are associated with the index stored in the (i — /)th element
of this set. This mechanism is illustrated in figure 10.

/\

/I\K
7\ s
AN

Vertex
attributes
attrl attr2

Figure 10: The darts of a vertex store only one index through
all the levels of the hierarchy. This index refers to a cell of
an indirection table that contains, for each level between the
vertex insertion level and the maximum level, an index to the
tables that contain actual vertex attribute values.

8 L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

Face
attributes
attrl attr2

LSVA

Figure 11: For higher dimensional cells, each dart keeps the
index it has received on its insertion level through all levels
of the hierarchy. Access to the attributes of a cell at a given
level is then achieved by first retrieving the index associated
to one of its most newly inserted darts. This figure illustrates
face attribute indices for level O (black), level 1 (blue) and
level 2 (orange). Plain arrows are the one that can be used to
access faces attribute values.

For a given vertex on a given resolution level, access to
its index and thus to its attribute values is done in constant
time. However, compared to the cost of attribute manage-
ment in a monoresolution structure, this feature induces a
memory overhead, i.e. the indirection table. If an application
only needs a single set of attribute values per vertex for ev-
ery level where it is present in the mesh, the indirection table
could be bypassed and its memory cost completely avoided.

4.2. Other cell attributes

Higher dimensional cells (edges, faces, volumes) are all split
during a primal refinement step. The set of darts that define
one of these cells is separated into several parts. Subdivided
cells are composed of a mix of old and new darts. In this con-
text, a mechanism that does not cost any additional memory
can be proposed.

When a cell is refined, a new index is requested for each

new cell. These indices are associated only with the new
darts of these cells, leaving the indices associated with the
old darts unchanged. Some new cells are composed only of
new darts that are all associated with the new index (for ex-
ample: interior triangle face and interior edges in 1-to-4 sur-
face refinement, or interior faces and edges in 1-to-n vol-
ume refinement). The attribute values of a cell on level i are
associated with the index stored on one of the most newly
inserted darts of the cell. This mechanism is illustrated in
figure 11.

Unlike vertex attribute management, this way of accessing
cell attributes does not induce any memory overhead. How-
ever, as the access to the index requires finding one of the
most newly inserted darts of the cell, the worst case access
time is linear in the number of darts of the cell.

5. Reconstruction time analysis

When traversing an intermediate resolution level, most of the
time is spent in the reconstruction of the (])’1 relation. Indeed,
the other (1)5 and ¢§ relations are defined based upon this one.
We first provide a theoretical analysis of the reconstruction
process of this relation. Then we show some benchmarks of
our implementation of the CPH structure.

5.1. Theoretical analysis

Let us consider traversing the map at level i,0 < i < k. The
reconstruction process of the ¢} relation consists in follow-
ing a path in M* — the finest combinatorial map — between a
dart d € D' and ¢'i (d) e D'. The complexity of this process
can be expressed by the length of this path. As presented in
section 3.4, the idea used in the CPH representation is to fol-
low the original edge and skip the vertices that were inserted
in it on levels higher than i. The length of this path is thus
directly related to the number of subdivision steps that has
been applied to this edge in the higher levels.

In the case of a regular subdivision — which is the worst
case — the edge of level i has been cut into k=i edges in
level k. This means that getting ¢(1)(d) — i.e. at resolution
level 0 — costs 2¥ more time in the CPH structure than in
a data structure where this relation would be explicitly avail-
able. Besides, getting q>’f (d) —i.e. at resolution level k — does
not cost anything more as these relations are the ones that are
stored. At the same time, the number of cells of the mesh de-
creases along with the resolution level. Between two levels
i and i — 1, the cost of the reconstruction of ¢’i is multiplied
by 2, while the number of darts of the mesh is divided by
4. The cost of the reconstruction of the whole mesh is thus
divided by 2 between levels i and i — 1. Figure 12 illustrates
the theoretical cost of the traversal of a mesh with the CPH
structure and an explicit representation (i.e. where all rela-
tions are directly available on each level) as a function of the
resolution level.

submitted to COMPUTER GRAPHICS Forum (3/2016).

L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy 9

1 T

CPH —
Explicit representation

reconstruction time

resolution level

Figure 12: Comparison of the theoretical costs of the traver-
sal of a regularly subdivided mesh with a CPH structure and
with an explicit representation, as a function of the resolu-
tion level.

Many geometry processing or computation algorithms
built over a hierarchical mesh perform successive traversals
of all resolution levels. Thus, we further extend our analysis
to this setting.

In the case of regular triangular refinement, the number of
darts on each resolution level i is dj -4!, with dp the number
of darts on the coarse level 0 mesh. The cost of traversing all
¢’i relations is thus dj 4tk Considering the successive
traversals of all resolution levels, the total cost is:

k]) k) ko
CPH =Y dy-4 -2 =dy- Y 2 =gy 2" Y 2

i=0 i=0 i=0
n+1

ol

no.
By identifying the above sum with le = 1
= x—

1
lows:

CPH = dy- 25 251 = gy . 22+

In an explicit representation, as Q)’i relations are traversed
in constant time, the cost of the same traversal is the follow-
ing:

k . k.
EXPL=Y dy-4 =dy-) 4
i=0 i=0
Using the same identification, we obtain:

4k+l 22k+2
EXPL=dy- — =dy-

3 3
The ratio between the cost of CPH and an explicit repre-
sentation is thus:

CPH dy-2°*!

Y pr 2%+2

EXPL g,. %

In the case of regular hexahedral mesh refinement, the
number of darts on each resolution level i is d - 8', with d

the number of darts on the coarse level 0 mesh. As above, the

submitted to COMPUTER GRAPHICS Forum (3/2016).

cost of traversing all (])’1 relations is thus dy - 8' - 2= Con-
sidering the successive traversals of all resolution levels, the
total cost is:

k .
CPH =Y dy-8 2"
i=0

k .
_ dO . Z 2k+21
i=0

o k . i
=dy-2"-) 4
i=0

In an explicit representation, the cost of the same traversal
is the following:
k+1 1

k
‘ 8 343
EXPL—dy- N 8 =dy- S —dy. = .23k
Ol.;) 0r T Ty

The ratio between the cost of CPH and an explicit repre-

sentation is thus:

CPH _do-
EXPL 4.

k2

2336

= [—

An important property of the CPH representation is that
these ratios are constant in both cases and depend neither on
the complexity of the initial coarse mesh nor on the number
of resolution levels in the hierarchy.

In the case of an adaptive subdivision, the number of sub-
division steps applied to an edge between its insertion level
and the maximum level varies throughout the mesh. In any
case, the total cost of the traversal of an adaptively subdi-
vided mesh will always be between that of an explicit repre-
sentation and that of a CPH representation with a regularly
subdivided mesh.

5.2. Practical experiments

We carried out some practical evaluations of our imple-
mentation of the CPH representation. We measured exe-
cution times with and without the numerical computation
in order to highlight the specific cost of the mesh traver-
sal. The first application shown in figure 13 uses a multi-
grid method to compute a harmonic function that satisfies
given boundary conditions over a triangular mesh using a
discrete Laplace-Beltrami operator. The second application
is a multigrid electro-thermal simulation that is run over hex-
ahedral meshes (see figure 14). In both cases, the algorithms
go through all the resolution levels successively and perform
computations that exploit local connectivity information on
each intermediate level.

10 L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

Figure 14: Practical experiments using the CPH model on volume meshes: electro-thermal simulation on an adaptively subdi-

vided hexahedral mesh.

4000
CPH ——
Explicit representation ——
o 3000
£
c
2
t‘é 2000
@
c
o
o
e
1000

resolution level

Figure 15: Practical comparison of the cost of the traversal
of a regularly subdivided mesh with a CPH structure and
an explicit representation. Our implementation reproduces
what is expected from the theoretical study.

600000
CPH ----
Explicit representation ——
450000
o
£
£ 300000
s
o
©
150000

resolution level

Figure 16: Practical comparison of the cost of a multigrid
computation on a regularly subdivided mesh with a CPH
structure and an explicit representation. The overhead due
to the on-the-fly reconstruction of the intermediate levels in
the CPH structure is here negligible.

submitted to COMPUTER GRAPHICS Forum (3/2016).

L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy 11

Figure 17: A crowd simulation framework that uses the CPH
structure for the representation of the environment. Blacks
dots and red boxes represent the agents populating the sim-
ulation. The underlying environment is used as an accelerat-
ing structure for proximity queries and is dynamically sub-
divided based on the local density of the crowd.

Figure 15 shows the performances of the mesh traversal
algorithms (i.e. without any additional process). It can be
observed that these practical timings reproduce the theoreti-
cal results obtained in the previous section (figure 12). Fig-
ure 16 shows the cost of the entire process for each level. As
the cost of the numerical computation is independent of the
underlying mesh representation and is more important than
that of the mesh traversal, the overhead due to the dynamic
reconstruction of the intermediate levels in the CPH struc-
ture is here negligible.

The CPH structure is particularly well adapted to applica-
tions that need a hierarchical structure where the main level
of interest is the finest level of the mesh. This is the case
of the crowd simulation framework presented in [JKC12]
that uses the CPH structure to represent the environment.
The mesh is adaptively refined and dynamically updated
at each time step based on the local crowd density. The
finest level is used as an accelerating structure for proxim-
ity queries, which are performed at each time step. Coarser
levels are used for path planning, which is only performed
when needed. Figure 17 shows an image extracted from such
a simulation.

6. Memory cost

The goal of the CPH representation is to avoid the cost of
hierarchical information and thus to be as compact as pos-
sible compared to a more explicit formulation. As presented
in section 3, defining and traversing the intermediate levels
of the mesh requires storing the insertion level of a dart and
labels for edges and faces (only in dimension 3).

In dimension 2, triangular 1-to-4 refinement needs 3 dif-
ferent edge labels and polygonal 1-to-n refinement needs
only 2. This means that in the general case 2 bits are needed
to store edge labels. If only 1-to-n refinement is used, a sin-
gle bit can be used to store edge labels.

submitted to COMPUTER GRAPHICS Forum (3/2016).

In dimension 3, tetrahedral refinement needs 3 different
edge labels and 4 different face labels. The polyhedral 1-to-
n refinement needs 2 different edge labels and 3 different
face labels. In the first case, 2 bits are needed for edge labels
and 2 bits for face labels. In the second case, 1 bit is needed
for edge labels and 2 for face labels.

Table 1 summarizes this information and shows how
many bits are left to encode the darts’ insertion level if one
chose to store all the additional information (i.e. labels and
insertion level) in only 1 byte per dart. It is to be noted that
in the worst case (tetrahedral refinement on volume meshes),
4 bits are left to encode the insertion level, which still allows
encoding of 16 resolution levels.

Dimension | Dart information Refinement
Quad | Tri or Tri/Quad
2-maps Edge label 1 bit 2 bits
Insertion level 7 bits 6 bits
Edge label 1 bit 2 bits
3-maps Face label 2 bits 2 bits
Insertion level 5 bits 4 bits

Table 1: Summary of the memory cost of the additional in-
formation maintained by the CPH structure for 2-maps and
3-maps on a 1 byte per dart basis.

In order to compare the memory cost of the CPH struc-
ture, a hierarchical data structure that has a similar repre-
sentation domain is needed. Like the CPH representation, it
should be able to encode equivalent topological information
and to manage attributes for any type of cell at any inter-
mediate level of the hierarchy. We decided to compare the
CPH structure to multiresolution maps [KCB09,UCB13], an
explicit hierarchical mesh structure for surface (multiresolu-
tion 2-maps) and volume (multiresolution 3-maps) represen-
tation.

First, we compare the memory cost in the case of a regu-
lar triangle mesh refinement. Let djy be the number of darts
at level 0 and k the number of resolution levels. A multires-
olution 2-map stores a 2-map for each level of the hierarchy.
The total number of darts is expressed by the following sum:
Z{'(:() dy-4'. This sum can be identified with Y7, x' = A
and simplifies to: % -dy -4k Each dart stores two 4-byte in-
dices (¢; and ¢,) plus one additional byte for the insertion
level. The memory cost is: EXPL =12 -dy -4k bytes.

x—1

The CPH structure encodes an equivalent mesh in a
monoresolution 2-map composed of dj -4¥ darts. Each dart
stores two 4 byte indices (¢; and ¢;) plus one additional byte
for labels and insertion level encoding (as presented in table
1). The memory cost is: IMPL =9 -dy -4k bytes. The ratio
between the two data structures is therefore:

EXPL 4
mpL 3 1

12 L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

In other words a multiresolution 2-map needs 33% more
memory space than the CPH structure.

Next, we study the memory cost in the 3-dimensional case
of regular hexahedral mesh refinement. Let dy be the num-
ber of darts at level 0 and k the number of resolution levels.
A multiresolution 3-map stores a 3-map for each resolution
level. The total number of darts is therefore expressed by the
following sum: Z{":O dy-8'. Using the same identification as
above, this sum simplifies to: % -dy -8%. Each dart stores three
4-byte indices (¢, ¢ and ¢3) plus one additional byte for
the insertion level. The memory costis: EXPL = # -dp - gk
bytes.

The CPH structure encodes an equivalent mesh in a
monoresolution 3-map composed of dj - 8% darts. Each dart
stores three 4-byte indices (¢1, ¢ and ¢3) plus one additional
byte for labels and insertion level encoding. The memory
costis: IMPL=13-dy- gk bytes. The ratio between the two
data structures is therefore:

EXPL _ 104 _ |y
IMPL ~ 91

In other words, a multiresolution 3-map needs 14% more
memory space than the CPH structure.

More memory space can be saved in the particular case
of a regular subdivision of meshes composed of only one
tessellation type (e.g. triangles, quadrangles, tetrahedrons or
hexahedrons). In this case, darts may be allocated by blocks
corresponding to the fixed combinatorics of the cells. For ex-
ample, in the case of triangle meshes, darts can be allocated
by groups of 3 and the ¢; permutation can be reconstructed
with simple arithmetic operations on dart indices.

7. Conclusion and future work

We have presented the CPH structure for the compact repre-
sentation of mesh hierarchies generated by regular or adap-
tive primal refinement. As it is defined upon the combina-
torial maps model, the CPH representation is consistently
defined in several dimensions and supports multiple kinds of
tessellation and refinement. The finest mesh is the only one
to be stored and each intermediate level of the hierarchy is
traversed on-the-fly thanks to a small number of labels that
can be stored with only one additional byte per dart. A mech-
anism that allows storage of cell attributes on each level of
the hierarchy is also described. The memory cost of CPH is
lower than data structures that explicitly store the different
levels such as multiresolution combinatorial maps. Also, as
there is no need to extract an intermediate mesh in an addi-
tional structure in order to traverse it, the memory cost does
not grow with the number of concurrently accessed levels.
Finally, the time complexity overhead depends on neither the
size of the base mesh nor the number of resolution levels.

Future work includes the management of a richer set
of refinement operations such as dual refinement schemes.

The application of our method to the context of progressive
meshes is also possible and could be investigated. Starting
from a given fine mesh, each edge collapse could be encoded
by labelling the darts of the pair of deleted triangles. A simi-
lar algorithm to reconstruct relations between darts may then
allow one to traverse an intermediate mesh by jumping over
the deactivated cells. This idea needs further work that is be-
yond the scope of this article.

References

[BHU10] BURKHART D., HAMANN B., UMLAUF G.: Iso-
geometric finite element analysis based on catmull-clark subdivi-
sion solids. Computer Graphics Forum 29, 5 (2010), 1575-1584.
1

[CGC*02] CAPELL S., GREEN S., CURLESS B., DUCHAMP
T., PopoviC Z.: A multiresolution framework for dy-
namic deformations. In Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (New
York, NY, USA, 2002), SCA 02, ACM, pp. 41-47. 1

[DFKP0O5] DE FLORIANI L., KOBBELT L., PUPPO E.: A sur-
vey on data structures for level-of-detail models. In Advances
in Multiresolution for Geometric Modelling, Dodgson N. A,
Floater M. S., Sabin M. A., (Eds.), Mathematics and Visualiza-
tion. Springer Berlin Heidelberg, 2005, pp. 49-74. 2

[DFMO02] DE FLORIANI L., MAGILLO P.: Multi-resolution mesh
representation: Models and data structures. In Tutorials on Mul-
tiresolution in Geometric Modelling, Floater M. S., Iske A., Quak
E., (Eds.), Mathematics and Visualization. Springer Berlin Hei-
delberg, 2002, pp. 363-417. 2

[DFPP97] DE FLORIANI L., PuprPO E., PAOLA M.: A formal
approach to multiresolution hypersurface modeling. In Geomet-
ric Modeling: Theory and Practice, R. Klein R., Straer W., Rau
R., (Eds.), Focus on Computer Graphics. Springer Berlin Heidel-
berg, 1997, pp. 302-323. 2

[DFPP99] DE FLORIANI L., PAOLA M., PUPPO E.: Multireso-
lution representation of shapes based on cell complexes. In Pro-
ceedings of the Sth conference on Discrete Geometry for Com-
puter Imagery (1999), DGCI °99, Springer Berlin Heidelberg,
pp.- 3-18. 2

[DFS05] DODGSON N. A., FLOATER M. S., SABIN M. A.: Ad-
vances in multiresolution for geometric modelling. Mathematics
and visualization. Springer-Verlag Berlin Heidelberg, 2005. 1

[Edm60] EDMONDS J. R.: A combinatorial representation for
polyhedral surfaces. In Notices of the American Mathematical
Society (1960), vol. 7. 3

[JKC12] JUND T., KRAEMER P., CAZIER D.: A unified structure
for crowd simulation. Comput. Animat. Virtual Worlds 23, 3-4
(May 2012), 311-320. 11

[KCB09] KRAEMER P., CAZIER D., BECHMANN D.: Extension
of half-edges for the representation of multiresolution subdivi-
sion surfaces. The Visual Computer 25, 2 (2009), 149-163. 2, 3,
11

[Lie91] LIENHARDT P.: Topological models for boundary rep-
resentation: a comparison with n-dimensional generalized maps.
Computer-Aided Design 23, 1 (1991), 59-82. 3

[LS00] LEE M., SAMET H.: Navigating through triangle meshes
implemented as linear quadtrees. ACM Trans. Graph. 19, 2 (Apr.
2000), 79-121. 2

[LT97] LoOPES H., TAVARES G.: Structural operators for model-
ing 3-manifolds. In Proceedings of the fourth ACM symposium

submitted to COMPUTER GRAPHICS Forum (3/2016).

L. Untereiner & P. Kraemer & D. Cazier & D. Bechmann / Compact Primal Hierarchy

on Solid modeling and applications (New York, NY, USA, 1997),
SMA 97, ACM, pp. 10-18. 3

[PP11] PANOzzO D., PuppO E.: Implicit hierarchical quad-
dominant meshes. Computer Graphics Forum 30, 6 (2011),
1617-1629. 2,3

[Sam90] SAMET H.: The Design and Analysis of Spatial Data
Structures, vol. 50255 of Addison-Wesley Series in Computer Sci-
ence. Addison-Wesley Publishing Company, 1990. 2

[SLO3] StAMIJ., Loopr C.: Quad/triangle subdivision. Computer
Graphics Forum 22, 1 (2003), 79-85. 2

[UCB13] UNTEREINER L., CAZIER D., BECHMANN D.:
n-dimensional multiresolution representation of subdivision
meshes with arbitrary topology. Graphical Models 75, 5 (2013),
231-246. 2,3, 11

[Wei85] WEILER K.: Edge-based data structures for solid mod-
eling in curved-surface environments. Computer Graphics and
Applications, IEEE 5, 1 (1985), 21-40. 3

submitted to COMPUTER GRAPHICS Forum (3/2016).

13

