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Abstract
Due to the recent advancement of computer graphics hardware and software algorithms, deformable characters
have become more and more popular in real-time applications such as computer games. While there are mature
techniques to generate primary deformation from skeletal movement, simulating realistic and stable secondary
deformation such as jiggling of fats remains challenging. On one hand, traditional volumetric approaches such
as the finite element method require higher computational cost and are infeasible for limited hardware such as
game consoles. On the other hand, while shape matching based simulations can produce plausible deformation in
real-time, they suffer from a stiffness problem in which particles either show unrealistic deformation due to high
gains, or cannot catch up with the body movement. In this paper, we propose a unified multi-layer lattice model
to simulate the primary and secondary deformation of skeleton-driven characters. The core idea is to voxelize the
input character mesh into multiple anatomical layers including the bone, muscle, fat and skin. Primary deforma-
tion is applied on the bone voxels with lattice-based skinning. The movement of these voxels is propagated to other
voxel layers using lattice shape matching simulation, creating a natural secondary deformation. Our multi-layer
lattice framework can produce simulation quality comparable to those from other volumetric approaches with a
significantly smaller computational cost. It is best to be applied in real-time applications such as console games
or interactive animation creation.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

1. Introduction

Simulating the movement of deformable characters has be-
come a popular research topic in the past decade due to
the increasing demand from the computer animation and
games industries. With the advancement of computer graph-
ics hardware, it becomes possible to simulate high quality
character movement with realistic dynamic deformation.

Early research focused on simulating deformation based
on the primary movement of the characters, which is the ac-
tive movement produced by body parts. A popular approach
known asskinningis used to map surface vertices onto the
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underlying skeleton structure. Given a skeletal movement,
the deformation of the skin can be analytically calculated.
However, skinning cannot generate involuntary secondary
deformation such as jiggling of fat resulted from the pri-
mary movement. Considering the walking movement of a
fat character as an example, without secondary deformation,
the tummy would hang around the pelvis solidly as if it is
made of hard muscle. With the raising expectation from the
industry, secondary deformation has become an important
research topic.

Simulating secondary deformation is a challenging prob-
lem. On one hand, while traditional volumetric simulation
methods such as the finite element model can generate accu-
rate dynamic deformation, the simulation stability depends
on small time steps and therefore relatively higher computa-
tional cost. On the other hand, whileshape matchingbased
methods such as lattice shape matching can produce plausi-
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ble deformation in real-time, they are originally designed to
simulate passive deformation due to external forces and col-
lisions. Recent attempts to utilize shape matching algorithms
for active character simulation produce unsatisfying results.
The major problem is that if the particles representing the
character are too stiff, simulation artifacts occur due to the
use of high gains in a dynamics system. Oppositely, if they
are too soft, the particles cannot catch up with the primary
movement, resulting in cloth-like muscles. In general, it is
not feasible to find a single stiffness value that can produce
different range and speed of movement.

In this paper, we propose a new multi-layer lattice model
to simulate high quality primary and secondary deformation
in real-time. Our system first voxelizes the input character
mesh into multiple anatomical layers, including the bone,
muscle, fat and skin. It then performs primary deformation
on the voxels belonging to the bone layer usinglattice-based
skinning. The movement of the bone voxels is propagated
to the other layers underlattice shape matchingsimula-
tion, generating realistic secondary deformation. Here, we
use different stiffness and damping parameters for the mus-
cle, fat and skin layer to generate the appropriate deforma-
tion behaviour. We also design a set of position-based con-
straints to ensure simulation quality. Since our multi-layer
framework can better approximate the dynamics of real-life
human body, it creates better quality secondary deformation.

Experimental results demonstrate that our framework can
simulate realistic character movement from high dynamic
captured motion, as shown in Figure1. Since lattice shape
matching is unconditionally stable, our framework can be
applied for noisy motion captured from the Microsoft Kinect
during run-time. Comparing to existing researches focus-
ing on real-time simulation, our method produce deforma-
tion simulations of significantly higher quality thanks to the
mutli-layer model.

Figure 1: Dynamic character deformation simulated by our
method with captured motion: (a) bunny (b) Smurf (c) bloat.

1.1. Contributions

In this paper, we present two major contributions:

• We propose a new real-time volumetric framework for dy-
namic character deformation, in which we produce pri-
mary and secondary deformation with different subsets

of voxels. Voxels of simulated secondary deformation are
driven by those of analytically calculated primary defor-
mation, resulting in a robust dynamic system.

• We propose a new multi-layer model for lattice shape
matching simulation, which allows us to adjust the sim-
ulation parameters for each anatomical layer indepen-
dently. The model better approximates real-life body
structure, and therefore produces higher quality secondary
deformation.

2. Related work

In this section, we review works that are related to this re-
search. We first discuss about dynamics simulation for pas-
sive objects. Since character movement requires both active
and passive movement, we explain the algorithms for pri-
mary and secondary deformation respectively. Finally, we
review multi-layer systems in the scope of character defor-
mation, and point out how they can improve simulation qual-
ity.

2.1. Position-based Dynamics Simulation

Traditional dynamics simulation is force-based, in which the
position of an object is calculated by internal and external
forces using Newton’s second law of motion [NMKC05].
A major problem is that in computer graphics, many appli-
cations require direct manipulation of positions.Position-
based dynamicsis proposed to avoid overshooting and en-
ergy gain problems due to the time-integration of force-
based systems, and thereby improving the simulation stabil-
ity [MHHR07]. With position-based dynamics, it becomes
feasible to simulate deformable objects by representing them
with volume-based particles known as voxels [MMCK14].
Different constraints are implemented to simulate complex
dynamic systems involving strain [MCKM14] and bend-
ing/twisting of elastic rods [USS14]. In this paper, we de-
velop position-based constraints to produce stable and plau-
sible simulation.

Oriented particles apply position-based dynamics to par-
ticles with respective orientations [MC11b]. The major ad-
vantages of oriented particles over traditional voxel-based
simulation is that realistic simulation can be performed us-
ing only the particles sampled on the surface of the object,
thereby enhancing computation speed. This approach is par-
ticular suitable for simulating thin layer such as hair and
clothes [MC11a]. However, if the object is consist of mul-
tiple layers of materials like human body, multiple layers
of particles are required. This deflects the purpose and the
advantage of using only a small number of particles. To re-
lieve the problem, displacement functions are proposed to
indicate the attenuation of deformation resulted from the
oriented particles, describing how skeleton deforms mus-
cle [FGBP11]. Still, setting up such functions for a multi-
layer system is complex and non-trivial. In this work, we
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explicitly classify voxels into different layers, enabling an
intuitive design process and a simple simulation framework
with improved performance.

Shape matching approaches simulate deformable ob-
ject by moving the voxels towards their respective pre-
dicted positions in the next time step using positional-based
constraints [MHTG05]. Extending this idea, lattice shape
matching is proposed [RJ07, SOG08]. The idea is to group
voxels called lattice into overlapping blocks. When the posi-
tion of one voxel is changed, the movement affects the whole
block, which subsequently affects the overlapping neighbour
blocks. Rigidity of an object can thus be adjusted by deter-
mining the block size and hence the level of overlapping. In
this paper, we propose a customize lattice shape matching
algorithm that considers multiple voxel layers of an actively
moving character.

2.2. Dynamic Character Deformation

The fundamental difficulty of simulating dynamic character
deformation is that there are both active and passive compo-
nents in the movement. Active movement such as a walking
motion is known as primary movement, while uncontrolled
passive movement such as jiggling of fat is known as sec-
ondary movement. Here, we review related researches in the
scope of skeleton driven character movement.

The process to simulate primary movement is commonly
known as skinning. In mesh-based approach, the positions
of the surface vertices are expressed as a weighted sum
of skeleton effectors with a set of automatically or semi-
automatically calculated weight [JBK∗12]. To enhance the
visual quality of the deformation, energy functions are de-
signed to better estimate the skinning weight [KS12]. For
character mesh with complex topology, it is proposed to vox-
elize the mesh and represent the skinning weight with bone
to skin distance calculated by Dijkstra’s algorithm [DdL13].
We adapt [DdL13] to perform primary deformation as it is
compatible with other voxel-based deformation algorithms.
However, we only apply primary deformation on the inner-
most layer of voxels in our multi-layer framework.

Secondary movement requires dynamics simulation as
it is driven by physical constraints. Rig-space is proposed
as a subspace for deformations, and finite element dis-
cretization is applied to calculate the dynamic deformation
[HMT∗12, HTC∗13]. With some manually created samples
of physical behaviour, simulate quality can be further en-
hanced [SZT∗08]. The major disadvantage of these methods
is that surface mesh instead of voxels is used to approximate
the volume of the character. It is difficult to design multi-
ple layers of meshes such as muscle and fat, as well as to
simulate the interaction between them.

As a solution, volumtric methods are proposed. Skeleton
driven musculoskeletal system can be simulated with body-
centered cubic tetrahedral lattice [TSB∗05] or Eulerian Tis-

sue [FLP14], which represents the muscle geometry. By con-
sidering the interaction between the skin geometry and the
environment, it is possible to alter the primary movement
when there is an external force of impact [LYWG13]. Since
many computer graphics application are driven by positional
constraints, position-based dynamics is used to create sta-
ble and robust simulations [RF14]. Voxel representation can
be applied to improve solver performance and memory effi-
ciency in soft tissue deformation [MZS∗11].

The common bottleneck of finite element method based
approaches is the computational complexity. Methods such
as [TSB∗05,FLP14,LYWG13, MZS∗11] are too compu-
tational costly for limited hardware system such as game
console in real-time applications. Recent advancement in
the field allows real-time performance using reduced de-
formable body models, linear-time skeleton dynamics and
explicit integration [KP11]. However, as a force-based
framework, the size of the time step affects the simulation
stability, and small time steps dramatically increase the com-
putational cost. We prefer shape matching based approaches
that are unconditionally stable for any size of time step. An-
other advantage of our proposed framework is that it requires
only a few easy-to-tune parameters, and hence local minima
can easily be avoided when optimizing the parameters.

Chen et al. conduct secondary deformation using lattice
shape matching [CTLL13]. While the system is fast and sta-
ble, the create results show minimal secondary movement.
Similarly, in the infant model with rigid skeleton experiment
of [RJ07], secondary movement cannot be effectively pro-
duced, and the character is rigid unless the user applies ex-
ternal forces. These are because of the rigidity design of the
lattice shape matching framework. High rigidity is needed in
order to drive character movement from the skeleton, which
creates minimal secondary movement. If the rigidity is low-
ered, the lattices cannot catch up with the skeleton and result
in cloth like muscle. In this paper, we propose a multi-layer
framework with different rigidity for each layer to solve the
problem.

2.3. Multi-layer System

The idea of using multi-layer system in character anima-
tion has been proposed to enhance the quality of primary
movement. By representing the major muscles of the hu-
man body as an inner layer, the outer layer skin deformation
is more realistic as anatomic deformation involving muscle
movement is included [PCLS05]. By analyzing the anatomy
structure of a character, it becomes possible to transfer the
underlying skeletal structure from one character to another,
thereby achieving automatic skinning [AHLG∗13]. Accu-
rate anatomical volume model can be obatined by 3D MRI
scans, such that volume deformation can be simulated with
the actual skeletal structure [RLNN11].

Multi-layer algorithms can also be used to simulate sec-
ondary movement. By introducing automatically generated

c© 2015 The Author(s)
Computer Graphics Forumc© 2015 The Eurographics Association and John Wiley & Sons Ltd.

101



N. Iwamoto, H. P. H. Shum, L. Yang & S. Morishima / Multi-layer Lattice Model for Real-Time Dynamic Character Deformation

inner layers into a mesh object, collisions handling and vol-
ume preservation can be improved [DB13]. In order to simu-
late realistic muscle behaviour, it is proposed to model mus-
cle with Non Uniform Rational B-Spline (NURBS) surface
generator, and apply spring equations to simulate muscle jig-
gling and skin tension [MH07]. Combining simulation with
manually created blend shape, muscle simulation speed can
be enhanced [MH07]. In [AS07], manually created anatomic
tissue layer known as vortex deformers is proposed. The
layer can model the dynamics of incompressible anatomic
material, and is designed alongside with the skeleton hierar-
chy. Despite of the simulation quality enhancement in these
research, it is inefficient to define volumetric layers under
a mesh-based framework. Furthermore, the simulation qual-
ity depends heavily on the mesh topology and structure. We
propose an efficient multi-layer system under a volumetric
framework, and apply lattice shape matching to simulate
secondary movement in real-time.

3. Method Overview

The overview of our system is shown in Figure2. The sys-
tem takes the mesh of a character and a skeletal motion as
the input. Unlike traditional voxelization processes, our sys-
tem voxelize the mesh into multiple anatomical layers (Sec-
tion 4). The bone layer is used for primary deformation with
respect to the input motion (Section5). The rest of the lay-
ers are fed into the secondary deformation system using dif-
ferent simulation parameters (Section6). During secondary
deformation, we first apply lattice shape matching with the
result from primary deformation, such that the voxels from
the bone layer drive the movement of those from other layers
(Section6.1). Then, we design a set of position-based con-
straints to ensure the quality of the simulated results (Section
6.2).

4. Multi-Layer Voxelization

There are multiple anatomical tissue layers in human be-
ings and animals, which behave differently during active
movement. Given the same motion sequences, two charac-
ters with the same appearances but different proportion of
tissue layer should deform differently. For instance, a char-
acter with more fat produces more soft body effects such as
jiggling. This observation leads us to a multiple layer lat-
tice model that enhances simulation quality by treating each
tissue layer differently based on their physical features.

We first voxelize the mesh into a set of voxels, and then
classify them into different anatomical layers. Notice that
while we define four layers in this work, the proposed frame-
work can handle any number of layers depending on the an-
imator’s needs, as long as the innermost bone layer is avail-
able.

We combine the use of both conservative voxelization and
solid voxelization [SS10] in order to generate a voxelized

model that can produce stable simulation. We first apply con-
servative voxelization that includes all voxels overlapping or
touching the input mesh. We then apply solid voxelization
to include extra voxels for constructing a watertight voxel
model. This allows us to create an inclusive (i.e. by including
voxels either overlap or touch the character mesh) and wa-
tertight voxel model of the character. Figure3 shows some
examples of voxelized characters used in this paper.

Figure 3: Voxelization of (a) bunny (b) Smurf (c) bloat.

Once the voxel model of a character is generated, we clas-
sify the voxels into multiple layers using a semi-automatic
procedure with the following three steps: (1) Taking the rest
pose and the corresponding skeletal structure as the input,
the bone layer is defined as the set of voxels that are located
within a user-specified distance from the skeletal structure.
Here, we use Manhattan distance as it considers the voxel
connectivity structure. (2) The skin layer is defined as a wa-
tertight layer at the surface of the voxelized model with the
thickness of one voxel. This layer is useful to maintain sur-
face tension, thereby preserving the fine surface details such
as facial elements of a character during simulation. (3) For
the rest of the voxel, we classify them into the muscle and fat
layer based on a user-defined ratio, with voxels closer to the
bone belonging to the muscle, and those closer to the skin
belonging to the fat. By adjusting the ratio of these two lay-
ers, we can generate different deformation behaviours. Fig-
ure 4 shows the result of voxel classification for the bunny
character.

Figure 4: Our proposed multi-layer structure with bone
(white), muscle (red), fat (green) and skin (pink) layers.
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Figure 2: The overview of our real-time dynamic character deformation framework.

In our system, the animator provides the parameters re-
quired for layer classification, including the bone width and
the muscle to fat ratio. The animator can define such param-
eters in a body part level, such that the different part of the
character can behave differently during the simulation. For
example, the stomach of the bunny character should contain
more fat than its arm.

5. Primary Deformation

We implement primary deformation with lattice-based skin-
ning, which is a skinning method based on lattice voxels
rather than traditional triangle mesh. We follow [DdL13] as
it can efficiently estimate skinning weight using voxel con-
nectivity. Here, we outline the algorithm in [DdL13] and
point out the differences in our implementation.

5.1. Skinning Weight Computation

The first step of primary deformation is to calculate the skin-
ning weight of the voxels, which describes in what extend
the movement of the skeletal structure affects the voxels.
Unlike [DdL13], primary deformation is only applied in the
bone layer in this work.

We take the voxelized model in a rest-pose and its corre-
sponding skeletal structure as the input. Given a bone from
the skeletal structureb and a bone layer voxeli. We define
db−i as the Manhattan distance between voxeli and the near-
est voxel that touches the boneb, which is calculated by Di-
jkstra’s algorithm. Since we only apply primary deformation
in the innermost layer of the character body, we do not need
to evaluate the distance between a surface voxel to the char-
acter’s mesh skin as in [DdL13].

The influence weight from the boneb to the voxeli is
calculated as:

wb−i =

[

1
(1−α)(db−i

′)+α(db−i
′)2

]2

(1)

db−i
′ = db−i + ε (2)

whereε is a small value to avoid zero being used as denom-
inator, α ∈ [0,1] is a hand-tuned constant to adjust the at-
tenuation of the distance influence. It is set as 0.5 for all
experiments in our system.

We prefer Manhattan distance [DdL13] to Euclidean dis-
tance [CTLL13]. This is because two geometrically near
voxels are not necessarily near through tissue connection.
Euclidean-based skinning weight is therefore not accurate in
areas of complex structure, such as the underarms of a char-
acter.

5.2. Lattice-based Skinning

The second step of primary deformation is to apply the cal-
culated skin weight for repositioning voxels based on the
movement of the skeletal structure. Because of the use of
Lattice-based Manhattan distance, this process is known as
Lattice-based skinning.

The deformed position of a voxeli is calculated as a
weighted sum of bone transformations:

pi = (
btotal

∑
b=1

wb−iTb)p
0
i (3)

wherebtotal is the total number of bone,Tb is the transfor-
mation matrix of the boneb,p0

i is the position of the voxel in
the rest pose,wb−i is calculated in Equation1. We normal-
ize the weightwb−i such that the sum of weight influenced
from the bones is 1.0.

An example of the skinning result is shown in Figure5.
Notice that since the process is only applied for bone layer
voxels, the process is efficient. Also, while it is possible
to enforce straight bones by customizing the weight func-
tion, we deliberately allow bendable bones using traditional
lattice-based skinning. This is because under our multi-layer
lattice framework, the bones are used to drive the move-
ment of outer layer voxels with secondary deformation. If
straight bones are used, the acute angles formed between
bones would decrease the simulation quality of the voxels
around. We found that bendable bones ease the problem and
produce better results.
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Figure 5: Visualization of lattice-based skinning applied on
the bone layer only.

6. Secondary Deformation

In this section, we explain how we simulate the secondary
deformation of the character using position-based dynam-
ics [MHHR07] that is unconditionally stable. This involves
a customized lattice shape matching algorithm to drive the
muscle, fat and skin based on the movement of the bone vox-
els, as well as a set of positional-based constraints to ensure
simulation quality.

Algorithm 1 Position-updating procedure
1: for eachvoxel i in muscle, fat and skin layersdo
2: p̂t+h

i ← pt
i +hvt

i // Predict the next position
3: end for
4: for n:1 to ntotal do
5: SatisfyStretchConstraints(p̂t+h)
6: SatisfyVolumeConstraints(p̂t+h)
7: LatticeShapeMatching(p̂t+h)
8: end for
9: for eachvotex i in muscle, fat and skin layersdo

10: pt+h
i ← p̂t+h

i // Update position

11: vt+h
i ←

pt+h
i −pt

i
h // Update velocity

12: vt+h
i ← kdvt+h

i // Damp velocity
13: end for

The simulation framework considers the muscle, fat and
skin layers and involves three major parts as shown in Al-
gorithm 1. The first part (line 1 to 3) obtains the predicted
voxel positions in the next time step̂pt+h

i based on the cur-
rent positionpt

i , velocityvt
i and the time-steph. The second

part (line 4 to 8) is to repeatedly apply lattice shape match-
ing and constraints, such that the predicted voxel positions
can satisfy all required criteria. The final part (line 9 to 13)
is to calculate the positionpt+h

i and velocityvt+h
i of the

next time-step, which involves damping the velocity using
a damping parameterkd. In our system,kd is hand-tuned for
each simulation layer.

While traditional systems such as [MHHR07] solve the
lattice shape matching and constraints multiple times (ntotal
in line 4), we find that solving the system once (i.e.ntotal =
1) creates results of reasonable quality with minimal com-
putational cost. A useful strategy here is to place the lattice
shape matching after the constraints such that the movement

Figure 6: The bone voxels driving the movement of other
voxels under lattice shape matching.

generated is not overridden, while the constraints are to be
maintained in the next iteration.

In the following, we explain the process of lattice shape
matching and constraints satisfaction in more details.

6.1. Lattice Shape Matching

Here, we explain our customized lattice shape matching
(LSM) model to drive voxels to their target position based
on the movement of the bone voxels. LSM is used as it is sta-
ble and computationally efficient, making it suitable for real-
time simulation. Our LSM method is based on [RJ07], but
it is designed to work under our multi-layer lattice model.
Here, we consider each voxel as one lattice in the LSM
model.

The idea of LSM is to group voxels into a number of
overlapping lattice regions, and apply shape matching to es-
timate the overall region movement whenever the position of
its voxels is changed. Since the regions are overlapping, the
movement of one region propagates to other regions. Figure
6 shows an example, in which we group every 3×3 voxels
into a lattice region, resulting in four overlapping regions.
The movement of the grey voxel lead to the movement of
its corresponding region, and the positions of the rest of the
voxels in the region are affected. Since the regions are over-
lapping, the position change propagates to all the blue vox-
els.

Considering a voxeli belonging to a lattice regionRi with
a manually set region widthdr , the goal position of voxeli
is calculated as:

gi =
1
|Ri |

(

∑
r∈Ri

Tr

)

p0
i , (4)

where|Ri | indicates the number of voxels inside the region,
Tr represents the transformation of voxelr in Ri , p0

i is the
rest position of voxeli. In most cases,|Ri | = dr × dr × dr ,
except for regions that are close to the characters surface.
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With the goal position calculated, we define the position
correction function as:

∆pi = ks(gi −pi) (5)

whereks is the stiffness parameter. In our system,ks is hand-
tuned for each simulation layer. We calculate the goal posi-
tions and correct the positions of all simulating voxels based
on their corresponding stiffness.

Comparing with the original work [RJ07], our customized
approach has two major differences to fit into the multi-layer
framework. First, the voxels of the bone layer are included in
the LSM model, but their positions are not updated. Instead,
their positions are calculated directly from the primary de-
formation as explained in Section5. The movement of bone
voxels is then propagated to other layers because of the over-
lapping lattice regions under the LSM model. Second, vox-
els of different simulation layers (including muscle, fat and
skin) have different stiffness parameters,ks. This allows us
to control the deformation behaviour of different layers.

6.2. Constraints

In this section, we explain the stretch constraint and the vol-
ume preservation constraint in our system.

Before going into the details of the constraint definition,
we explain the constrain solver we adapt from [MHHR07].
The solver allows us to calculate the position update∆pi of
a voxel i in order to satisfy a constraint, which is therefore
known as a correction function:

∆pi =−wi
C(p)

∑ j wj |∇p jC(p)|2
∇piC(p) (6)

in which the three inputs of the equation are: (1) the con-
straint equationC(p), (2) its derivative∇piC(p), and (3) the
weight of the voxelw. The input of the constraint and its
derivative can be the position of one or more voxels, depend-
ing on the constraint definition.

6.2.1. Stretch Constraint

The stretch constraint is implemented as maintaining the dis-
tance between a voxel with its neighbours. In other words, it
is implemented as a set of distance constraints.

In previous works, stretch constraints have been imple-
mented by considering the 6 adjacent neighbours that share
a face with the voxel [DBB11]. However, we found that
such an implementation leads to under-constraint voxels in
thin body parts as there are not enough voxels with shared
faces, such as the ears of a bunny character and the arms of
a Smurf character. To solve the problem, we consider a set
of 20 neighbours that share either a face or a corner with the
voxel.

We follow [MHHR07] to implement the distance con-
straint. The constraint between the positions of two voxels

pi andp j is defined as:

C(pi ,p j ) =
∣

∣pi −p j
∣

∣−d0
i− j (7)

whered0
i− j is a constant value representing the length be-

tween the voxels in the rest pose. The derivatives of the con-
straint are:

∇piC(pi ,p j ) =
pi −p j

|pi −p j |

∇p jC(pi ,p j ) =−
pi −p j

|pi −p j |
(8)

The weightw is set as the inverse of voxel mass, which is
1.0 in our system. Therefore,wi = wj = 1.

Substituting the constraint, the derivative of the constraint
and the weight to Equation6 gives us the correction func-
tion:

∆pi =−
wi

wi +wj
(|pi −p j |−d0

i− j )
pi −p j

|pi −p j |

∆p j =+
wi

wi +wj
(|pi −p j |−d0

i− j )
pi −p j

|pi −p j |
(9)

For each voxel, we apply Equation8 on its 20 neighbours.
The final position correction is the mean value calculated
from all neighbours.

6.2.2. Volume Preservation Constraint

In order to preserve the volume of the character, we design
the volume preservation constraint to maintain the volume
of the voxels. While Rumman et al. have proposed a vol-
ume constraint based on the tetrahedral structure [RF14], it
cannot be applied to voxel based simulation directly as vox-
els have a cubic structure. Here, we design a new voxel-
based constraint to implement volume preservation under
the framework proposed in [RF14].

Figure 7: Volume constraint of a voxel.

For each voxeli, we calculate six voxel surface pointspx+
i ,

px−
i , py+

i , py−

i , pz+
i , pz−

i by evaluating the mean distance
betweenpi and the positions of the six adjacent voxels, as
shown in Figure7.

The volume constraint of a voxelpi is calculated as its
current volume subtracted by its initial volume:

C(pi) =V(pi)−v0
i (10)

wherev0
i is the volume of the voxeli in the rest pose of the
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character,V(pi) is the volume of the voxeli at the current
frame, which is calculated using the surface points [TK11]:

V(pi) = px+
i ·
(

py+

i ×pz+
i

)

+px+
i ·
(

py−

i ×pz−
i

)

+px+
i ·
(

py+

i ×pz−
i

)

+px−
i ·

(

py−

i ×pz+
i

)

+pz+
i ·
(

py+

i ×px−
i

)

+pz+
i ·
(

py−

i ×px+
i

)

+pz−
i ·

(

py+

i ×px+
i

)

+pz−
i ·

(

py−

i ×px−
i

)

(11)

The derivatives of the volume constraint in all directions
are calculated as:

∇
pz−

i
C(pi) =−px+

i ×py−

i −px−
i ×py+

i +py+

i ×px+
i +py−

i ×px−
i

∇
pz+

i
C(pi) =−px+

i ×py+

i −px−
i ×py−

i +py+

i ×px−
i +py−

i ×px+
i

∇
py−

i

C(pi) = px+
i ×pz−

i +px−
i ×pz+

i +pz+
i ×px+

i +pz−
i ×px−

i

∇
py+

i
C(pi) = px+

i ×pz+
i +px−

i ×pz−
i +pz+

i ×px−
i +pz−

i ×px+
i

∇
px−

i
C(pi) = py+

i ×pz−
i +py−

i ×pz+
i −pz+

i ×py+

i −pz−
i ×py−

i

∇px+
i

C(pi) =−∇pz−
i

C(pi)−∇pz+
i

C(pi)−∇py−
i

C(pi)

−∇
py+

i
C(pi)−∇px−

i
C(pi) (12)

The weightwi , which is also known as the lattice volume
correction scale, is calculated as

wi = 1−
di−skin

dmax−skin
(13)

wheredi−skin is the Manhattan distance from voxeli to the
closest skin voxel,dmax−skin is the longest distance from any
voxel to the closest skin voxel. The weight is therefore larger
for voxels closer to the skin, allowing us to maintain surface
shapes better.

We finally substitute the constraint, its derivatives, as well
as the weight to Equation6 to generate the correction func-
tion. This is performed in the software implementation and
the results follow.

7. Experimental Results

In this section, we evaluate our system and compare the sim-
ulation quality with other systems. All experiments were
conducted using a desktop computer with a 3.4 GHz In-
tel Core i7-3770 CPU, 8GB RAM and a GeForce GTX
560 Ti graphic card. The character meshes we used were
obtained from the Blender foundation and the website
http://tf3dm.com/.

7.1. Character Simulation

We demonstrate our system with three character models in-
cluding the Smurf, the bunny and the bloat, as shown in

Table 1: Simulation Details

Model Res. Voxels dddrrr mmmsss
Bunny 32 3,671 3 19.47
Smurf 64 4,312 3 36.36
Bloat 32 4,798 3 32.45

Bloat (Low Res.) 16 922 2 5.47

Figure 8: The computational cost of individual process.

Figure 1. The character meshes are voxelized based on a
pre-defined resolution that is fine enough to represent the
mesh details. For each simulation, the voxelization resolu-
tion, number of voxels, lattice region widthdr (as explained
in Section6.1) and the frame time inms excluding mesh
drawing are shown in Table1. Except the Smurf that requires
a higher voxel resolution to capture the thin arms, our sys-
tem runs faster than real-time (33msper frame). The average
ratio of the computational cost for each process is shown in
Figure8.

We also show that it is easy to balance the trade-off be-
tween computational speed and simulation quality by adjust-
ing the voxelization resolution of the bloat as shown in the
last two rows of Table1. Figure9 shows the simulated result.
Notice that if the value is too low, the voxels cannot represent
the fine details of the mesh, and therefore deformation qual-
ity is reduced. Extremely low resolution should be avoided,
as the system may group different body parts into the same
voxel.

Table 2: Stiffness and Damping Parameters

Model kmus
s kf at

s kskin
s kmus

d kf at
d kskin

d
Bunny 1.8 0.5 1.7 0.6 0.5 0.4
Smurf 3.2 1.2 2.8 0.4 0.5 0.7
Bloat 3.3 0.7 3.0 0.7 0.5 0.6
Bloat 1.9 0.9 1.3 0.6 0.4 0.3

(Low Res.)

Table2 shows the stiffnessks in Equation5 and the damp-
ing kd in Algorithm 1 we used for the muscle, fat and skin
layers. Tuning the values for each layer is efficient, as there
exists a wide range of usable values. Our principle forks is
that kmus

s > kskin
s >> kf at

s , andkd is similar for all layers.
Then, we adjust individual values to obtain a movement be-
haviour that is suitable for the character, like the bunny hav-
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Figure 9: Comparison between (a) low resolution simula-
tion, and (b) normal simulation.

Figure 10: Visualization of voxels belonging to different lay-
ers, including (a) bone, (b) muscle, (c) fat, (d) skin.

ing a softer body than the Smurf in general. Higher voxel
resolution tends to require largerks andkd, such that we can
maintain rigidity across more voxels.

We visualize the voxels allocated for different layers of
the bunny character in Figure10. Notice that the arms are
mostly made of muscle voxels while the tummy has more
fat voxels. As a result, during the simulation, the arms are
more rigid while the tummy is softer.

We provide a user interface to interact with the simula-
tion by pulling the character with a small amount of force,
as shown in Figure11. We also allow the user to control the
character movement using the motion captured by Kinect in
real-time, as shown in Figure12. Even with the noisy, unfil-
tered input captured by Kinect, we can produce high quality
real-time deformation thanks to the robust simulation.

7.2. Comparisons

Here, we compare our system with other papers and setups
to evaluate its performance.

We compare our system with a baseline system with no
secondary deformation [DdL13], as shown in Figure13. As
expected, due to the lack of dynamic simulations, [DdL13]
cannot simulate jiggling of soft body parts such as the ears
and the tummy of the bunny character.

We also compare with [CTLL13] as shown in Figure14.
Due to the lack of multi-layer system, we use the stiffness
of muscle for all voxels. As shown in Figure14a, since
[CTLL13] does not have a stretch constraint, the voxels can-

Figure 11: Run-time user interaction by mouse dragging.

Figure 12: Real-time simulation using motion from Kinect.

not catch up with the body movement. We increase the vox-
els gains such that they can keep up with the movement as
shown in Figure14c. However, due to the use of large gains
in a dynamics system, the system becomes unstable and vox-
els are overshot.

In general, without the mutli-layer framework, we found
that it is difficult to find a stiffness value that can produce
high quality simulation for all the dancing movements. This
is because without the anatomical information of the body
structure, the simulation engine cannot approximate real-life
dynamics accurately.

The skin layer is important in maintaining surface tension.
As shown in Figure15, with only the bone, muscle and fat
layers, the surface of the character is over-deformed during
high dynamic movement, resulting in distorted facial ele-
ments. The surface tension provided by the skin layer also
helps maintaining shapes of thin body parts such as the ears
of the bunny character.

8. Conclusion and Discussions

In this paper, we present a new real-time framework for
simulating dynamic character deformation. We introduce a
novel multi-layer voxel model, and apply position-based dy-
namics to create high quality and robust results. In our sys-
tem, we apply primary deformation to the voxels belonging
to the bone layer. During secondary deformation, the move-
ment of the bone layer is propagated to the muscle, fat and
skin layers using lattice shape matching and a set of position-
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Figure 13: Comparison between (a) [DdL13] and (b) our
method.

Figure 14: Comparison between (a) [CTLL13] with nor-
mal stiffness and (b) our method, as well as between (c)
[CTLL13] with higher stiffness and (d) our method.

based constraints. We demonstrate higher quality character
deformation comparing to existing real-time algorithms in
the field.

We approximate the anatomical structure of a character
using separated tissue layers. However, for real-life animals,
the muscle and fat are not separable. It is possible to enhance
our system by introducing the voxels that are made of both
muscle and fat, in which the stiffness and damping are inter-
polated based on the muscle-fat proportion. This, however,
will increase the character design complexity, and we opt for
a simpler representation.

Currently, the thickness of different anatomical layers is
either procedurally or manually defined. It is possible to ob-
tain more realistic information such as the bone width by
analyzing real-life animals with magnetic resonance imag-
ing (MRI) as shown in [RLNN11,FLP14]. One potential ap-

Figure 15: Comparison between (a) our method without the
skin layer and (b) our method.

plication is to generate virtual characters by obtaining the
anatomical information of real humans. The body deforma-
tion will therefore be realistic, and it can serve as an alterna-
tive method for performance animation.

As in real-life, our system drives the character body with
bone movement. Therefore, a more realistic bone structure
can enhance the simulation quality. In fact, the human body
has a rib cage as oppose to the simplified backbone struc-
ture commonly used in computer animation. Including such
a kind of structure can improve the accuracy of the body
movement, and is one of our future research direction.

Tuning the voxel resolution requires the user to trade-off
computational speed and deformation quality. In the future,
we would like to explore the use of adaptive volume repre-
sentation [SOG08] in our multi-layer framework, such that
body parts with finer details such as fingers can be repre-
sented with higher voxel resolution. One potential challenge
is the complexity of tuning simulation parameters such as
stiffness and damping under the adaptive multi-layer frame-
work.

We would also like to further enhance the computational
speed by implementing GPU-based solutions in the future.
Voxel operations can easily be parallelized and therefore are
highly compatible with GPU computation.
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