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Inversion Fractals and Iteration Processes in the Generation

of Aesthetic Patterns

K. Gdawiec

Institute of Computer Science, University of Silesia, Poland
kgdawiec@ux2.math.us.edu.pl

Abstract

In this paper, we generalize the idea of star-shaped set inversion fractals using iterations known from fixed point

theory. We also extend the iterations from real parameters to so-called q-system numbers and proposed the use of

switching processes. All the proposed generalizations allowed us to obtain new and diverse fractal patterns that

can be used, e.g., as textile and ceramics patterns. Moreover, we show that in the chaos game for iterated function

systems – which is similar to the inversion fractals generation algorithm – the proposed generalizations do not

give interesting results.

Keywords: inversion, fractal, iteration, aesthetic pattern, generative art

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Mathematics and Computing]:
Approximation—Wavelets and fractals, I.3.5 [Computer Graphics]: Computational geometry and object
modeling—Geometric algorithms, languages and systems, I.3.m [Computer Graphics]: Miscellaneous—

1. Introduction

Today, aesthetic patterns are widely used – for instance, they
are used in jewellery design, carpet design, as textures and
as patterns on wallpaper, etc. To obtain an interesting pat-
tern, the designer must deal with different aspects, i.e., anal-
ysis, creativity and development [WUB04]. Usually, most
of the work during the designing stage is carried out by the
designer manually, and if the pattern is to have more unre-
peatable artistic features, then the amount of work needed
is larger. Therefore, it is useful to develop methods of au-
tomatic or semi-automatic pattern generation that will make
the design process much easier.

In the literature, we can find many different methods of
aesthetic pattern generation which are based on different ap-
proaches. For instance, in [WBA08] the authors use frac-
tals based on iterated function systems (IFSs) and genetic
algorithms. Another fractal algorithm based on the filling of
space was proposed in [SB13]. An algorithm for the genera-
tion of patterns with wallpaper symmetry based on dynamics
was presented in [LYZ07], and in [OCCZ12] a method based
on the invariant mapping method was proposed. Field and
Golubitsky [FG09] used chaotic dynamics for the genera-
tion of patterns with different types of symmetries. Recently,

the attention of scientists has focused on the use of differ-
ent iteration schemes from fixed point theory in the gener-
ation of patterns. The iteration schemes have been mainly
used in the generation of fractal patterns defined in the com-
plex plane, such as the well-known Mandelbrot and Julia sets
[AA12, ARC14, RA10], and in polynomiography [GKL15]
(a method that is based on the root-finding methods of com-
plex polynomials).

In this paper, we present extensions of the star-shaped set
inversion fractals [Gda14] which are based on different it-
eration schemes taken from fixed point theory and q-system
numbers. The proposed extensions allow us to obtain new
and diverse fractal patterns, which we had not been able to
obtain previously.

The paper is organized as follows. In Sec. 2, we briefly
introduce the star-shaped set inversion fractals and the algo-
rithm to generate them. Next, in Sec. 3, some information
about different types of iterations used in fixed point the-
ory is presented. Sec. 4 is devoted to the generalization of
the star-shaped set inversion fractals. We show how to use
the iterations from Sec. 3 in inversion fractals. Moreover, we
show the way in which we can extend the iterations to use the
q-system numbers and propose a switching process. Next,
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2 K. Gdawiec / Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns

Kernel

Set

Figure 1: A star-shaped set (a concave polygon) and its ker-

nel.

in Sec. 5, we describe a colouring method used to colour
fractal patterns obtained with the help of the proposed algo-
rithm. Some examples of fractal patterns obtained with the
proposed generalizations are presented in Sec. 6. Finally, in
Sec. 7, we give some concluding remarks.

2. Star-shaped Set Inversion Fractals

The first fractals based on the inversion transformation,
namely circle inversion, were presented in [CF95, FC00]. In
2005, Leys in [Ley05] extended the idea of circle inversion
to the sphere and presented sphere inversion fractals. Later,
in 2014, Gdawiec in [Gda14] showed that we can general-
ize circle inversion to any star-shaped set. Moreover, he pre-
sented some examples of fractals obtained with star-shaped
set inversion. In this section, we briefly introduce the star-
shaped fractals presented in [Gda14].

Let us start with some basic definitions.

Definition 2.1 A set S in a metric space (R2,d), where d is
the Euclidean distance, is star-shaped if there exists a point
z∈ int S (int S means the interior of S) such that for all points
p ∈ S the line segment zp lies entirely within S. The locus of
the points z having the above property is the kernel of S and
is denoted by kerS.

An example of a star-shaped set (a concave polygon) and
its kernel (in grey) is presented in Fig. 1. Notice that every
convex set is star-shaped and its kernel is equal to the interior
of the set.

To define the star-shaped set inversion, let us assume that
we have a star-shaped set S and some point o ∈ kerS. More-
over, let us assume that we have a point p other than o for
which we want to calculate the inversion. Now, we shoot a
ray r from o in the direction p−o, i.e.,

r(t) = o+ t(p−o), (1)

where t ∈ [0,∞). Next, we find the intersection point of r

and the boundary of S and denote it by b. The considered
situation is schematically shown in Fig. 2.

Definition 2.2 Point p′ is said to be the inverse of p with

o

p

b
p′

r

Figure 2: Inversion of p with respect to a given star-shaped

set.

respect to S if it satisfies the following equation:

d(o, p) ·d(o, p
′) = [d(o,b)]2. (2)

Point o is called the centre of inversion. The transformation
that takes p and transforms it into p′ is called the star-shaped

set inversion transformation and it is denoted by IS.

At the beginning, we assumed that p 6= o. We can also
define IS for p = o. We do this in the following way: IS(o) =
∞ and IS(∞) = o. In this way, IS is defined not on R2 but
on R̂2 = R2 ∪{∞}.

To calculate IS for a given point equation (2) is compli-
cated, so we can use the algebraic formula

p
′ = IS(p)

= (xo,yo)+
[d(o,b)]2

(xp − xo)2 +(yp − yo)2
· (xp − xo,yp − yo),

(3)

where o = (xo,yo), p = (xp,yp).

To generate fractals using the star-shaped set inversion
transformation, we can use the random inversion algorithm
(Algorithm 1). When we look at the algorithm, we see that it
is similar to the chaos game algorithm used in the generation
of fractals based on IFSs [Bar88]. The first difference be-
tween these two algorithms is that we use different types of
transformations. For IFS, typically affine transformations are
used while star-shaped set inversion transformation is used
for the random inversion algorithm. The second difference is
that in the random inversion algorithm we use an additional
while loop. The function inSet(Sl , p) used in this loop re-
turns true if point p is in Sl and false otherwise. The loop is
needed to ensure that the transformation used to transform
the point is a contraction and that in two successive itera-
tions we do not transform a point with the same transforma-
tion. We need these conditions because IS is contractive only
on R̂2\S and it is an involution (i.e., IS(IS(p)) = p for all
p ∈ R̂2).

Examples of fractals generated with the use of the random
inversion algorithm are presented in Fig. 3. The left side of
the figure presents star-shaped sets with centres of inversion
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K. Gdawiec / Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns 3

Algorithm 1: The random inversion algorithm

Input: S1, . . . ,Sk – star-shaped sets with chosen centres
of inversion, p0 – starting point external to
S1, . . . ,Sk, n > 20 – number of iterations

Output: Approximation of a restricted limit set (a
star-shaped set inversion fractal)

1 j = random number from {1, . . . ,k}
2 p = IS j

(p0)

3 for i = 2 to n do

4 l = random number from {1, . . . ,k}
5 while j = l or inSet(Sl , p) do

6 l = random number from {1, . . . ,k}

7 j = l

8 p = IS j
(p)

9 if i > 20 then

10 Plot p

(a)

(b)

Figure 3: Examples of the star-shaped sets defining the

transformations (left) and corresponding inversion fractals

(right).

used to generate the fractals presented on the right side. Each
point of the fractal was coloured according to the colour of
the set used to obtain the point.

3. Iterations

In fixed point theory there exist many theorems and methods
that allow one to find fixed points of a given mapping. One

of the areas in the theory is an iterative approximation of the
fixed points. In this area, we use different kinds of iteration
processes. Let us recall some of them.

Let (X ,d) be a metric space, T : X → X be a mapping and
p0 ∈ X be a starting point.

1. The standard Picard iteration [Pic90] introduced in 1890
is defined as

pn+1 = T (pn), n ∈ N. (4)

2. The Suantai iteration [Sua05] was defined in 2005 as a
three-step iteration process with five parameters,










pn+1 = (1−αn −βn)pn +αnT (un)+βnT (vn),

un = (1−an −bn)pn +anT (vn)+bnT (pn),

vn = (1− γn)pn + γnT (pn), n ∈ N,
(5)

where αn,βn,γn,an,bn ∈ [0,1], αn+βn ∈ [0,1], an+bn ∈
[0,1] for all n ∈ N and ∑

∞
n=0(αn +βn) =∞.

3. In 2007, Agarwal et al. in [AOS07] introduced the S-
iteration,

{

pn+1 = (1−αn)T (pn)+αnT (un),

un = (1−βn)pn +βnT (pn), n ∈ N,
(6)

where αn ∈ (0,1] and βn ∈ [0,1] for all n ∈ N.
4. In 2012, Chugh et al. in [CKK12] introduced the CR it-

eration,










pn+1 = (1−αn)un +αnT (un),

un = (1−βn)T (pn)+βnT (vn),

vn = (1− γn)pn + γnT (pn), n ∈ N,

(7)

where αn,βn,γn ∈ [0,1] for all n ∈ N and ∑
∞
n=0 αn =∞.

5. In 2013, Karakaya et al. in [KDGE13] defined a very gen-
eral three-step iteration process with five parameters,










pn+1 = (1−αn −βn)un +αnT (un)+βnT (vn),

un = (1−an −bn)vn +anT (vn)+bnT (pn),

vn = (1− γn)pn + γnT (pn), n ∈ N,
(8)

where αn,βn,γn,an,bn ∈ [0,1], αn+βn ∈ [0,1], an+bn ∈
[0,1] for all n ∈ N and ∑

∞
n=0(αn +βn) =∞.

Other iteration methods that can be found in the litera-
ture are: Mann [Man53], Ishikawa [Ish74], Noor [Noo00],
SP [PS11], Khan [Kha13], Picard-S [GK14]. The presented
iterations for particular values of the parameters can reduce
to other iterations. For instance, if we take in the Suantai it-
eration βn = bn = 0 and αn 6= 0 for all n ∈ N, we obtain a
Noor iteration. The dependencies between all the mentioned
iterations are shown in Fig. 4.

4. Iterations in Inversion Fractals

The convergence of the random inversion algorithm – simi-
larly to the chaos game for IFS – is guaranteed by the Banach
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4 K. Gdawiec / Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns

Karakaya
iteration

Suantai
iteration

SP
iteration

Khan
iteration

Noor
iteration

Ishikawa
iteration

Mann
iteration

Picard
iteration

αn 6= 0
βn = bn = 0

γn = 0
an 6= 0

αn = 1

γn = 0
an 6= 0

αn = 1
αn 6= 0
βn = bn = 0

an = 0

αn = 1

γn = 0

an = γn = 0

S
iteration

αn = 1
βn 6= 0

αn = 1
βn = 0

Picard-S
iteration

CR
iteration αn = 1

βn 6= 0

Figure 4: Diagram of the iterations’ dependencies.

fixed point theorem. In the theorem, we use Picard iteration
to find a fixed point in the Banach space of a contraction
mapping. The iterations from Sec. 3 allow us to find fixed
points for different types of mappings, e.g., non-expansive
or contractive-like mappings, and not only for contractions.
Accordingly, a straightforward idea would be to use in the
random inversion algorithm instead of the standard Picard
iteration the different iterations presented in Sec. 3. For in-
stance, when we want to use the Mann iteration, the line in
the algorithm with the Picard iteration (Line 8) is replaced
by

p = (1−αi)p+αiIS j
(p). (9)

The parameters used in all the iterations are real num-
bers that belong to [0,1] or (0,1]. In fixed point theory, these
assumptions guarantee that the iteration process converges
(weak, strong) to a fixed point of the mapping. In this pa-
per, we are interested in obtaining interesting patterns rather
than guaranteeing the convergence to a fixed point, so we
can omit the assumptions about the boundedness of the pa-
rameters and take values outside the intervals [0,1], (0,1].

In 1994, Levin in [Lev94] introduced a generalization of
complex numbers called q-system numbers and used them
in complex fractals (Mandelbrot and Julia sets, biomorphs,
Newton root-finding fractals). We can use the q-system num-
bers to extend the iterations, but before we present the exten-
sion we briefly introduce the q-system numbers.

Complex numbers are numbers of the form a+ ib, where
i2 = −1 is the imaginary unit and a,b ∈ R. The q-system
numbers have a similar form,

a+qb, (10)

where q satisfies following condition,

q
2 = A+q(2B) (11)

for arbitrary A,B ∈ R.

Now, let us define basic operations on q-system numbers:

1. addition

(a+qb)+(c+qd) = (a+ c)+q(b+d), (12)

2. subtraction

(a+qb)− (c+qd) = (a− c)+q(b−d), (13)

3. multiplication

(a+qb) · (c+qd) = (ac+bdA)+q(bc+ad +2Bbd),
(14)

4. division

a+qb

c+qd
=

ac+2Bad −Abd

c2 +2Bcd −Ad2
+q

cb−ad

c2 +2Bcd −Ad2
. (15)

Following elementary calculations, we can show that addi-
tion and multiplication are commutative and associative, and
that multiplication is distributive over addition. Moreover,
notice that for A =−1 and B = 0 the q-system numbers with
the basic operations reduce to complex numbers.

Let us denote the q-system numbers for fixed A,B ∈ R by
QA,B. Moreover, let us define two mappings ℜ,ℑ : QA,B →
R in the following way,

ℜ(a+qb) = a, (16)

ℑ(a+qb) = b (17)

for all a+ qb ∈ QA,B. We see that the mappings ℜ and ℑ
are analogous to the mappings used for complex numbers to
obtain the real and imaginary parts of a given number.

In inversion fractals, we deal with two-dimensional real
space R2. To use q-system numbers in inversion fractals,
we need to be able to transform QA,B and R2 into each

other. The transformation R : QA,B → R2 that transforms a
q-system number into a point in two-dimensional real space
is given by the formula

R(p) = (ℜ(p),ℑ(p)) (18)

for all p ∈QA,B, and the transformation Q : R2 →QA,B that

transforms points from R2 into q-system numbers is given
by the formula

Q(p) = xp +qyp (19)

for all p = (xp,yp) ∈ R2.

Now, we are ready to extend the iterations with the q-
system numbers. The first thing we need to do is the re-
placement of the real parameters by the q-system numbers,
so αn,βn,γn,an,bn ∈ QA,B. Next, we transform the points
used in the desired iteration to an appropriate space using
the mappings R and Q so that the calculations for the itera-
tions are made in QA,B and the final result of the calculations

submitted to COMPUTER GRAPHICS Forum (12/2015).

Po
br

an
o 

z 
ht

tp
s:

//o
pu

s.u
s.e

du
.p

l /
 D

ow
nl

oa
de

d 
fr

om
 R

ep
os

ito
ry

 o
f U

ni
ve

rs
ity

 o
f S

ile
si

a 
20

24
-0

5-
01



K. Gdawiec / Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns 5

is in R2. We want it so that the final result is in R2 because
the points of the inversion fractal are drawn in this space.
For instance, let us take the CR iteration (7) with X = R2.
According to our assumptions αn,βn,γn ∈QA,B and










pn+1 = R((1−αn)un +αn(Q◦T ◦R)(un)),

un = (1−βn)(Q◦T )(pn)+βn(Q◦T ◦R)(vn),

vn = (1− γn)Q(pn)+ γn(Q◦T )(pn),

(20)

for all n ∈ N.

In Sec. 3, we showed some iterations from fixed point the-
ory that can be used with star-shaped set inversion. There
also exist iterations that, when used with inversion transfor-
mation, reduce to other iterations irrespective of the param-
eters used while at the same time they are computationally
expensive. For instance, let us consider following iteration
introduced by Schu in [Sch91],

pn+1 = (1−αn)pn +αnT
(n+1)(pn), (21)

where αn ∈ [0,1]. When we look at this iteration, we see that
it is very similar to the Mann iteration. The only difference
between these two iterations is that, in the n+ 1 iteration of
the Schu iteration, we use the n+1-time composition of the
mapping T , whereas in the Mann iteration we use only T .

Now, let us assume that X = R2 and that the mapping
T is an involution, i.e., T 2(p) = p. We can easily prove by
induction that

T
n(p) =

{

T (p), if n is odd,

p, if n is even.
(22)

The first elements of the Schu iteration for an involution
appear as follows:

p1 = (1−α0)p0 +α0T (p0),

p2 = (1−α1)p1 +α1T
2(p1) = (1−α1)p1 +α1 p1 = p1,

p3 = (1−α2)p2 +α2T
3(p2) = (1−α2)p2 +α2T (p2),

p4 = (1−α3)p3 +α3T
4(p3) = (1−α3)p3 +α3 p3 = p3,

p5 = (1−α4)p4 +α4T
5(p4) = (1−α4)p4 +α4T (p4).

It is easy to show that:

pn+1 =

{

(1−αn)pn +αnT (pn), if n is odd,

pn, if n is even,

=

{

(1−αn)pn +αnT (pn), if n is odd,

(1−0)pn +0 ·T (pn), if n is even.

(23)

Defining the sequence βn as

βn =

{

αn, if n is odd,

0, if n is even
(24)

we obtain:

pn+1 = (1−βn)pn +βnT (pn). (25)

We can see that this is a Mann iteration. Therefore, us-
ing the Schu iteration with αn for the involution we obtain
the Mann iteration with parameters given by (24). From the
computational point of view, it is better to use the Mann iter-
ation rather than the Schu iteration because we do not need
to calculate the compositions of the mapping.

In the random inversion algorithm, we use k star-shaped
set inversion transformations IS1 , IS2 , . . . , ISk

that are involu-
tions. Using what we have just shown for a transformation
that is an involution, we obtain that, in the case of using the
Schu iteration in Algorithm 1, we get the same result as if
we had used the Mann iteration with the parameters given
by (24). Moreover, using the Mann iteration instead of the
Schu iteration is computationally more efficient.

Having such a variety of iterations that can be used in the
generation of inversion fractals, we can use them in the so-
called switching process. Let us assume that P0,P1, . . . ,Pm−1

are iterations (Pi : R2 → R2 for i = 0,1, . . . ,m− 1) that do
not reduce to each other for any possible combination of the
parameters. In the diagram presented in Fig. 4, we can easily
find such iterations. Two iterations in the diagram reduce to
each other if there is a path in the diagram from one iteration
to the other. As such, two iterations do not reduce if there
is no path in the diagram between them. For instance, Khan
and Mann iterations do not reduce to each other. Now, the
switching process is defined in a following way:

pn+1 =



















P0(pn), if n mod m = 0,

P1(pn), if n mod m = 1,

. . .

Pm−1(pn), if n mod m = m−1.

(26)

In a very similar way, we can define a switching process
for the q-system numbers. Let us denote by PA,B : R2 → R2

the iteration in which we use the QA,B space for the calcu-
lations. Assume that, for i = 0,1, . . . ,m− 1, Ai,Bi represent
QAi,Bi

. The switching process between the q-system num-
bers is defined in the following way:

pn+1 =



















PA0,B0(pn), if n mod m = 0,

PA1,B1(pn), if n mod m = 1,

. . .

PAm−1,Bm−1(pn), if n mod m = m−1.

(27)

In Sec. 2 we mentioned that the random inversion algo-
rithm is similar to the chaos game for IFSs. Therefore, we
can use the change of the standard Picard iteration with other
iterations, but this does not give interesting results from an
aesthetic point of view. In Sec. 6, we present an example
of an IFS fractal and its shape alternation with the help of
Ishikawa iteration.
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6 K. Gdawiec / Inversion Fractals and Iteration Processes in the Generation of Aesthetic Patterns

5. Colouring Method

In the original star-shaped set inversion fractals, each trans-
formation has a distinct colour. During the iteration process,
the point receives the colour of the transformation that was
used to obtain the point. From the examples presented in
Fig. 3, which were obtained using this type of colouring,
we see that the distribution of the colours in the fractal is
not continuous and we can distinguish, based on the colours,
different parts of the fractal.

To better colour the fractal, we use another colouring
method. The method is a simplified version of the colour-
ing used in the fractal flame algorithm [DR03]. Let us as-
sume that we want to render the fractal image of dimensions
W ×H and that each transformation IS j

receives a distinct
colour c j . The point generation process in Algorithm 1 is
expanded in the following way. At the beginning, we take a
random colour c. Next, for each generated point we find the
coordinates of the nearest pixel and then we do two things:
(1) we increment a counter for the pixel, and (2) we take the
colour c j of the transformation used to obtain the considered
point, calculate the new colour c = (c+ c j)/2, and set the
colour of the pixel to c. In this way, we obtain a histogram
H that tells us how many times each pixel was hit as well as
an image I with a coloured fractal pattern.

Now, we calculate a maximum value in H. Let us denote
this value by mH. Next, for each pixel with the coordinates
(x,y) ∈ {0,1, . . . ,W − 1}× {0,1, . . . ,H − 1}, we calculate
the final colour of the pixel using the gamma correction in
the following way:

I(x,y) =

(

log2(1+H(x,y))

log2(1+mH)

)1/γ

I(x,y), (28)

where γ ∈ R+.

The described extensions of Algorithm 1 and the colour-
ing method are summarized in Algorithm 2. In the algorithm,
we use the notation Pv for any iteration process described in
the paper (with real and q-system parameters, with switch-
ing), where v is the vector of the parameters used in the pro-
cess. The dimension of v depends on the iteration process.
In the successive steps of the generation process, we use dif-
ferent inversion transformations, and so we extend the num-
ber of arguments of the iteration Pv from one to two, where
the first argument is the inversion transformation that should
be used and the second argument is the point for which we
make the calculations.

6. Examples

In Sec. 4, we mentioned that we can use different iterations
in the chaos game for IFSs, but the obtained patterns did not
look interesting. We start our examples with such an exam-
ple. In Fig. 5(a), we see a twig obtained using the Picard
iteration for IFSs consisting of four affine transformations.
Each point is coloured with the colour of the transformation

Algorithm 2: Extended random inversion algorithm
with colouring

Input: S1, . . . ,Sk – star-shaped sets with chosen centres
of inversion, c1, . . . ,ck – colours of the
transformations, p0 – starting point external to
S1, . . . ,Sk, n > 20 – number of iterations, Pv –
iteration with parameters v, W , H – image
dimensions, γ ∈ R+

Output: Image I with an approximation of a
star-shaped set inversion fractal

1 for (x,y) ∈ {0,1, . . . ,W −1}×{0,1, . . . ,H −1} do

2 I(x,y) = black
3 H(x,y) = 0

4 c = random colour
5 j = random number from {1, . . . ,k}
6 p = Pv(IS j

, p0)

7 for i = 2 to n do

8 l = random number from {1, . . . ,k}
9 while j = l or inSet(Sl , p) do

10 l = random number from {1, . . . ,k}

11 j = l

12 p = Pv(IS j
, p)

13 if i > 20 then

14 x = ⌊xp⌋
15 y = ⌊yp⌋
16 H(x,y) =H(x,y)+1

17 c =
c+c j

2
18 I(x,y) = c

19 mH = max(x,y)H(x,y)

20 for (x,y) ∈ {0,1, . . . ,W −1}×{0,1, . . . ,H −1} do

21 if H(x,y)> 0 then

22 I(x,y) =
(

log2(1+H(x,y))
log2(1+mH)

)1/γ
I(x,y)

that was used to obtain the point. In Figs. 5(b)-(e), the use of
the Ishikawa iteration is presented. The parameters used to
obtain the images were as follows: (b) αn = 0.6, an = 0.0,
(c) αn = 0.8, an = 0.0, (d) αn = 0.8, an = 0.3, (e) αn = 0.8,
an = 0.6. From the examples, we see that the parts of the at-
tractor increasingly overlap or move away from each other,
losing connectivity. Similar behaviour is also noticeable in
the case of other attractors and the use of other iterations.

Now, let us consider examples of the star-shaped set inver-
sion fractals with the proposed extensions. Figure 6 presents
an example of the use of different iterations with parameters
that have real values. In Fig. 6(a), on the left, we see star-
shaped sets with centres of inversion that define the inversion
transformations, and on the right a fractal pattern obtained
using the standard Picard iteration. The fractal patterns from
Figs. 6(b)-(e) were obtained using the same inversion trans-
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(a)

(b) (c)

(d) (e)

Figure 5: Example of the (a) Picard and (b)-(e) Ishikawa

iterations for an IFS fractal.

formations but using different iterations. The iterations and
their parameters were as follows:

(b) Mann iteration with αn = 0.7,
(c) Karakaya iteration with αn = 0.7, βn = 0.7, γn = 0.1,

an = 0.1, bn = 0.4,
(d) Mann iteration with

αn =

{

0.7, if n is even,

0.9, if n is odd,
(29)

(e) Picard-S iteration with βn = 1.5, γn = 0.8.

From the examples, we see that with the use of different it-
erations with real parameters we are able to obtain, from the
basic pattern, many very diverse patterns.

In the next example we used different iterations, but this
time the real parameters were replaced by the q-system num-
bers. Figure 7 presents the obtained fractal patterns. Simi-

larly to the previous example in Fig. 7(a), we see a pattern
obtained with the Picard iteration and the star-shaped sets
defining the inversion transformations. The patterns from
Figs. 7(b)-(e) were obtained using the following parameters:

(b) SP iteration with αn = 0.5+ 0.5q, an = 0.9+ 0.5q, γn =
0.75−0.9q and q-system with A =−1.0, B = 0.0,

(c) SP iteration with αn = 0.5+ 0.5q, an = 0.9+ 0.5q, γn =
0.75−0.9q and q-system with A =−1.5, B = 0.2,

(d) Khan iteration with an = 0.3+ 0.5q and q-system with
A =−1.0, B = 0.0,

(e) Noor iteration with αn = 1.1−0.2q, an = 0.1−0.2q, γn =
0.1−0.2q and q-system with A =−1.0, B = 0.0.

The use of the q-system numbers, generally, adds some
swirls and twists to the obtained pattern. Moreover, in this
case, the patterns significantly differ from the original pat-
tern obtained with the Picard iteration. Moreover, from the
examples, we can observe that using the same values of the
parameters but different q-systems in the iteration we obtain
different fractal patterns (Fig. 7(b) and 7(c)).

The next examples show the use of the switching pro-
cesses. We start with switching between iterations. In this
example, as the base star-shaped set inversion fractal, we
used the fractal presented in Fig. 8.

In Figs. 9 and 10, examples of patterns obtained with two
different iterations and a switching process between them
are presented. The parameters used to generate the images
in Fig. 9 were as follows:

(a) S iteration with αn = 0.9+0.9q, βn = 0.2+0.2q,
(b) Mann iteration with αn = 0.8+0.1q,
(c) switching of iterations from (a) and (b).

In each case, the same q-system with the parameters A =
−1.0, B = 0.0 was used.

The parameters used to generate the images in Fig. 10
were as follows:

(a) Suantai iteration with αn = 0.7 + 0.1q, βn = 0.5, γn =
0.4+0.5q, an = 0.3, bn = 0.1−0.2q,

(b) Picard-S iteration with βn = 0.6, γn = 0.8,
(c) switching of iterations from (a) and (b).

and the same q-system as in the case of Fig. 9.

By comparing the pattern in Fig. 8 with the patterns in
Figs. 9(a) and (b) and 10(a) and (b) we see further examples
of how the use of different iterations and q-systems affects
the original star-shaped set inversion fractal. Meanwhile, by
comparing images in Figs. 9(a) and (b) and 10(a) and (b)
with images in Fig. 9(c) and 10(c), respectively, we see that
the pattern obtained with the switching process differs from
the patterns that were used to generate it, and that in this way
we are able to generate new and diverse patterns.

The last example presents the use of the switching pro-
cess between different q-systems. In Fig. 11, similarly to
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(a) (b)

(c) (d) (e)

Figure 6: (a) Sets defining the star-shaped set inversion transformations and their fractal pattern. (b)-(e) Examples of patterns

obtained with the use of iterations with real parameters.

the example with the iterations’ switching, the original frac-
tal pattern (obtained with the Picard iteration) is presented.
Meanwhile, Figs. 12 and 13 present the fractal patterns ob-
tained with two different q-systems and a switching process
between them.

In Figs. 12 and 13 we used the same iteration, namely
the Ishikawa iteration with αn = 1.0+0.1q, an = 0.1q. The
parameters used to generate the images in Fig. 12 were as
follows:

(a) q-system with A =−3.0, B = 0.0,
(b) q-system with A = 3.0, B = 0.0,
(c) switching of q-systems from (a) and (b).

The parameters used to generate the images in Fig. 13
were as follows:

(a) q-system with A =−1.0, B = 0.0,
(b) q-system with A =−4.0, B = 2.0,
(c) switching of q-systems from (a) and (b).

From the example images we also see that the switching

between different q-systems gives new fractal patterns. The
patterns look less interesting in comparison to the other ex-
amples, but still they are useful as, e.g., desktop wallpaper
patterns.

7. Conclusions

In this paper, we presented the concept of the generalization
of star-shaped set inversion fractals using different iteration
processes. The use of iterations from fixed point theory gives
us more possibilities for obtaining new and very interesting
fractal patterns. Moreover, the use of q-systems numbers in-
stead of real ones in the iterations gives us further diversifi-
cation of the patterns.
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Figure 7: (a) Sets defining the star-shaped set inversion transformations and their fractal pattern. (b)-(e) Examples of patterns

obtained with the use of iterations with q-system number parameters.

Figure 8: Sets defining the star-shaped set inversion transformations and their fractal pattern.
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(a) (b) (c)

Figure 9: Fractal pattern obtained with: (a) the iteration used in the even steps, (b) the iteration used in the odd steps, (c) the

switching process of two iterations from (a) and (b).

(a) (b) (c)

Figure 10: Fractal pattern obtained with: (a) the iteration used in the even steps, (b) the iteration used in the odd steps, (c) the

switching process of two iterations from (a) and (b).

Figure 11: Sets defining the star-shaped set inversion transformations and their fractal pattern.
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(a) (b) (c)

Figure 12: Fractal pattern obtained with: (a) the q-system used in the even steps, (b) the q-system used in the odd steps, (c) the

switching process of two q-systems from (a) and (b).

(a) (b) (c)

Figure 13: Fractal pattern obtained with: (a) the q-system used in the even steps, (b) the q-system used in the odd steps, (c) the

switching process of two q-systems from (a) and (b).
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