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Abstract

Gradient meshes are a 2D vector graphics primitive where colour is interpolated between mesh vertices. The
current implementations of gradient meshes are restricted to rectangular mesh topology. Our new interpolation
method relaxes this restriction by supporting arbitrary manifold topology of the input gradient mesh. Our method
is based on the Catmull-Clark subdivision scheme, which is well known to support arbitrary mesh topology in 3D.
We adapt this scheme to support gradient mesh colour interpolation, adding extensions to handle interpolation
of colours of the control points, interpolation only inside the given colour space, and emulation of gradient con-
straints seen in related closed-form solutions. These extensions make subdivision a viable option for interpolating

arbitrary-topology gradient meshes for 2D vector graphics.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Gene-

ration—Generation, Graphics Utilities

1. Introduction

Vector graphics provides powerful tools for drawing vivid,
scalable, 2D imagery. In commercial products, Adobe Illus-
trator’s gradient mesh tool (and the equivalent mesh fill tool
in Corel’s Core]DRAW) is one of the more powerful tools. It
allows artists to draw colour gradients in the interior of vec-
tor objects via control meshes. The underlying vector primi-
tive associated with the tool is defined by a rectangular grid,
where colours and colour gradients are associated with the
mesh control points. Both colour and colour gradients can
be manipulated by the user.

The gradient mesh tool has been employed by both artists
and researchers. In art, it allows highly skilled, experienced
artists to produce photorealistic imagery using vector graph-
ics. Such imagery is unfeasible to achieve with the other
tools available in a vector graphic product. However, pro-
ducing such high-quality vector graphics in this way is
widely regarded as complicated and tedious, while master-
ing the tool is considered rewarding since complex imagery
can be accomplished. In research, the gradient mesh tool
has inspired researchers to propose solutions to challenging
colour interpolation problems. In particular, multiple solu-
tions to the problem of vectorising an input photograph to a
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vector-based representation have been proposed using gradi-
ent meshes (e.g. [SLWS07, LHMO09]).

The technical solution, used by Adobe and Corel, to in-
terpolate the colours and colour gradients has not been pub-
lished. As with other approaches in the literature concerned
with gradient meshes (e.g. [SLWSO07]), we assume that Fer-
guson patches [Fer64] are used for interpolating the inte-
rior pixels. Ferguson’s framework provides bi-cubic inter-
polatory C ! patches where gradients at each grid point can
be edited. Ferguson patches are not suitable for 3D ge-
ometry, owing to the local ‘flatness’ at the corners of the
patches [RA90], but have proven to be excellent for col-
our interpolation in 2D vector graphics, where they can be
adapted to support manipulation of colours and colour gra-
dients via rectangular control meshes, as demonstrated by
Sun et al. [SLWSO07].

As implemented in Illustrator, gradient meshes are topo-
logically restricted to a rectangular grid, which limits the
representable shapes to topological rectangles and annuli
(achieved by looping the rectangle). We propose a colour
interpolation scheme that relaxes this rectangular-grid re-
striction. Our solution supports gradient meshes of arbitrary
manifold topologies as input. Figure 1(top right) shows two
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Figure 1: Illlustrator’s gradient mesh tool, used for vivid
colourings in vector graphics, is constrained to rectangular
and annular control meshes (annuli are achieved by loop-
ing rectangles). The colour images were rendered with our
method, which does support arbitrary surface topology.

Figure 2: A sparse, topologically-unrestricted gradient
mesh evaluated with our method.

simple topological layouts that cannot be achieved in the reg-
ular setting. Figure 2 illustrates a result of our method on a
gradient mesh incompatible with Illustrator’s gradient mesh
tool.

The technical contribution of our work is our use of sub-
division methods to achieve our goal. We note that it is
well-known that certain subdivision methods can interpolate
meshes of arbitrary manifold topology and that such meth-
ods can be used to interpolate data in ‘other’ dimensions than
the 3D geometric space, such as in colour and texture di-
mensions [DKT98]. However, previous interpolation meth-
ods are unsuitable for the problem of interpolating gradient
meshes of arbitrary mesh topologies in the setting of 2D vec-
tor graphics (Section 3.1) because either they wash-out the
colours or they extrapolate colours beyond the colour gamut.
Our key insight (Section 4) is that the input gradient mesh
can be initially subdivided with separate subdivision rules
in colour and geometry dimensions. Catmull-Clark subdivi-
sion [CC78] can then be performed to create a solution ac-
cording to the problem specification (Section 3). In this ini-
tial subdivision procedure, a standard mechanism is applied
in colour space to force colours to be interpolated. We then
propose a special set of rules in the geometry dimensions

to create a solution according to the expected behaviour of
a gradient mesh. We are not aware of any previous method
that applies such special rules in a subdivision procedure for
the purpose of interpolating a gradient mesh for 2D vector
graphics.

2. Related work

The gradient mesh primitive has been used extensively in
previous work, targeting the two main approaches to vector
graphics creation: manual and automatic [BB13]. Our work
does not directly address these applications, as our aim is
to improve the underlying colour interpolation problem. We
envision that our method could be used to improve them in
the future (Section 7). We note that modifications to the gra-
dient mesh primitive have been proposed, notably by Xia
et al. [XLY09], that use triangular patches instead of quads.
However, such modifications are more appropriate for image
vectorisation and are not suitable as a general gradient mesh
interpolation scheme [BB13, §6.3]. By contrast, our solu-
tion offers colour interpolation of arbitrary-topology gradi-
ent meshes, making our method attractive as a general inter-
polation method for gradient meshes.

Our work is related to the definition of complex gradi-
ents, that is, colour gradients that provide more degrees of
freedom compared to linear gradients in vector graphics.
There are two established, and fundamentally different, vec-
tor primitives that provide such complex gradients: gradi-
ent meshes and diffusion curves [OBB*13]. We acknowl-
edge that diffusion curves represent an attractive alternative
to gradient meshes, especially related to its simple type of
input (curves). We view these two primitives not as competi-
tors, but as two primitives that complement one another: hav-
ing both in the designer’s toolbox strengthens the designer’s
abilities and efficiency.

3. Preparation

Our input is a mesh of arbitrary topology. Each mesh control
point has an associated colour and associated colour gradi-
ents that relate to the way in which the colour propagates to
the point’s neighbourhood. There is thus a five-dimensional
space (two spatial and three colour dimensions) with con-
trollable constraints on the colour gradients in that space.

We wish to achieve a similar framework to the standard
solution (Ferguson patches, which are limited to interpolat-
ing rectangular gradient meshes) that supports arbitrary to-
pology. To achieve this, we impose the following conditions:

e Condition 1: The colour function must interpolate the
original control points in colour space.

e Condition 2: The colour function must not stray outside
the given colour space.

e Condition 3: Both geometry and colour function must be
smooth (C") everywhere, except where lower continuities
are explicitly specified.
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Figure 3: Our input is a gradient mesh (left). Our output
is an appropriate interpolation of the colours (right). The
values stored at each mesh vertex are its colour (coloured
discs) and its colour gradients (indicated by the locations of
the smaller black discs). Additionally, edges can be specified
as smooth (C 1, grey), crease (CO, yellow), or discontinuous
(Cil, red). A discontinuous edge has separate colour and
gradient control associated with either side of the edge.

e Condition 4: The colour function must satisfy the colour
gradients specified at each control point.

For any potential solution, it is straightforward to verify
whether Conditions 1-3 are met. Condition 4 is more chal-
lenging because the term ‘colour gradient’ in vector graphics
does not map exactly to the mathematical concept of gradi-
ent. In the following, we describe how we have interpreted
this term in our work and in our evaluation. [See the supple-
mentary document, Section 1, for further information sup-
porting the claims made below.]

The naive approach is to assume that the colour gradient
specified at each mesh control point directly corresponds to
the gradient of the resulting 5D surface. However, when we
consider the constraints manipulated by the user in Illustra-
tor’s gradient mesh tool, we find they are defined only in the
geometric domain (that is, in the xy-image plane) and cannot
be manipulated in colour space. The map from these con-
straints to Ferguson patches’ derivative constraints, which
obviously require assignments in all dimensions, is therefore
ill-defined.

We therefore chose to interpret the colour gradient con-
straints in a manner similar to that used in Illustrator. In
[Nlustrator, derivatives in colour space seem to be set irre-
spective of the gradient constraints. That is, for all control
points, the colour derivatives are fixed. Thus, the colour gra-
dient constraints influence only the geometric co-ordinates
and derivatives. Our analysis is that such treatment is, in
fact, preferable because it is easier to avoid colour saturation
when we use fixed colour derivatives. Thus, the concept of a
‘colour gradient’ does not correspond well to the mathemati-
cal definition of a gradient: a colour gradient represents sim-
ply some colour propagation between two or more colours.
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In addition to the above, we further extend gradient
meshes by supporting manipulation of the sharpness of the
surface points related to the edges of the control mesh. II-
lustrator’s gradient mesh tool does not support this latter
feature, but a recent vectorisation approach [LHFY12] has
demonstrated useful scenarios with C creases (discontinu-
ities of the first derivative) and C ~! discontinuities of the re-
sulting surface. Thus, we allow specification of creases and
discontinuities at edges.

In summary, our problem can be described as follows.
Given a gradient mesh of arbitrary manifold topology as
input (Figure 3(left)), where control points are associated
with colours (we use, as the default, the CIE Lab colour
space) and colour gradients, and edges are specified as being
smooth, crease, or discontinuous, the resulting 5D surface
(x,y,L,a,b) that represents the interpolation of the input data
must satisfy Conditions 1-4 whilst emulating the behaviour
of the current gradient mesh tool (Figure 3(right)).

3.1. Potential solutions

There are two types of approaches that are well-known to
support interpolation over control meshes of arbitrary man-
ifold topology: Hermite interpolation and subdivision. We
investigated both and found that naive application of either
is inappropriate, but that the latter can be suitably modified
to produce a good solution.

Hermite interpolation schemes have evolved to support ar-
bitrary simple polygons, achieved by generalising barycen-
tric co-ordinates [FS08, LJH13]. To achieve smooth colour
interpolation over arbitrary meshes, each face can be sepa-
rately interpolated, whilst ensuring that the gradient defined
by the derivative constraints at each vertex is continuous. As
mentioned previously, however, colour gradient constraints
do not exactly match gradient or derivative constraints; a
mapping, similar to Illustrator’s approach in the regular set-
ting, must therefore be defined.

However, there is a problem with how to specify deriva-
tives at irregular vertices. The colour gradient constraints
used by gradient meshes should ideally relate to the edges
in the mesh. Thus, a control point of n-valency has n asso-
ciated colour gradient constraints: one for each edge. The
Hermite solution requires at most two directionally indepen-
dent vectors to specify the gradient at each control point.
Therefore adopting Hermite interpolation would restrict the
artist’s freedom more than we would like. Indeed, Ferguson
patches also have this restriction.

The second alternative, subdivision, is well-known to sup-
port arbitrary manifold topology of the input control mesh
and many subdivision schemes have been proposed to define
surfaces of certain properties. Subdivision schemes can be
classified as either approximating schemes, that produce sur-
faces that do not necessarily pass through the control points,
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and interpolatory schemes, that produce surfaces that are
guaranteed to interpolate the control points.

Both of these are, naively, inappropriate for our prob-
lem: approximating schemes do not necessarily interpolate
their data points (breaching Condition 1), and interpolating
schemes do not necessarily keep the underlying surface in-
side the convex hull of its control mesh (breaching Con-
dition 2). The visual disadvantages are that approximating
schemes tend to produce washed-out colours and interpolat-
ing schemes tend to produce C? creases due to colour clip-
ping whenever colours are interpolated outside the gamut.
[See the supplementary material for more information sup-
porting these claims.]

A further problem with subdivision is that derivatives are
not easily manipulated. This is because the input has only
position information and does not have gradient information.
Thus, standard subdivision schemes do not natively support
manipulation of colour gradients (breaching Condition 4).

We therefore chose to extend a particular subdivision
scheme to provide a mechanism that emulates the behaviour
of derivative constraints. Our solution, described in the next
section, offers a type of control and behaviour that cannot
be easily replicated with schemes restricted to values and
derivatives, like Hermite interpolation. In the regular setting,
this behaviour is similar to that seen by Illustrator’s gradient
mesh tool (Section 6), thus justifying our choice of employ-
ing subdivision rather than Hermite interpolation.

Finally, we note that previous researchers have tackled
a similar problem [BB13] in (gradient) mesh vectorisation:
topology-preserving gradient meshes extracted from pho-
tographs; e.g. [LHMO09, XLY09, LHFY12]. This problem is
different to ours because the input data is a photograph
(or user-specified image regions), that might give rise to
challenging topologies, such as annuli. Thus, this problem
is concerned with creating a valid gradient mesh accord-
ing to a chosen colour interpolation method (Ferguson pat-
ches for [LHMO09, XLY09] and Loop subdivision surfaces
for [LHFY 12]). By contrast, our problem is to take, as input,
a gradient mesh of arbitrary topology and produce a solution
according to Conditions 1-4. We note that previous methods
in vectorisation cannot be used to solve our problem as they
employ interpolation methods that are unsuitable for it (Fer-
guson patches, which restrict us to quadrilaterals and rectan-
gular topology, and Loop subdivision, which washes-out the
colours).

4. Method

We now describe our interpolation scheme. We want a so-
lution that allows a control mesh that may contain vertices
of arbitrary valency and polygons with an arbitrary number
of edges. Recall that we want to associate each mesh control
point with colour gradient constraints that specify the prop-
agation of the control point’s colour to its neighbourhood.
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Figure 4: Six examples, each showing the input mesh
(top left), with gradient constraints highlighted with bold
coloured lines, the resulting image (top right), and the con-
trol mesh (bottom) computed by our first, ternary, step of
subdivision. Notice how the colour gradient constraints in-
fluence the local propagation of the colours and the bound-
ary of the figures.

Because derivative constraints are not easily defined and sat-
isfied in the irregular setting, we create a mechanism that
emulates the behaviour of such constraints. A 2D vector, re-
ferred to as a colour gradient constraint, is associated with
each incident edge of all control points (Figure 4). The lo-
cal colour gradient around a control point is thus controlled
by the point’s colour, its neighbours’ colours, and its colour
gradient constraints.

To achieve Conditions 1-3, we split the treatment of geo-
metric and colour co-ordinates. That is, separate subdivision
schemes are employed for the colour and geometric dimen-
sions, with the constraint that the two subdivision schemes
generate the same topology. The colour co-ordinates are
produced according to a set of fixed rules (Sections 4.2
and 4.3). The geometric co-ordinates can be produced in
various ways, which depend on user input and algorithmic
decisions (Section 4.5).

4.1. Overview

To explain the genesis of our method for colour interpola-
tion, we start by recalling (Section 3.1) that approximating
subdivision schemes do not generally interpolate the data
(Figure 5(a)). We then observe that a uniform cubic B-spline
surface or a Catmull-Clark subdivision surface can be forced
to interpolate colour data if the surrounding ring of vertices
all have the same colour. This is most easily seen in the uni-
variate (curve) case (Figure 5(c)), where placing vertices of
equal colour either side of a vertex forces the resulting curve
to interpolate that colour.

This observation leads to our proposed method. That is:
for every vertex in the original mesh, we introduce a ring
of vertices around it that have the same colour. This forces
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Figure 5: Colouring a horizontal bar with (a) a uniform cu-
bic B-spline curve, (b) the interpolatory 4-point subdivision
scheme [DLGS87], and (c) our solution. The blue squares (c)
show the control points defined in the special initial sub-
division step. The alternative subdivision schemes do not
satisfy all conditions: The uniform B-spline curve (a) does
not interpolate the original colours (breaching Condition 1).

The interpolatory curve (b) strays outside the colour space
(breaching Condition 2).

interpolation (Condition 1) while maintaining the property
that the final surface lies within the valid colour space
(Condition 2). The refined control mesh therefore defines a
Catmull-Clark surface that satisfies Conditions 1 and 2. Ad-
ditionally, Catmull-Clark subdivision is well-known to pro-
duce surfaces with at least C' continuity everywhere (Con-
dition 3), where the sharpness at edges can be optionally ma-
nipulated to produce €Y creases and C~! discontinuities.

We are still left with several questions: at what geometric
location should we place these new vertices to satisfy Con-
dition 4? (Sections 4.2 and 4.3); are the results plausible?
(Section 5); does this method produce similar behaviour to
the current gradient mesh tool? (Section 6).

4.2. A univariate subdivision scheme for curves

To address the question of geometric location, we first con-
sider the univariate (curve) case.

Given a control polygon, our method runs a single spe-
cial ternary subdivision step that creates a new set of con-
trol points that define a uniform cubic B-spline curve sat-
isfying the given constraints. There are two types of points
in the subdivided polygon. We refer to new points associated
with vertices as vertex points, and new points associated with
edges as edge points. New vertex points are defined at the
same co-ordinates, both in colour and geometry, as the orig-
inal vertex. That is: the original vertices do not move and are
included in the refined polygon.

New edge points are defined differently for colour and ge-
ometric co-ordinates. For a given edge, two new edge points
are defined. Let P; = (x;,y;,L;,ai,b;) be a point in our 5D
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Figure 6: Influence of the colour gradient constraints. (a) Il-
lustration of subdivision of an edge. (b) Short vectors pro-
duce curves that approximate the control polygon more
closely. (c) Long vectors result in larger influence of the
given colour.

space (2D in geometry, 3D in colour). Let Py and P; be the
original vertices defining the edge. Each vertex has associ-
ated colour gradient constraints: D associated with Py and
D, associated with P3. These vectors have zero magnitude
in the three colour dimensions. The new edge points, P; and
P, are calculated by:

Py =Py+Dy,
Py =P3+Ds,

giving a geometric offset in (x,y) to each new point. In col-
our space, each original point is surrounded by points of the
same colour, so (Ly,ay,by) = (Lg,a9,b) and (Lp,a2,by) =
(L3, a3,b3).

Any standard B-spline rendering method can be employed
to produce the resulting curve from the refined polygon. Fig-
ure 5 compares our solution with interpolatory and approx-
imating subdivision. Figure 6 demonstrates the effect of the
colour gradient constraints.

4.3. A bivariate subdivision scheme for surfaces

In this section, we generalise the univariate solution to bi-
variate subdivision.

As in the univariate case, the first step is a single modi-
fied linear ternary subdivision step which produces a refined
control mesh. In addition to edge and vertex points, which
are analogous to those in the curve case, there are new ver-
tices associated with old faces, which are referred to as face
points.

The linear ternary subdivision step subdivides each face
of n-valency into a smaller face of n-valency, surrounded by
quadrilaterals. Each edge of the original face is associated
with three new quadrilaterals on each of its two sides. This
single-step subdivision procedure is shown in Figure 7(d).
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Figure 7: Our solution performs a single step of modified
linear ternary subdivision followed by standard Catmull-
Clark subdivision. (a) In colour space, all new edge, ver-
tex, and face points associated with an original point (large
disks) are assigned the colour of that point. Thus, the one-
ring of points around an original point all have the same col-
our. (b) The geometric location of a new face point F (black
disk) is defined by bilinear interpolation over a quadrilat-
eral defined by the original vertex V, the points E1oy, and
the centroid C of the face. The weights of the bilinear in-
terpolation (green) are defined by the related colour gradi-
ent constraints, D1 and D;. (c) The mesh configuration of a
2 x 2 grid after two steps of subdivision. (d) The first step
produces a centre face of the same valency as the original
face, surrounded by quadrilaterals.

The remaining geometric co-ordinates are described next.
New edge and vertex points are defined as in the univariate
solution. New face points are defined as follows. Given a
control point Vp, two of its neighbours V(; 5}, and one of its
incident faces, where the centroid of that face is denoted as
C, the geometric (x,y) location of the new face point F is
defined via bilinear interpolation as (Figure 7(b)):

F=(1-d)(1—-dy)Vyp+ddrC+
do(1—d1)E1 +d\(1 —dp)E,

where the intermediate points, E (12} and the weights,
dy1}, are defined as:

E1 =Vo+ (Vo —=V)IID1/2,
Ey =Vo+|(Vo —V2) [ D2 /2,
dy =2{|Dy [/ (Vo = W)l
dr =2{|Do ||/ |(Vo = V2)II,

where D {1,2) denote the normalised vectors of D 5y.

The refined control mesh defines a Catmull-Clark surface
and any standard method (e.g. [CC78,NLMD12]) can there-
fore be employed to produce it.

Implementation details

We implemented Pixar’s version [DKT98] of Catmull-Clark
subdivision, which supports sharp and boundary edges. We
have found it sufficient to perform two subdivision steps in
our examples, but more steps might be necessary for high-
resolution images. We then render the refined, pixel-dense,
meshes with OpenGL. Thus, our implementation approx-
imates the subdivision surface by rendering a pixel-dense
piecewise linear mesh. Note that in practice, one could use
an existing optimised library such as Pixar’s OpenSubdiv
[NLMD12] for this task.

If the input gradient mesh is rectangular and has no
crease or discontinuous edges, our method produces a set
of bi-cubic Bézier patches and standard methods to produce
Bézier patches can optionally be employed.

To produce C? creases and C~! discontinuities along
original edges, Pixar’s sharp rules [DKT98] are employed.
Discontinuous edges need to be associated with separate
colours on each side of the edge. That is, control points
are split along discontinuous edges, where the geometric co-
ordinates remain the same and the colour co-ordinates are
different. These control points have been split in the soft-
ware that produces the input control mesh; thus we assume
that the colours on each side of a discontinuous edge have
already been defined. Figure 3 shows an example of how
discontinuous edges can be represented in a user interface.

Further, original vertices on the boundary of the mesh are
interpolated to emulate curve editing in vector graphics. This
is achieved by applying the univariate rules along the bound-
ary; see Section 4.2. Thus, colour gradient constraints along
the mesh boundary influence both the colour gradients and
the geometric shape of the underlying figure.

4.4. Satisfaction of conditions

Condition 1 is satisfied because the resulting surface is
forced, by the ring of points of identical colour introduced
in the ternary step, to interpolate the colour of the original
control points. This is guaranteed because, on all subsequent
Catmull-Clark steps, the new colours of the control point and
of the 1-ring of new points around it are determined by its
previous colour and the colours of the 1-ring of old points
around it. Those points are all the same colour and therefore
the control point and the new 1-ring also stay that same col-
our. In the limit, as the polygons get increasingly tiny, only
the control point itself and an infinitesimal region around it
are forced to stay that colour. Condition 2 is satisfied due to
the convex hull property of Catmull-Clark subdivision. Con-
dition 3 is satisfied because the limit surface of the Catmull-
Clark subdivision is guaranteed to be C ! and we render a ver-
sion of the surface where individual polygons are of the same
size as pixels, making it visually indistinguishable from the
limit surface. Condition 4 is implicitly satisfied because we
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have the freedom to choose what is meant by “satisfy the
colour gradients” when we implement the algorithm.

4.5. Options

There are several aspects of our solution that are open for
discussion. We address an alternative subdivision scheme,
the various options available in the geometric space, bound-
ary treatment, and the question of flat spots in colour space,
and folds.

Two-step binary refinement An alternative to the
ternary step is instead to perform two binary subdivision
steps. This was our initial solution to the problem, but we
now regard it as inferior to the ternary solution. An advan-
tage of two binary steps is that it produces a pure quadrilat-
eral mesh, thus replacing the relatively large central polygon
with smaller quads. As with the ternary step, the 1-ring of
faces around original control points is unique for all original
control points. It is therefore possible to achieve the condi-
tions in a similar manner to our ternary solution. However,
it is also necessary to define co-ordinates for a set of ad-
ditional points. Additionally, our experiments show that the
visual results are marginally smoother with the single-step
ternary scheme, especially for larger colour gradients. [See
the supplementary web page for comparisons with this alter-
native subdivision scheme.]

Geometric co-ordinates Our solution does not interpo-
late the geometric co-ordinates of the input control points. In
contrast, Ferguson patches do interpolate both colour and ge-
ometric co-ordinates. We have not noticed visual differences
between the two approaches (Section 6), probably owing to
the fact that the limit point V°° (i.e., the point on the limit
surface) corresponding to a vertex V¥ in the input mesh lies
close to V¥ due to the initial ternary step and the local con-
vex hull property of Catmull-Clark subdivision. However,
we note that the initial ternary step can be tuned to ensure
that geometric co-ordinates are interpolated, i.e., V°° = Vo
for all vertices. This could be achieved by using the limit
stencil given by Loop et al. [LSNCO09, §3.2], which imposes
a single linear condition on the 1-ring of Vl, i.e., the vertex’s
location after the initial ternary step. Moreover, since these
1-rings do not overlap, the linear conditions for all v! do not
form a global system; they are independent of each other and
can thus be easily incorporated.

Treatment at the surface boundary The careful reader
will notice that the boundaries of the two methods are
slightly different; see Figure 8. This is because Illustrator’s
gradient meshes are bounded by cubic Bézier (Ferguson)
curves, while our meshes are bounded by uniform cubic B-
spline curves. For the user, the interface is the same: mov-
ing control points and adjusting colour gradients change the
shape and position of the boundary. We expect that users
would have little trouble with the slight differences in bound-
ary behaviour. If it were thought that users would find it dis-
turbing then it is possible to modify the boundary rules of
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Figure 8: Illustrator’s boundary curves are represented by
C! Bézier cubics whereas our method produces c? uniform
cubic B-splines. The magnitudes of colour gradient con-
straints in our method were adjusted to closely follow the
boundary curve produced by Illustrator.

Folding issue

Simple fix

/

Figure 9: Concave mesh elements might lead to folds (left),
which can be fixed by increasing convexity (right).

our method to give a result that matches cubic Bézier curves.
However, such modification would require more compli-
cated, non-uniform subdivision rules at boundary vertices
and edges, and preclude direct use of existing subdivision
schemes and libraries such as Pixar’s.

Flat spots Owing to the zero derivatives that occur at ev-
ery control point, our solution produces flat spots in colour
space at the control points. This is identical to the behaviour
of Ferguson patches at the control points. In 3D mesh mod-
elling, such flat spots would be undesirable and, indeed, this
is the reason that Ferguson patches are not used in a 3D mesh
modelling context [RA90]. However, for this application of
interpolating colour on a 2D plane, both Ferguson patches
and our method are acceptable. This is because the human
eye’s response to colour gradient is dramatically different to
its response to geometric gradient. Our method does offer
the potential for the colour gradient at the control points to
be set to a value other than zero: it would be a trivial exten-
sion to the current method. But, while possible, it is difficult
to see how such a facility could be presented easily to the
user or whether it would be useful at all.

Folds Folds can be produced in concave mesh regions,
as illustrated in Figure 9(left). Such folds are created by
the user, who is responsible for designing the geometry of
the mesh. Nevertheless, certain decisions in the design of
the algorithms do influence the chances of producing folds.
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For example, by interpolating geometric co-ordinates, as dis-
cussed above, folds are more likely to be produced. The soft-
ware could assist by indicating potential problems at high
concave regions. A simple fix to such folds is to increase the
convexity of the region, as illustrated in Figure 9(right).

5. Results and discussion

In this section, we discuss visual results, performance, and
the advantages of multi-resolution gradient mesh editing.

Visual results Results are shown in the various figures
in this paper and in the supplementary material. Control
mesh visualisations after the initial ternary subdivision step
are shown in Figure 4 and in the supplementary web page
and video.

Our experimental results are generally on meshes with
large spatial extents and with primary colours. This is be-
cause these give the best view of any infelicities in the
method: a large spatial extent between adjacent points of
dramatically different colour allows us to see best the effect
the colour propagation of each control point and therefore to
analyse most clearly the behaviour of our method. Colours
are interpolated in Lab colour space, except where we are
comparing against other methods that use RGB colour space,
in which case we also use RGB for fair comparison.

Performance Our solution is computationally efficient.
The initial ternary subdivision of the input gradient mesh
is efficient because the subdivision procedure requires only
local linear combinations of control points to compute the
co-ordinates of the new control points. Using our naive
C++ single-core CPU implementation, tested with an Intel
SU4100 1.3 GHz CPU, our software produced the refined
control mesh in the range of <1 millisecond to 20 millisec-
onds in the gradient meshes we tested. Additionally, our so-
lution is GPU-friendly because subdivision using local lin-
ear combinations of control points can be performed using
shaders. Finally, current methods for producing Catmull-
Clark surfaces (e.g. [NLMD12]) can be employed to produce
the final surfaces efficiently.

Multi-resolution editing A particular advantage of sub-
division, as demonstrated in surface modelling for anima-
tion [DKT98], is the native support for multi-resolution edit-
ing [Zor06]. That is, meshes can be edited after each step of
subdivision as the mesh is progressively refined (Figure 11).
Thus, meshes at the coarsest level can be relatively sparse,
while still supporting complex colourings in the interior of
the object. Multi-resolution editing is challenging when at-
tempted with Ferguson patches and is not available in Illus-
trator’s tool.

For the purpose of artistic design, we implemented a ver-
sion that constrains our multi-resolution mechanism so that
only colour can be manipulated at finer levels of detail (Fig-
ure 10). Geometry can be edited only on the sparse, original,

mesh. This dramatically reduces the complexity of interac-
tion for the user.

One could also follow the approach taken in [FB88] and
support local editing via a hierarchical construction. How-
ever, hierarchical refinement does not offer topological free-
dom and cannot be used to change the flow of a mesh. By
contrast, extraordinary elements (vertices and faces of arbi-
trary valency) supported by our method offer full topological
freedom via subdivision.

6. Comparisons and visual evaluation

In this section, we compare our method with Illustrator’s
gradient mesh tool and discuss how our solution behaves,
visually, compared to it. CorelDRAW has practically identi-
cal functionality to Illustrator, so comparisons with Illustra-
tor are sufficient to demonstrate comparisons between our
method and existing methods.

Mathematical comparison In the regular setting, our
method produces C? bi-cubic Bézier patches with gradient
control. The gradient control associated with an original con-
trol point is related to the 1-ring neighbourhood of the point
after the ternary subdivision step. The new control points in
this neighbourhood lie on a plane, which relate to the tan-
gent plane of the surface point associated with the original
control point. The magnitude of the gradient is controlled by
the geometric co-ordinates of the control points in the 1-ring
neighbourhood, which are dictated via the colour gradient
constraints. This gradient control is analogous to Ferguson
patches’ gradient control, where the derivative constraints
give rise to the tangent plane of the surface point associated
with the original control point. Thus, both methods lead to
bi-cubic patches over regular elements and offer similar user
control over shape and colour. Additionally, both methods
yield (piece-wise) cubic boundary curves.

In the irregular setting, our solution, which produces
Catmull-Clark surfaces, provides sensible behaviour accord-
ing to the colour gradient constraints. In this setting, the
1-ring neighbourhood of an original control point, defined
after the ternary step, models the related local surface neigh-
bourhood according to the colour gradient constraints. This
local surface patch is defined as a regular spline surface, sur-
rounding an isolated point related to the original irregular
control point [PRO8]. The continuity at this isolated point is
C! and the continuity everywhere else is 2. Figure 13(bot-
tom) demonstrates the visual behaviour of the solution at an
irregular control point with different configurations of the
colour gradient constraints.

Visual evaluation In the regular setting, our method
produces visually indistinguishable results compared with
Illustrator’s tool (see Figures 12(top) and 13 and the supple-
mentary web page for visual comparisons). This behaviour
is extended to the irregular setting as demonstrated in Fig-
ure 13(bottom), where the red colour propagates naturally

submitted to COMPUTER GRAPHICS Forum (3/2016).
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Figure 10: Gradient meshes created by the authors, inspired by gradient mesh art found on the Internet (see the supplementary
web page for details). The results were created using relatively sparse gradient meshes as input. The top-left image shows an
example of how details can be added via multi-resolution editing after two subdivision steps on the example from Figure 2. The
regions outlined in red have vertices whose colour has been edited after subdivision. Any geometric changes are edited only at
the sparse, original, level. Similar edits were made to the other three results.

Input ? Edits at 1*
quad level °

Figure 11: Multi-resolution editing after the first subdivision
step. Top right: coloured disks represent vertices that have
been moved and recoloured; black rings represent vertices
that have been moved but not recoloured.

according to the colour gradient constraints. Notice how
these constraints give rise to a circular profile of the col-
our propagation around the original point (blue curves in the
figure). This profile is indirectly modelled via the colour gra-

submitted to COMPUTER GRAPHICS Forum (3/2016).

dient constraints. It can be optionally modelled directly via
manual multi-resolution edits after the first subdivision step.

The added capability of supporting non-rectangular mesh
elements can have practical advantages. One practical ad-
vantage of meshes of arbitrary topology lies in the fact
that such meshes are not unnecessarily dense. Neverthe-
less, dense meshes are required to capture finer image de-
tails. We suggest our subdivision-based approach can be ad-
vantageous over Illustrator’s tool in such settings, since the
meshes can be initially sparsely defined. Then, the finer de-
tails can be manipulated by multi-resolution colour adjust-
ments (Figure 10) or by insertion of detailed geometry only
where needed (Figure 12).

We note that we have addressed the interpolation problem
and not the problem of creating an efficient user interface
for gradient mesh editing. However, we suggest the points
mentioned in this section can be exploited to either improve
current features of the gradient mesh tool or to add new fea-
tures to it.

7. Future work

Subdivision technology has enabled software developers to
create efficient and easy-to-learn tools for 3D object manip-
ulation and animation. One prominent example is Pixar’s



10 Lieng et al. / Topologically unrestricted gradient meshes

Illustrator/

Ferguson Our method

Input gradient meshes Illustrator Our method
R N B ' '
SN .. ~

Illustrator Our method

- .

Scan-line plots

>

Figure 12: Top two rows: Two rectangular gradient mesh
examples rendered with Illustrator’s gradient mesh tool (left)
and our method (right). The top example is a single mesh;
the pepper comprises seven overlapping gradient meshes.
The meshes used for our method were manually traced from
gradient meshes provided by lifeinvector.com(©). The colour
gradient constraints were adjusted to best match Illustra-
tor’s results. Bottom row: A similar pepper rendered with
our method (right) from a single, less dense, mesh (left) man-
ually defined with SketchUp.

RenderMan. One hypothesis is that similar subdivision-
tuned modelling features, such as arbitrary-topology meshes
and multi-resolution edits, can make the gradient mesh tool
easier to learn and easier to work with, compared with II-
lustrator’s tool based on Ferguson patches. We aim to create
such an alternative gradient mesh tool to test this hypothesis
in future work.

The vectorisation problem is closely linked to our prob-
lem because any vectorisation method must employ some
chosen colour interpolation method, like Ferguson pat-
ches [SLWS07, LHMO09, XLY09, LJH13] and Loop subdi-
vision [LHFY12]. One hypothesis is that our interpolation
method can give rise to practical advantages compared with
previous approaches. We believe it would be interesting to

4 J Q
..

Figure 13: Top: Colour gradient constraints (top left) ap-
plied using Illustrator’s gradient mesh tool (top centre) and
our method (top right). Manipulated constraints are high-
lighted with coloured lines. Middle: Simplest-case compari-
son with scan-line plots applied across the middle row of the
image. This comparison indicates that the rendering meth-
ods employed vary between the two methods, where our ren-
dering method produces a marginally smoother surface ap-
proximation. Bottom: Behaviour of colour gradients at an
irregular vertex. The propagation of the red colour relates to
its 1-ring neighbourhood, which is influenced by the colour
gradient constraints. The blue curves are cubic B-splines de-
fined by the vertices of the I-ring neighbourhoods and they
thus relate to the shape of the red colour in that local neigh-
bourhood. [See the supplementary web page for more visual
(high-resolution) comparisons and further data. |

study this hypothesis in future work. Figure 14 shows an ini-
tial experiment of ours that indicates potential improvements
using our method.

8. Conclusion

We have introduced a viable gradient mesh primitive for
vector graphics in the setting of control meshes of arbitrary
manifold topologies. Our solution, using Catmull-Clark sub-
division, emulates the previous gradient mesh tool restricted
to rectangular grids and improves on it by allowing arbitrary
mesh topology. By contrast to standard subdivision schemes,
our approach guarantees that input colours are interpolated,
that the colour interpolant is defined inside the given col-
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Loop subdivision with triangle meshes Our mesh with irregular elements
Result (our method) Colour gradient manipulation Colour manipulation
o
- - . » °

A

Figure 14: An initial experiment illustrates that our method
could potentially be used as an underlying interpolation
method for the vectorisation problem. Note that the gradi-
ent mesh created as input for our method was manually cre-
ated by the authors, whereas the input for the Loop subdi-
vision method was automatically created by the method of
Liao et al. [LHFY12]. An interesting avenue for future work
is to create an automatic vectorisation method that takes
advantage of our method (such as topological freedom and
multi-resolution refinements).

our space, that the interpolant is smooth across the domain,
and that the interpolant behaves according to colour gradient
constraints.
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