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Abstract
In this paper we introduce TimeArcs, a novel visualization technique for representing dynamic relationships between entities in
a network. Force-directed layouts provide a way to highlight related entities by positioning them near to each other. Entities are
brought closer to each other (forming clusters) by forces applied on nodes and connections between nodes. In many application
domains, relationships between entities are not temporally stable, which means that cluster structures and cluster memberships
also may vary across time. Our approach merges multiple force-directed layouts at different time points into a single com-
prehensive visualization that provides a big picture overview of the most significant clusters within a user-defined period of
time. TimeArcs also supports a range of interactive features, such as allowing users to drill-down in order to see details about
a particular cluster. To highlight the benefits of this technique, we demonstrate its application to various datasets, including
the IMDB co-star network, a dataset showing conflicting evidences within biomedical literature of protein interactions, and
collocated popular phrases obtained from political blogs.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User Interfaces—
Graphical user interfaces

1. Introduction

Exploring relationships between entities collocated within an event
or time period is a fundamental task for many visualization appli-
cations. Depending on the application domain, a relationship might
occur when, for instance, two actors co-star in the same movie, two
researchers co-author the same publication, or two proteins interact
within a biological pathway. In many domains, relationships are
time-dependent. For example, an actor may co-star with hundreds
of other actors during his or her career. Moreover, the relationship
between any pair of actors can be quite varied: some actors appear
together only in a single movie, some work together consistently
in multiple movies over a short period of time, and some are re-
united after not having worked together for decades. The complex-
ities associated with representing a large number of elements with
dynamic connectivity make visualizing relationship networks chal-
lenging.

Bringing related entities close to each other allows a user to read-
ily detect clusters within a large network. This provides a big pic-
ture view of entities and their temporal dynamics. For example,
when analyzing newspaper articles grouping certain terms men-
tioned together in multiple news articles could be used to indicate
or highlight a political event. Quickly identifying emerging patterns
in local communities is a desired feature in many application do-
mains, such as crime prevention where a sudden increase in phone
calls between a group of people within an hour coupled with mon-
etary transactions might be a sign of fraud taking place.

To address these challenges we developed TimeArcs, a novel vi-
sualization technique that makes it easy for a user to quickly iden-
tify patterns across time, and subsequently to analyze both how
those patterns might have formed and how they may evolve over
time. Our technique utilizes constraints on a force-directed layout
algorithm to automatically show patterns in text over time, as deter-
mined by a custom topic modeling algorithm or via features intrin-
sic to the original dataset. In this paper we introduce details about
our interactive visualization technique for fluctuating dynamic net-
works, which: 1) presents the evolution of entities over time, 2)
highlights temporal clusters of entities, and 3) supports various in-
teractions that allow users to drill-down on a particular cluster or re-
lationship of interest. Moreover, we provide demonstrations of the
effectiveness of our technique through its application to three dif-
ferent real-world datasets, including: the collocated popular terms
obtained from political blogs, the IMDB co-star network, and a
dataset showing conflicting evidence within the biomedical liter-
ature of protein interactions. Fig. 1 shows an overview of TimeArcs
applied to topics and terms extracted from Wikinews.

2. Related Work

2.1. Dynamic Network Visualization

With the increasing availability of temporal data, dynamic graph vi-
sualization is growing as an active research field with many applica-
tions in various domains. In a recent survey, Beck et al. [BBDW16]
provide an overview of the growing number of techniques for repre-
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Figure 1: Visualizing collocated popular terms obtained from Wikinews in TimeArcs. Area graphs show how frequently the terms appear and
are colored by term categorizations. Arcs highlight terms that appear together in the same articles.

senting the evolution of relationships between entities in readable,
scalable, and effective diagrams. This survey presents a high-level
categorization of different types of dynamic graph visualizations as
animated node-link diagrams, timeline-based static charts, or hy-
brids of these. While the former has been a dominant method for
dynamic visualizations, timeline-based techniques that provide a
time-to-space mapping are becoming increasingly popular.

Greilich et al. [GBD09] propose a technique to visualize a
weighted, dynamic compound digraph by drawing a sequence of
node-link diagrams in a single view. Upward and downward edges
are separated by using colored arcs. Horizontal alignment of nodes
in the hierarchy at different time points are kept the same to fa-
cilitate comparison of the graphs in a sequence. This also repre-
sents a drawback of this technique: since the horizontal alignment
of nodes is constrained by the hierarchical structure, nodes cannot
be reordered to minimize edge crossings.

Parallel edge splatting [BVB∗11] takes a very different ap-
proach to visualizing dynamic graphs. In this technique, a sequence
of narrow stripes are placed perpendicular to the horizontal time-
line and hierarchically-organized vertices are arranged vertically
within them. A relationship from A to B at time t is presented as
a link from A at time t to B at time t + 1. Consequently, the dy-
namic graph looks similar to a parallel coordinates plot. Parallel
edge splatting encounters the problem of visual clutter that occurs
when drawing many lines onto a small portion of the screen space.
To improve scalability on time axis, Beck et al. introduce Rapid
Serial Visual Presentation (RSVP) [BBV∗12], a hybrid approach
mixing animated and timeline-based graph diagrams. A radial ver-
sion [BBW12] of the Parallel edge splatting approach achieves
shorter links than in the Cartesian counterpart. However, curved
links in the radial technique seem to be harder to follow. Another
radial approach, Radial Layered Matrix [VBSW13], produces less
visual clutter by using radially distorted pixels instead of explicit
link representations. An obvious drawback of this approach is that
it is can be difficult to identify trace connections between nodes.

Based on the Gestalt principles of closure, proximity, and sim-
ilarity, van den Elzen et al. [vdEHBvW13] present node reorder-
ing strategies to enable users to find temporal properties such as
trends, periodicity, and anomalies in a network. The paper also in-
troduces strategies to reorder nodes vertically, such as minimizing
edge length or reducing block overlap. However, these are NP-hard
optimization problems [GJS74] and may not be appropriate in cer-
tain contexts.

Matrices can also be used to visualize the temporal changes in
dynamic networks [BC02, MKF∗15, YES10]. Adjacency matrices
are particularly effective when visualizing dense graphs [HdF06]
since they avoid edge-crossing problem in node-link dia-
grams [DMF15, GFC05, KEC06]. TimeMatrix [YES10] displays a
small temporal bar chart within each cell of the matrix to show the
changes of edge weights for the two corresponding vertices. Instead
of bars, gestaltmatrix [BN11] uses gestaltlines, intra-cell lines that
encode different metrics using the angle and length. Individual time
slices can be difficult to extract from matrix representations, but
Matrix Cubes [BPF14] stacks adjacency matrices at each time step
to form a space-time cube that can be decomposed into different
2D time slices or vertex slices. MultiPiles [BHRD∗15] presents the
adjacency matrices (snapshots) side by side, and then similar con-
secutive snapshots are piled together to provide a more compressed
view of a temporal network. A common drawback of all matrix rep-
resentations is that paths between nodes are difficult to identify and
trace.

2.2. Storyline Visualization

Storyline visualizations are inspired originally by Randall
Munroe’s hand-drawn movie narrative charts†. Unique features of
storyline visualizations, compared to other timeline visualization

† https://xkcd.com/657/
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approaches, include each entity being represented as a line and that
relationships between the entities being encoded according to the
relative distances between the associated lines over time. Storyline
visualizations have applications in different domains, such as trac-
ing changes in family relationships in genealogical data [KCH10],
understanding the evolution of community structures in dynamic
social networks [RTJ∗11], and visualizing relationships between
evolving topics in text streams [CLT∗11, XWW∗13].

Tanahashi and Ma [TM12] propose a set of design considera-
tions for generating storyline visualizations: reducing line cross-
ings, maximizing the straightness and continuity of the lines, min-
imizing the wiggle distances to obtain a compact layout, and mini-
mizing the empty space that may cause an unbalanced layout. A vi-
sualization based on these design principles can automatically gen-
erate a storyline layout, albeit taking considerable time to compute.
The StoryFlow [LWW∗13] approach improves the speed of gener-
ating the storyline layout by using an efficient hybrid optimization
approach. Furthermore, it embeds a contextual information hierar-
chy into the layout using closed contours surrounding the events in
the background.

The TextFlow visualization [CLT∗11] enables the analysis of
various evolution patterns that may emerge when examining multi-
ple topics. Specificially, it focuses on the merging and splitting of
relationships between evolving topics. Xu et al. [XWW∗13] em-
ployed stacked graphs to display the time-varying “competitive-
ness” of topics on social media with a storyline style visualization.
EvoRiver [SWL∗14] uses the same composite visual design, but
separates threads of the topics into those which have a more neg-
ative or more positive sentiment. When there is a change in the
“coopetition power” (from negative to positive or vice versa) the
topic will switch to a different thread. Users can also select a time
point and see relationships between different topics indicated by
connected arcs, similar to the technique introduced in this paper.

In storyline visualizations, each entity in the visualization is rep-
resented as a line. This constraint makes storyline visualizations
unsuitable for many application domains. While, for example, char-
acters in a movie can only appear once in each scene at every time
point (which is suitable for storyline visualizations), researchers
often collaborate with different people to publish multiple papers
in a year, or an actor may film with different crews concurrently
(which is not suitable for storyline visualizations). As we show be-
low, our TimeArcs technique can highlight multiple relationships
concurrently.

3. Design Decisions for the TimeArcs Visualization

TimeArcs is a timeline-based technique that facilitates the identi-
fication and exploration of temporal communities of network ver-
tices and provides an overview of network dynamics over a given
period of time. Given a set of entities and their relationships over
time, TimeArcs was designed with the following visualization goals
(each of which was synthesized from the references provided im-
mediately following each goal):

G1. Display the evolution of entities as they change over
time [BW08, FAHL11, DGWC10, XWW∗13].

G2. Highlight related entities by positioning them close to each

other [CLT∗11, TM12]. This allows users to quickly identify tem-
poral communities.

G3. Reduce line/arc crossings that may lead to occlusion and visual
clutter [TM12,DMAF15,LWW∗13]. Additionally, we also want to
increase the legibility of text (i.e. entity labels) by minimizing the
occlusion between texts and links.

Ahn et al. [APS14] identify a task taxonomy for network evolu-
tion analysis across three dimensions: entity, property, and tempo-
ral feature. TimeArcs specifically supports node/link level (G1) and
group level (G2) entity analysis. Regarding the property dimen-
sion, TimeArcs supports both structural properties (edge connect-
edness is used to organize entities as described in G2) and domain
attributes (nodes/links are colored based on their categorizations).
On the third dimension, TimeArcs focuses on the temporal features
of individual events. More specifically, our work aims to make it
easy to discover at what point in time an entity, relationship, or
group activity appears or disappears.

To satisfy the design criteria introduced above, we made the fol-
lowing design decisions:

D1. The time axis is aligned horizontally from left to right. This
design is widely used when visualizing time series data [Wat05,
BW08, DAW13].

D2. Each entity is represented as a straight line. Previous re-
search has indicated that minimizing the crossings between en-
tity representations is the most important metric to reduce visual
clutter [LWW∗13]. It is easier to trace a straight line (to visu-
alize the temporal relationships associated to an entity) than to
trace a curve [MD12]. Moreover, a CloudLines style visualiza-
tion [KBK11, LYK∗12] can be overlaid to highlight the evolution
of entities over time (design goal G1).

D3. Arcs are used to connect related entities. The forces applied
on the arcs bring connected entities closer together on the verti-
cal axis (design goal G2). Force-directed layouts are very useful
in highlighting cluster structure without requiring the use of addi-
tional clustering algorithms. Furthermore, by bringing connected
entities together we reduce the crossings between arcs of different
temporal clusters (design goal G3).

Overall, TimeArcs can be considered a hybrid visualization that
arranges CloudLines vertically in order to highlight the evolution
of entities over time. The CloudLines are pulled closer together
if these entities are connected at some time points using a force
directed layout. Finally, arc diagrams are used to connect related
entities at each time point.

Additional optimization strategies augment our design choices
and generate visual output that is both more aesthetically pleasing
and more legible. In TimeArcs, entities that appear closer together
vertically are considered to be more related than entities at a dis-
tance from each other. The relatedness between entities is defined
by: (1) the total number of connections at different time points, such
as those that are between terms mentioned together multiple times;
and (2) the weight (and strength) of the connections at particular
points, such as those that are between terms mentioned together
many times on a particular day (consequently connected by thicker
and stronger arcs). We apply these factors onto the force-directed
layouts to maximize the neighborhood of more related entities.

c© 2016 The Author(s)
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Since each entity in TimeArcs is represented as a straight line, an
entity label can appear anywhere along this line. For example, an
entity label can appear where the entity is frequently mentioned or
where the entity is highly connected. After selecting the intended
location for an entity label, we check if there are any self-occlusions
between texts and arcs of the same entity. If there are, we continue
moving the label to the left until we find a position without self-
occlusions. Notice that this strategy removes any self-occlusions of
individual entities but does not guarantee the removal of all occlu-
sions in the graph. To guarantee the removal of all occlusions, we
can move all of the text labels to the left of the layout. An entity la-
bel can be drawn repeatedly at different points along the time axis
in order to reduce tracing time.

4. Computing the TimeArcs Visualization

In this section we describe the primary components of the TimeArcs
visualization (also depicted in Fig. 2). These include the main com-
ponents for computing the visual elements that represent the tem-
poral evolution and relationships of ranked entities as well as the in-
teractive elements that facilitate different ways of filtering by time
or search terms:

• Computing the evolution of entities: This step counts the fre-
quency of occurrences of entities at each time point across the
entire temporal range and subsequently ranks them (Section 4.1).

• Computing the relationship of ranked entities: This step de-
termines the relationship between entities. Two entities are con-
sidered to be related if they are collocated within the same con-
texts (Section 4.2).

• Selecting highly connected entities: This step identifies impor-
tant entities among the highly ranked entities in the network (i.e.,
nodes that have high degree of centrality) and highlghts them in
the visualization. (Section 4.3).

• Filtering entities: This step facilitates user-driven filtering to in-
teractively explore details of the data. TimeArcs supports mul-
tiple ways to filter entities, such as filtering by time or by a
search term. Entity ranking and entity relationships are recom-
puted based on filtering conditions (Section 4.4).

Figure 2: A schematic showing the main components of TimeArcs:
computing the evolution of input entities, computing the relation-
ships of ranked entities, selecting highly connected entities, and
filtering entities.

4.1. Computing the Evolution of Entities

Input entities are available from input files, such as names of au-
thors in publications or actors in movies. However, in other cases
we need to preprocess the data in order to generate these entities,
which could represent frequent terms or phrases extracted from
text documents, blogs, or news articles. In such cases, we perform
named-entity recognition on the text documents, which allows us
to identify names of people, places, and organizations first and cal-
culate their frequencies and co-occurrence afterwards.

Fig. 3 illustrates two typical examples of entity evolution visu-
alizations: stacked graphs and small multiples. The data for these
graphs were retrieved from political blogs in the 10-year period
from 2005 to 2015. The top 50 terms that appeared in these blogs
are highlighted by category: green for person, red for location, blue
for organization, and yellow for miscellaneous. Primary benefits of
using a stacked graph include its compactness and its ability to pro-
vide a comprehensive overview. Small multiples make it easier to
trace and compare the evolutions of different terms over time (de-
sign goal G1).

Figure 3: Popular techniques to visualize entity evolutions: (a)
stacked graph and (b) small multiples. Here, entities are terms ex-
tracted from political blogs and color-coded by category: green for
person, red for location, blue for organization, and yellow for mis-
cellaneous data. The two above graphs are implemented in D3.js.

In addition to showing the frequency data of entities over time,
we propose the use of time series features to discover terms associ-
ated with events within the time series, such as sharp increases or
drops [SJA∗06, DW13], the sudden increase followed by a sudden
drop [BAP∗05], and serial periodicities [CK98]. In particular, we
define a sudden attention measure for entities, referring to a sharp
increase in frequency.

Let F1,F2, . . . ,Fn be the frequency of an entity at n differ-

c© 2016 The Author(s)
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ent time points. Instead of ranking an entity based on its raw
time series (F1,F2, . . . ,Fn), we derive the sudden attention series
(A1,A2, . . . ,An): At =

(Ft+1)
(Ft−1+1) . For example, the frequency of the

term “Obama” at time t − 1 is 99 (or Ft−1 = 99) and at time t is
199 (Ft = 199). Then the attention of term “Obama” at time t is
Ai =

(Ft+1)
(Ft−1+1) = 200

100 = 2. As another example, the frequency of
the term “Ebola” at time t − 1 is 0 (or Ft−1 = 0) and at time t
is 10 (Ft = 10). Then the attention of term “Ebola” at time t is
Ai =

(Ft+1)
(Ft−1+1) = 11

1 = 11. Therefore at time t, the term “Ebola”
is considered much more significant than the term “Obama” even
though the frequency of “Ebola” at time t is relatively small com-
pared to that of “Obama.” This measure aims to detect entities
which suddenly draw a lot of attention (and are usually connected
with a particular event in the time series) rather than entities which
are more consistently popular.

4.2. Computing the Relationships between Entities

This step computes the relationships between pairs of entities. In
applications where the set of entities is large, such as the number of
actors in IMDB database or the number of terms/phrases extracted
from political blogs (our algorithm extracted 418,641 terms from
90,811 blogs spanning 10 years), computing relationships between
all pairs is computationally expensive. We therefore rank the in-
put entities based on their frequency or sudden attention score and
only compute the relationships between highly ranked entities, for
example, only the 1,000 top-ranked entities.

The relationships between entities are defined differently in var-
ious applications. In researcher collaboration networks, two re-
searchers are related if they are co-authors of the same papers;
while in a “money trail” inspection, two people are related if they
communicate by phone or email or if they transfer money. The
strength of a relationship is computed based on the number of col-
locations of two entities at a particular time point and is encoded
in our visualization by the thickness of the link connecting the two
entities.

4.3. Selecting Highly Connected Entities

Among highly ranked entities, we further identify and select the
most highly connected entities. In other words, we want to include
nodes with a high degree of centrality in the network. In social net-
works, nodes with a high degree of centrality represent the most
influential people. Fig. 4 shows an example of most influential au-
thors in the IEEE VIS conferences over the last five years. In par-
ticular, each graph is a snapshot of collaboration between these re-
searchers in one year. We keep the nodes in the same positions and
fade out unconnected nodes to help the viewer see the differences
between these five snapshots. However, when the number of nodes
and/or the number of snapshots increase, visualizing the dynamics
of the network becomes difficult.

Using TimeArcs, we combine the five force-directed layouts into
one. Besides the forces applied on links to pull connected entities
together, we add two more kinds of forces into the layout: (1) Pull
vertices representing the same entity at different time points to the
same horizontal line, thus maintaining the mental association a user

would create between line and entity (design choice D2); (2) Pull
and align vertices onto the middle vertical line to resolve any incon-
sistency between different clusters at multiple time steps. Finally,
vertices are pinned to their corresponding horizontal coordinate on
the time axis (to ensure design choice D1). Fig. 5 shows TimeArcs
applied to the same data as seen in Fig. 4.

Figure 5: The TimeArcs visualization applied to the IEEE VIS pub-
lication co-authorship network of the top 50 researchers from 2010
to 2014 (i.e., the same data in Fig. 4).

4.4. Filtering Entities

TimeArcs additionally supports multiple ways to filter data, includ-
ing: (1) filtering connections by strength, (2) filtering by a time
interval, and (3) focusing on a specified entity. As depicted in
the TimeArcs schema (Fig. 2), once users apply a filtering condi-
tion both the ranking of entities and the entity relationships need
to be recomputed. For example, when users input a new search
term using a dataset of news items, term frequencies and their
co-occurrences are recomputed based on the articles containing
that search term. When users search for the collaborations of re-
searchers within a different range of years (using the co-authorship
network), the degree of centrality of the vertices in the network may
change completely and thus need to be recomputed.

Fig. 6 shows an example of the collaboration networks of “Mun-
zner, T.” from 1995 to 2014. In this visualization, we have ordered
entities by the time when they are first connected to the search enti-
ties (along with other constraints in TimeArcs layout). This ensures
that arcs appearing first have a smaller distance to the focused en-
tity (“Munzner, T.” in this case) than the ones appearing after to
avoid crossings (design goal G3). Thicker arcs connect researchers
having multiple publications with “Munzner, T.” in a single year.

c© 2016 The Author(s)
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Figure 4: Visualizing the IEEE VIS publication co-authorship network of the top 50 researchers between 2010 and 2014.

Notice that “Tory, M.” (in the highlighted box) had multiple publi-
cations with “Munzner, T.” in 2003, 2007, 2010, and 2013.

Figure 6: Visualizing collaboration networks for “Munzner, T.”
over the past 20 years (green for the InfoVis conference, red for
VAST, and blue for SciVis).

5. Applications

To demonstrate the usefulness and effectiveness of the TimeArcs
visualization, we describe its application to three different datasets:
one containing blog postings about political events, the IMDB co-
star database, and a biomedical database providing evidences in the
literature of protein interactions.

5.1. Exploring Topics and Events in Political Blogs

We collected 90,811 political blog posts over a ten-year period from
2005 to 2015 from seven different sources, including AMERICA-
blog, Huffington Post, and ProPublica. We then ran text analyses on
these blogs and generated terms that were classified into four differ-
ent categories. These terms were then input into TimeArcs. We first
computed the sudden attention measure (see Section 4.1) for each
term and then computed the relationships between the top 1,000
terms. We filtered relationships of strength at least 15 (i.e., terms
that were mentioned together in at least 15 blogs in one month).
Finally, the top 100 terms with a high degree of centrality were
plotted in the layout depicted in Fig. 7. This layout provides an
overview of major political events in the past 10 years in one dis-
play.

Figure 7: Overview of political events in the past 10 years using
TimeArcs. The top 100 terms were selected based on their sudden
attention and degree centrality. Terms are color-coded by category:
green for person, red for location, blue for organization, yellow for
miscellaneous category.

In Fig. 7, notably, the name “Petraeus” appears at two different
time points (Box A and Box B). In Box A, the term “Petraeus”
is connected with “Baghdad” when he (Petraeus) was the Com-
manding General in the Iraq War during the troop surge of 2007.
Box B highlights his involvement in 2012 Benghazi attack. We
can also easily see the repeated pattern of two entities in box C.
The term “Edward Snowden” and “NSA” suddenly became highly
correlated when he (Snowden) was the principal source of disclo-
sures about top-secret National Security Agency programs in June
2013 [GBM13]. The relation fades out within a year. Viewers can
read related blogs by mousing over a term or relationship.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



T.N. Dang et al. / TimeArcs: Visualizing Fluctuations in Dynamic Networks

5.2. Finding Patterns in the IMDB Co-Star Network

The data is available on IMDB website‡. We went through 9,963
movies rated 8 (out of 10) stars or higher from 1980 to 2014 across
three genres: comedy, action, and drama. In total, our dataset con-
tained 66,182 actors. Fig. 8 shows TimeArcs for the top 200 actors.
In particular, the arcs connect co-actors in the same movies. In this
use case, we color the arcs by movie genres: green for comedy,
red for action, blue for drama. TimeArcs helps viewers to quickly
identify temporal communities of actors. Each horizontal line rep-
resents one actor and connects his or her first through last appear-
ances in highly rated movies. This helps to highlight actors with
long careers and many good movies, such as, for example, the voice
actor Michael Bell (at the red arrow in Fig 8). The horizontal lines
can be replaced by CloudLines-style graphs on demand. By brush-
ing any actors’ name, we can immediately visualize his or her co-
star network to see how it changes over time.

Continuously repeated cliques of actors (as in the highlighted
boxes A, B, and C of Fig. 8) usually indicate that they have ap-
peared together in multiple seasons of a television series. For ex-
ample, Box B shows “The Chaser Election Specials”, an Australian
comedy TV series which appeared in 2001, 2004, 2007, and 2010.
Box A highlights Marin Mandir’s movies, such as “Police, Follow
that Car” (2001) and “Facebook dvojnik” (2012). Marin Mandir
also acts in his own movies. Box C contains “ReBoot”, an action-
adventure television series that originally aired from 1994 to 2001.

5.3. Evidence in Biological Pathway Literature

In this case study, we explore evidences from the biomedical lit-
erature describing protein interactions, retrieved from the Pathway
Commons database§. The data contains the publication information
(such as publication year, author, and textual evidence) of interac-
tions between pairs of proteins, as well as their specific interac-
tion types. Fig. 9 shows new discoveries in protein interaction net-
works from 2002 to 2014. An arc connects two proteins at the times
when the interaction was jointly described in a publication together.
The colors encode interaction types: green for adds_modi f ication,
red for removes_modi f ication, blue for translocation, and orange
for binds. A thicker black arc indicates multiple interactions be-
tween two proteins that were discussed jointly in the same year.
The horizontal lines connect multiple occurrences of the same pro-
teins across different publications in different years. Clusters in the
visualization tend to contain proteins which have similar function-
ality or that are often found together in a biochemical process.

When there are multiple arcs connecting two proteins, it falls
into one of the two circumstances. If they have the same color,
these arcs indicate that there are supporting evidences in different
publications which confirm the interaction between two elements.
On the other hand, if they have the different colors, the more re-
cent appearance provides either more detailed knowledge about the
interaction or shows a conflict between different articles regarding
the way in which these proteins interact.

‡ http://www.imdb.com/interfaces
§ http://www.pathwaycommons.org/

Figure 8: Visualizing the IMDB co-star network of the top actors
from highly rated movies from 1980 to 2014. Boxes A, B, and C
highlight actors appearing together in multiple seasons of a series.

In Fig. 10, TimeArcs visualizes interactions between PCAF pro-
tein complex and other biomolecules. In particular, above the
PCAF timeline we can see there is new evidence from 2013 that
supports the interaction “PCAF binds p300 and KAT3A”, which
was first discovered in 2011. Similarly under PCAF timeline, there
are three evidences supporting “PCAF binds MAML” in 2008,
2011, and 2013. On the other hand, in Fig. 11 TimeArcs depicts in-
teractions between the OPSD protein and the K+ protein. Here we
can see that the 2003 and 2012 publications are in conflict. Con-
tradictorily, OPSD and K+ appear to both positively and negatively
regulate each other.

c© 2016 The Author(s)
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Figure 9: Visualizing the publication of new discoveries in protein
interaction networks from 2002 to 2014. The colors encode differ-
ent types of biochemical interactions.

Figure 10: TimeArcs visualization for interactions around PCAF
protein. (1), (2), and (3) in the figure are supporting evidences in
literature of “PCAF binds MAML”.

6. Implementation and Scalability

TimeArcs is implemented in D3.js. The application, source
code, sample data, and demo video are provided via our
GitHub project repository, located at https://github.com/
CreativeCodingLab/TimeArcs.

The most computationally expensive algorithm in our applica-
tion involves determining the relationship (connectivity) between
entities. In the data preprocessing step, we store relations between

Figure 11: TimeArcs visualization for interactions around OPSD
protein. (1) and (2) are conflicting evidences of OPSD and K+ in-
teraction in 2003 and 2012 publications.

entities in a hash map; therefore, the complexity of computing all
relations between n selected entities is O(n2). TimeArcs can render
thousands of entities in the browser without dipping below interac-
tive rates. Please review the supplementary video (also available on
the project’s GitHub repository) for an example showing TimeArcs
applied to a dataset with thousands of entities.

Since TimeArcs utilizes force-directed layouts as primary way
to group related entities and minimize arc crossings, it thus shares
some common features with it. (1) Gravity of the layout and re-
pellents between vertices ensure that important vertices (having
a high-degree of centrality) end up at the vertical center of the
TimeArcs layout, while vertices with a low-degree centrality end
up toward the top or bottom of the TimeArcs visualization. For ex-
ample in Fig. 7, the term “Sarah Palin” is located in the center of
both layouts while “Boston marathon” and “Dzhokhar Tsarnaev”
are isolated and move away from the both centers. (2) TimeArcs is
more suitable for sparser and fluctuating dynamic networks (which
have temporal clusters changing over time). For denser graphs,
force-directed layouts become “hairballs”. In these cases, users can
use sliders to interactively filter out the weaker relationships be-
tween entities. To show all relationships in dense dynamic net-
works, matrix representations (such as Matrix Cubes [BPF14] or
MultiPiles [BHRD∗15]) are probably more appropriate.

7. Conclusion

This paper presented TimeArcs, a novel visualization technique that
facilitates the identification of temporal patterns of activity between
collocated entities. The dynamics of these interconnected elements
can be interactively investigated through simple mouse and key-
board interactions. A main contribution of the paper is our novel
use of force-directed layouts to automatically create temporal clus-
ters that are constrained to horizontal regions across the display. We
demonstrated TimeArcs on a diverse range of datasets, indicating its
general usefulness across multiple domains. The technique is ap-
propriate for data that has been explicitly preprocessed to identify
relevant topics or categories, as well as for exploring a dataset in
terms of particular facets inherent in the data itself. Here, our tech-
nique is presented primarily as a tool for the exploration of com-
plex dynamics within temporal datasets. Future work will conduct
user studies to provide empirical evidence on the effectiveness of
the technique compared to earlier timeline-based techniques such
as Massive Sequence Views [vdEHBvW13] and investigate how
TimeArcs can be integrated in visual analytics application to aid in
predictive textual analyses.
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