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Abstract

Shape interpolation has many applications in computer graphics such as morphing for computer animation. In this

paper we propose a novel data-driven mesh interpolation method. We adapt patch-based linear rotational invari-

ant coordinates to effectively represent deformations of models in a shape collection, and utilize this information to

guide the synthesis of interpolated shapes. Unlike previous data-driven approaches, we use a rotation/translation

invariant representation which defines the plausible deformations in a global continuous space. By effectively ex-

ploiting the knowledge in the shape space, our method produces realistic interpolation results at interactive rates,

outperforming state-of-the-art methods for challenging cases. We further propose a novel approach to interactive

editing of shape morphing according to the shape distribution. The user can explore the morphing path and select

example models intuitively and adjust the path with simple interactions to edit the morphing sequences. This pro-

vides a useful tool to allow users to generate desired morphing with little effort. We demonstrate the effectiveness

of our approach using various examples.

Keywords: data-driven, shape interpolation, shape space, morphing editing

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modelling—object representations

1. Introduction

Shape interpolation produces in-between shapes given t-
wo (or more) shapes. It has many applications in computer
graphics to produce new models based on existing ones, and
generate smooth animation sequences between a given pair
of models. The latter is often referred to as morphing. Ex-
isting research for shape interpolation and morphing focuses
on establishing correspondences between shapes. Once this
is done, interpolation is performed by either simple linear in-
terpolation of (geometric or other) coordinates or using more
sophisticated (e.g. physically based) models. Even with well
established correspondence and a suitable deformation mod-
el, realistic shape morphing is still challenging, especially
when the models used for interpolation differ substantially.
Using shape information alone, the essential characteristic-
s of the objects cannot be captured. Even with physically-
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based interpolation models, it is still challenging to acquire
a detailed and accurate physical model for the deforming
objects and it could also be very time-consuming. As a re-
sult, significantly simplified interpolation models are typi-
cally used, leading to loss of realism. For challenging cas-
es, existing methods produce interpolated shapes which may
not be practically meaningful: e.g. they may contain self-
intersections, or they do not follow physical laws or the ob-
ject behaviors (e.g. an impossible pose for human motion
interpolation).

With the proliferation of shape repositories, data-driven
approaches have recently received a lot of attention. By ex-
ploiting the latent knowledge in shape repositories, such
methods have demonstrated effectiveness in various geom-
etry processing applications. Gao et al. [GLHH13] propose
a data-driven mesh morphing approach which uses locally
blended examples from the model repository as soft con-
straints to guide the morphing process. Compared with ex-
isting geometry based methods, this method produces more
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Figure 1: Morphing results of the hand model. First row:

non data-driven patch based linear rotation invariant (LRI)

coordinates [BVGP09], second row: existing data-driven

approach [GLHH13], third row: our data-driven morphing,

fourth row: our data-driven morphing after editing.

realistic results which tend to follow the characteristics and
behavior of the deforming objects, when suitable example
models exist in the repository. While being successful at ad-
dressing certain challenging situations, the method has its
limitations: the use of explicit geometric coordinates is sen-
sitive to translations and rotations. As a result, the method
requires not only the guiding meshes to have suitable shapes,
but also in suitable global orientations to be useful. Also, as
example models are sparse, the method uses linear blending
of geometric coordinates to produce a continuous represen-
tation. However, the representation can only be applied lo-

cally as linear blending does not work well for large-scale
deformations. To address this, the example models are split
into clusters and the plausible shapes are formulated as a dis-

crete set of linear subspaces, which is quite complicated to
optimize, more likely to converge to suboptimal local mini-
ma, and not able to fully utilize the information beyond the
local clusters.

In this paper, we propose a novel data-driven approach
to mesh interpolation and morphing, which addresses the
fundamental limitations of [GLHH13]. We adapt the patch-
based linear rotation invariant (LRI) coordinates [BVGP09]
so that deformations of example models are represented in
a rotation and translation invariant way. Example models
in the repository are used to form a globally continuous s-
pace that represents plausible deformations. We formulate
interpolation or morphing as finding a smooth, energy min-
imizing path in the plausible deformation space. As we will
demonstrate in the paper, our method produces substantial-
ly improved results over state-of-the-art methods. We fur-
ther develop techniques to allow morphing results to be edit-
ed intuitively by users. A challenging example is shown in

Fig. 1 where the source (first column) and the target (last
column) shapes differ substantially. Existing non data-driven
method (first row) produces self-intersections. By exploiting
the knowledge in a collection of hand models, existing data-
driven morphing method [GLHH13] (second row) avoids
self-intersections but still produces distorted fingers which
are not realistic. Artifacts are highlighted in blue squares
with additional views making them more visible. Our pro-
posed approach better utilizes hidden knowledge of plausi-
ble deformations and produces realistic results without such
artifacts (third row). The user can also easily edit the mor-
phing sequence; in this case, the four fingers are now curled
into a fist before extending the two fingers to form a ‘V’
shape (fourth row).

The main contributions of this paper are as follows:

• We propose a novel data-driven mesh interpola-
tion/morphing method which produces more realistic re-
sults than existing methods, by effectively exploiting the
knowledge in example shapes.

• Building on this, we further propose a novel approach
to interactive morphing editing which produces realistic
morphing following user constraints. This tool enables
users to create desired morphing results with little effort.

The remaining sections are organized as follows. We re-
view the relevant previous work in Sec. 2. Our data-driven
interpolation technique is described in detail in Sec. 3, fol-
lowed by our morphing editing technique in Sec. 4. We
present various experimental results in Sec. 5 and finally
draw conclusions in Sec. 6.

2. Related work

Due to its wide applicability, shape interpolation or morph-
ing has been intensively researched. For models such as hu-
man bodies, one way of representing various poses is to use
skeletons, and poses can be interpolated using skeleton in-
terpolation, followed by skinning to recover the shape. The
problem is easier due to the low dimensionality; however,
such techniques are restricted to surfaces which can be well
represented using skeletons. Our work considers general sur-
face based interpolation/morphing. Most relevant work is re-
viewed in this section.

Given two (or more) models, the first step for interpolation
is to establish one-to-one correspondence between shapes,
often driven by a sparse set of correspondence points spec-
ified by artists [LDSS99, SP04, HAWG08]. Even with well
established correspondences, realistic shape morphing is not
trivial. Direct interpolation of the vertex positions may cause
substantial artifacts, in particular when the shapes being in-
terpolated have much difference (see Fig. 2(a)).

Geometry-based shape interpolation. Alexa et al. [A-
COL00] generate morphing sequences that are locally as
rigid as possible, by factoring a local affine transform matrix
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Figure 2: Shape interpolation results. (a) direct interpolation of coordinates, (b) [XZWB06], (c) [FB11], (d) [BVGP09].

Figure 3: Shape extrapolation results. (a) two shapes to be

blended (t = 0 and t = 1), (b) results with t = 0, (c) results

with t = −1, (d) results with t = −2. Middle row: results

of [BVGP09], bottom row: results of [FB11].

into a rotation matrix and a symmetric matrix and apply-
ing linear interpolation based on the decomposed matrices.
However, the method requires consistent tetrahedron mesh-
es as input which are generally difficult to obtain. Huang et
al. [HAWG08] use a formulation that minimizes the overall
displacement of vertices and is locally as rigid as possible.
The algorithm takes surface meshes as input; however, the
method is expensive: the number of unknowns scales linear-
ly with the number of in-between frames and thus typically
a very large linear system needs to be solved.

Geometry based morphing benefits from coordinates (fea-
ture spaces) that better preserve geometry. Instead of inter-
polating mesh vertex positions directly, Laplacian coordi-
nates are used for shape interpolation [Ale03]. Other work
also uses interpolation of mean Laplacian flow in the du-
al Laplacian domain [HLW07] and interpolation of the gra-
dient fields followed by Poisson-based fusion [XZWB06].
Chu and Lee [CL09] interpolate the shape in the gradient
space of near-rigid components, extracted using multireso-
lution mean shift clustering. The method works particularly
well for pose interpolation.

Alternatively, shape interpolation can be achieved by in-
terpolating edge lengths and dihedral angles of the trianlge
meshes [WDAH10,FB11]. Edge lengths and dihedral angles
are invariant to translation and rotation; however, reconstruc-
tion of the interpolated shape from them involves non-linear
optimization. To address this, Winkler et al. [WDAH10]
use multi-scale registration to reconstruct the vertex coor-
dinates hierarchically. Although largely for shape deforma-
tion, Fröhlich and Botsch [FB11] reconstruct the interpolat-
ed shape by an iterative Gauss-Newton method. These ap-
proaches are too slow for interactive applications, and do not

work well for extrapolation which may require edge lengths
to be negative (see Fig. 3 for an example).

Rotation invariant coordinates are particularly suitable for
interpolation/morphing as shapes with different orientation-
s can be effectively blended. These methods use the idea
of connection maps, representing frames in the local coor-
dinates of their adjacent frames. Lipman et al. [LSLCO05]
propose linear rotation invariant coordinates which can be
used for interpolation by blending discrete form coefficients.
This approach does not store connection maps explicitly so
they need to be reconstructed first. After this, reconstruc-
tion of meshes requires solving two linear systems, one for
reconstructing the absolute frames from connection maps,
and the other for solving vertex positions. The method is
known to be sensitive to noise [BVGP09]. Kircher and Gar-
land [KG08] propose an alternative approach which stores
connection maps explicitly but the connection maps used
are not orthonormal, which may introduce global shear [B-
VGP09]. For the purpose of semantic deformation transfer,
Baran et al. [BVGP09] propose rotation invariant coordi-
nates which are patch-based and the coordinates record the
connection maps between adjacent patches, as well as mesh
faces with their belonging patches. The coordinates can be
effectively blended and produce more robust results. The
patch-based approach also makes the algorithm more effi-
cient compared with [LSLCO05, KG08] as the number of
patches can be significantly smaller than that of the mesh
elements. Our method is based on this representation; how-
ever, we take a data-driven approach which substantially im-
proves the results, thanks to the use of shape repositories.

Killian et al. [KMP07] consider shapes as points on Rie-
mannian surfaces derived from typical transformations (e.g.
isometric), and formulate plausible morphing as finding a
shortest path in the shape space. Recently, von Tycowicz et
al. [vTSSH15] propose an efficient non-linear shape interpo-
lation technique which achieves real-time performance even
for dense meshes. This method however does not represent
shapes as rotation invariant coordinates so cannot be directly
used in our data-driven approach.

Physically-based shape interpolation. Some research
work improves interpolation realism by utilizing physical
models. For the purpose of realistic simulation, Martin et
al. [MTGG11] combine example-based interpolation with a
strain field approach for improved physical correctness. An
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Figure 4: Visualization of blended cylinder from −360◦ to

360◦ using dimensionality reduction to 2D. Left: result of

poisson shape interpolation [XZWB06], right: result of [B-

VGP09].

elastic deformation energy is defined in [HRWW12] for in-
terpolating shapes and derived from the Hession of this en-
ergy, a Riemannian metric is introduced in [HRS∗14]. Al-
though these techniques tend to produce more realistic in-
terpolation, such methods typically need several seconds for
interpolating one shape so are not suitable for interactive ap-
plications. Moreover, the physical models are significantly
simplified and cannot accurately reproduce the behavior of
complex objects, e.g. human bodies.

Data-driven shape interpolation. Instead of using ex-
pensive physically based modeling, data-driven approaches
resort to existing examples to improve the realism of inter-
polation. Data-driven shape deformation has been widely re-
searched [SZGP05,FB11]. However, such techniques cannot
be directly used for data-driven interpolation, where a large
number of examples are typically needed to cover the plau-
sible interpolation space. For mesh morphing and interpola-
tion, Sloan et al. [SRC01] produce new shapes by example
shape interpolation, controlled by an abstract space which
needs to be manually constructed and specified offline. Re-
cently, Hadar et al. [ACK16] propose a data-driven method
for image morphing, which finds as-smooth-as-possible im-
age sequences by calculating the shortest paths in the dis-
crete neighborhood graph. By contrast, our work deals with
3D mesh morphing and optimizes paths continuously in the
feature space. Gao et al. [GLHH13] propose a data-driven
method that formulates morphing as a shortest path prob-
lem in the local linear subspaces derived from a given ex-
ample model database. However, the vertex coordinates are
directly used for linear blending which may cause distor-
tions with large-scale deformation. Compared with [GLH-
H13], this work uses rotation-invariant coordinates which
handles large-scale deformations well. Instead of optimizing
the morphing sequence discretely defined over a set of local
subspaces, our approach finds the optimized morphing path
in the global continuous space, which not only improves the
efficiency substantially, but also uses the knowledge in the
repository better as it not only interpolates but also extrapo-
lates between example models. Building on this, we further
provide an intuitive interface for users to visualize the mor-
phing path and edit the path interactively.

3. Data-Driven Shape Morphing

In this section, we propose a data-driven interpola-
tion/morphing approach. Given the source shape Ms and the
target shape Mt , our aim is to produce a realistic sequence
of in-between shapes that smoothly transits from the source
to the target. We assume that an example model database
is provided. Models in the database are assumed to have the
same topology. This is often satisfied for existing deformable
object repositories and can be achieved by either fitting a
dynamic template to a collection of objects, or consisten-
t remeshing. If the models in the database are different from
the models to be morphed, a deformation transfer approach
is used [SP04,GLHH13], although these models should have
similar behaviors so that the data-driven approach is mean-
ingful. We first describe the shape representation used to en-
code the deformation of shapes, followed by our data-driven
approach to morphing.

3.1. Shape representation

Given the dataset of the models with deformations we adap-
t the patch-based linear rotation invariant (LRI) representa-
tion [BVGP09] to represent the deformation between dif-
ferent models, as it has the following advantages: (i) It can
handle large deformations well. As shown in Fig. 2, direct
interpolation of coordinates (a) and poisson shape interpo-
lation [XZWB06] (b) cannot blend shapes with large rela-
tive rotations well. (ii) It copes well with not only interpola-

tion but also extrapolation (see a comparison with [FB11] in
Fig. 3); the latter is particularly important to fully exploit the
hidden knowledge in example shapes. (iii) It is suitable for
linear dimensionality reduction (PCA analysis). More detail-
s are given later. A simple example is shown in Fig. 4 where
the cylinder is rotated from −360◦ to 360◦. The interpolat-
ed shapes are nicely distributed over the line after dimen-
sionality reduction to 2D. The distribution obtained with the
alternative poisson shape interpolation approach [XZWB06]
does not exhibit such meaningful distribution. As we will
show later, this visualization is essential to allow intuitive
morphing editing. (iv) The representation is also efficient,
which is critical for interactive applications.

For this purpose, a model is chosen as the base model,
and given a deformed model, the deformation can be en-
coded explicitly as follows: Given a face f with vertices v fi

(i= 1,2,3) and the unit normal direction n f , the deformation
gradient D f for face f can be obtained as [BVGP09]

D f = [v f2 −v f1 ,v f3 −v f1 ,n f ][ṽ f2 − ṽ f1 , ṽ f3 − ṽ f1 , ñ f ]
−1,

where v/n are vertex positions and normal directions of the
deformed surface, and ṽ/ñ are those of the base surface. D f

can be further decomposed into the rotation component R f

and scaling/shear component S f by the polar decomposition:
D f = R f S f .

In order to reduce the size of the linear systems during

c© 2016 The Author(s)
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Figure 5: Model reconstruction with different numbers of

patches. From left to right: 1000, 2000 and 3000 patches.

reconstruction and make the representation robust to noise,
we follow [BVGP09] and partition the surface models in-
to a collection of non-overlapping patches using the method
in [WPP07]. Unlike [BVGP09] which uses a relatively s-
mall number of patches (e.g. dozens), we find using a larger
number of patches more suitable in our settings because to
cover the plausible deformation space of objects, our exper-
iments use much more examples with significant variations
in the training datasets, as we will demonstrate later. Using a
small number of patches may fail to separate major deform-
ing parts, leading to suboptimal results. Fig. 5 compares the
reconstruction results using the SCAPE dataset with a var-
ied number of patches. Using 1000 patches, the reconstruct-
ed model contains slight but visible distortions (left). Using
2000 patches (middle) produces very similar results as 3000
patches (right) with no visible difference, but is much more
efficient, so 2000 patches provide a good balance between
efficiency and quality, and are used in all our experiments.
As individual patches are small enough, deformations will
be more local and we do not observe potential gap artifacts
with this setting.

We denote the patch that face f belongs to as p( f ). Let
us further denote the average rotations of the faces in patch
i as Gi. The patch-based LRI coordinates in [BVGP09] are
vectors including five components: the scaling/shear matrix
S f of each face, the connection map between every pair of
adjacent patches, the relative rotation of each face w.r.t. its
belonging patch, the mean vertex position of all the vertices
and the mean rotation of all the faces. The last two compo-
nents make this feature vector rotation and translation depen-
dent. These components however are used for global rigid
alignment, rather than reconstruction from the coordinates.
To ensure rotation/translation invariance, we remove these
two components from the coordinates and introduce an ad-
ditional step to interpolate the rigid transforms from source
and target pairs. The coordinates x include the following:

x = [S f , log(G−1
i G j), log(G−1

p( f )R f )], (1)

for any face f and any pair of adjacent patches i and j, where
log is the matrix logarithm operation to allow rotation to be
better combined, G−1

i G j is the connection map between ad-

jacent patches i and j. These components are put together
as a feature vector. Empirically the values of these compo-
nents are in a similar scale, so there is no need to introduce
additional weights between these components.

Given this coordinate, we can reconstruct the shape by
solving two linear systems, the first to reconstruct the rigid
rotation of each face and the second to recover the coordinate
of shape vertices.

3.2. Data-driven morphing

Given the example database, we first extract our shape repre-
sentation as features for each deformed model. We now con-
sider examples as samples representing reasonable morph-
ing in the high dimensional coordinate space and formulate
data-driven morphing as finding an energy minimizing curve
in the coordinate space connecting the source shape Ms and
the target shape Mt . Compared with previous data-driven
work [GLHH13], our work has significant advantages: Our
method can describe the shape distribution more effective-
ly. As shown in Figs. 12, 13 and 14, our method effective-
ly extract much more useful shape distribution information
for morphing. As a result, there is no need for database up-
sampling (i.e. adding additional interpolated models to the
database). As we will show later, our method runs much
faster than [GLHH13] and can thus allow the user to edit
the morphing path interactively. The use of rotation invari-
ant coordinates [BVGP09] also helps parameterize the shape
space to a 2D plane for morphing path editing (see Sec. 4).

Our problem is similar to finding geodesic paths on 3D
point clouds; the major difference is that a much higher di-
mension is being considered, and hence the given plausible
shapes provide a much sparser sampling. We first initialize
the path using Dijkstra’s algorithm on the K nearest neighbor
graph, followed by path refinement using iterative quadratic
energy minimization.

3.2.1. Initial Morphing Path

Discrete shape distribution approximation. We first pro-
vide a discrete approximation to the shape distribution rep-
resenting plausible shape deformations. We use a simple K

nearest neighbor (KNN) approach. For every model, we get
the K nearest models in the coordinate space using the L2

norm. In this paper, except for the lion dataset where K = 3
because the dataset only contains 10 example models, K = 6
is used for all the other data-driven morphing examples. We
connect these nearest models to form the KNN graph Ĝ. The
obtained KNN graph Ĝ may have disjoint components. We
form a singly connected graph Ḡ by adding additional edges
with shortest distances between connected components in
the coordinate space to make the graph connected, similar
to Prim’s algorithm for minimum spanning trees.

Initial morphing path. Given the source model Ms and
target model Mt , we can use Dijkstra’s algorithm to get the

c© 2016 The Author(s)
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Figure 6: Non data-driven morphing results. The leftmost

and rightmost models are the source and target models, re-

spectively. Top row: results of [HAWG08]; bottom row: lin-

ear interpolation using patch-based LRI [BVGP09].

Figure 7: Data-driven morphing. First row: source mod-

el, transition model and target model; second row: result

of [GLHH13]; third row: our data-driven morphing result.

path from the source model to target model. This provides
an initial solution, which is often quite reasonable. However,
the initial path is only C0 smooth. The corresponding morph-
ing sequence is thus not visually smooth and the morphing
velocity is non-uniform. We can re-parameterize the morph-
ing path based on the total length to get uniform velocity. In
order to get a smooth morphing path along the shape distri-
bution, we use the following path optimization.

3.2.2. Path Optimization

We follow two principles when optimizing the path. The first
principle is that the interpolated path should be located on
the shape distribution (or near the known samples from the
shape distribution). Another principle is that the interpolat-
ed path should be short and smooth. We model these two
principles using the following optimization, which is solved
iteratively, starting from the initial morphing path.

Let us denote xk to be the interpolated path after kth iter-
ation. xk,i is the ith sample position in xk (200 sample points
are used in our experiments). As we only have a sparse sam-
pling of the shape distribution, we find the k̃ nearest models
x̂k,i j from the examples in the coordinate space (k̃ = 6 in
our experiments), and constrain the coordinates of xk,i to be

close to these models, with a weight decreasing with an in-
creasing distance. To keep the path short and smooth, the
total length and Laplacian operator are used. Overall the fol-
lowing energy is minimized:

E(xk) = ∑i ∑x̂k,i j∈Nxk,i
wk,i j‖xk,i − x̂k,i j‖

2 + γ∑i d2
k,i

+λ‖Lk ·xk‖
2 +δ‖xk −xk−1‖

2, (2)

where wk,i j = exp(−||xk−1,i − x̂k,i j||/σ) is the weight mea-
suring the impact of a nearby example x̂k,i j on xk,i. dk,i−1 =
‖xk,i − xk,i−1‖ is the distance between xk,i and its previous
sample xk,i−1. L is the tridiagonal Laplacian matrix, satisfy-

ing Lk(i, i) = 1, Lk(i, i−1) =−
dk−1,i−1

dk−1,i−1+dk−1,i
, Lk(i, i+1) =

−
dk−1,i

dk−1,i−1+dk−1,i
. The first term favors path to be closer to

the samples on the shape distribution. The second and third
terms prefer shorter and smoother paths. The last term spec-
ifies that the path should be somewhat close to the pre-
vious iteration, which ensures numerical stability. A small
δ = 0.0001 is used in our experiments.

In each iteration, given the optimal solution of the previ-
ous step (or from the initial morphing path) and after finding
the nearest sample shapes for each sample point, this ener-
gy function is quadratic, and thus can be solved efficiently
by solving a linear system. The iterative optimization termi-
nates when converged (i.e. when the average position change
‖∆xk‖< ε, ε = 10−3 in our experiments).

Our method is insensitive to the choice of parameters.
σ = 0.01, γ = 0.01 and λ = 100 are used in all of our exper-
iments. Fig. 8 shows the results of changing one parameter
while keeping others unchanged. The experimental result-
s are based on the SCAPE dataset and the morphing paths
are visualized using PCA (see Sec. 4 for more details). σ

controls the impact of nearby samples. The resulting path
is fairly stable even with a significant change of σ. Increas-
ing γ and λ tends to produce shorter and smoother paths (at
a cost of slightly more deviation from the examples). Even
with substantial change of parameters (by a factor of 10), the
resulting paths still look plausible. We set these parameters
such that they provide a good balance between smoothness
and closeness to examples.

3.2.3. Morphing Sequence Reconstruction

After obtaining the optimized path in the feature coordinate
space, we can generate a sequence of morphing shapes. We
first re-sample the path with a specified number of samples
and by default with even spacing between samples. This pro-
duces time-uniform morphing results. Alternatively, samples
could be distributed along the time in a non-uniform manner
if this is preferred. Given a sample x̃, the interpolated shape S̃

in the morphing sequence can be reconstructed from the cor-
responding feature coordinates [BVGP09]. Since the coordi-
nates are rotation and translation invariant, the reconstructed
shape does not come with consistent orientation information.
We further interpolate a rigid transform for each interpolated
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Figure 8: Visualization of the morphing paths with varying parameters. Left: changing σ to 0.001, 0.01 (default) and 0.1;

middle: changing γ to 0.001, 0.01 (default) and 0.1; right: changing λ to 10, 100 (default) and 1000.
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Figure 9: Path optimization using our approach (green)

and [RDSK06] (red).

shape. We obtain rigid transforms Ts and Tt from the inter-
polated shape S̃ to the source model Ms and target model Mt ,
respectively. As correspondences are known, the rigid trans-
forms can be obtained explicitly using a small number of
correspondences. The rigid transforms are then decomposed
into the rotation and translation components, with rotations
interpolated using quaternion interpolation and translations
interpolated using linear interpolation based on the time. The
interpolated transform T̃ is applied to S̃ to obtain a globally
aligned interpolated shape.

We demonstrate our data-driven morphing using a chal-
lenging synthetic example. As shown in Figs. 6 and 7, the
source and the target models are springs but rotated along
opposite directions (as indicated by the texture). Using non
data-driven methods, including [HAWG08] and linear inter-
polation of patch-based LRI [BVGP09], self-intersections
occur due to the substantial change from the source to the
target (Fig. 6). For data-driven morphing with a cylinder
(pointing inwards) as a reference model for guidance, the
deformation is still significant, and the previous data-driven
method [GLHH13] does not work well. Our data-driven
method produces reasonable output (Fig. 7).

Figure 10: Our interface for morphing editing.

3.2.4. Comparison with approximating geodesic paths

Ruggeri et al. [RDSK06] propose an approximating
geodesic path algorithm for point sets. Their approach uses
an energy formulation with similar terms to ours, including
closeness to samples, and the path length. However, our ap-
proach is different in that instead of using one nearest neigh-
bor for each sample on the path, we use multiple samples in
the neighboring space. We further include a Laplacian term
for smoothness and use an iterative approach to incremental-
ly refine the curves. While their method is effective for point
sets with good distribution, as shown in Fig. 9, when the
points are unevenly distributed, the path produced by their
method is less smooth than ours, and our path tends to pass
nearby areas with sufficient number of samples rather than
passing through samples directly.

As the underlying surface is analytical, we further perfor-
m quantitative comparison. The geodesic path can be ob-
tained exactly and used as ground truth. Following [RD-
SK06], we use egeod(g

∗) = |g∗ − ga|/ga to measure the
normalized difference between the length of a given path
g∗ and the length of the ground truth geodesic path
ga. Our approach has egeod = 0.27% whereas for [RD-
SK06], egeod = 4.5%. This shows that our path is sig-
nificantly shorter than that of [RDSK06]. epath(P

∗) =
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Figure 11: Comparison of dancer morphing results using the dataset from [VBMP08]. (a) the result of [XZWB06] (top) and

our method (bottom), (b) visualization of morphing using feature coordinates and dimensionality reduction to 2D. Purple:

[XZWB06]; Green: our data-driven morphing.

max(dpath(P
∗,Pa),dpath(Pa,P

∗))/ga is another measure,
where P∗ is a given path, Pa is the ground truth path, and
dpath(P1,P2) measures the average distance from points on
the path P1 to path P2. epath(P

∗) measures how close points
on P∗ are to the ground truth path Pa on average. epath =
1.75% for our method, which is smaller than 1.85% for [RD-
SK06].

As the coordinate space is of high dimensionality, and
hence inevitably has a sparse sampling of examples, our
method is thus more suitable.
4. Interactive Morphing Editing

By using a data-driven approach, our method automatical-
ly generates a smooth morphing sequence given a pair of
source and target models at interactive rates. However, in
practice, although the obtained path looks generally realis-
tic, it may not be what the user expects. Instead of generat-
ing an entirely new morphing sequence, it would be much
more efficient to enable the user to edit or adjust the morph-
ing sequence to satisfy their needs. Building on our efficient
data-driven morphing, we further develop a novel tool for
interactive data-driven morphing editing.

Fig. 10 shows our interface for morphing editing. The
user is able to see the current morphing result (in the top
left pane). Moreover, we visualize the examples in the co-
ordinate space by dimensionality reduction using principal
component analysis (PCA) to two dimensions. Note that this
transformation is used to map example shapes, as well as
newly interpolated shapes to the 2D space for visualization.
Standard non-linear mappings such as Multi-Dimensional S-
caling can be used for effective dimensionality reduction and
visualization of example shapes, and may better depict the
relationships between them. However, when new shapes are
added, pairwise distances need to be recalculated, which is
too slow for interactive editing, and can also cause confusion
as the positions of example shapes change after each inter-
action. A possible alternative is to use out-of-sample exten-

sion [BPV03] to embed newly interpolated shapes without
recalculating the mapping. However, it is only approximate
and can be sensitive to the distribution of the original data.

In the bottom right pane, each blue point represents an
example, and the green and red curves represent morphing
paths before and after editing. The morphing sequence is al-
so visualized in the left pane as a sequence of models for
easier selection. The user is free to choose a model on the
current path. Once a model is selected, the four nearest ex-
amples are shown (in orange) around the selected model.
These four models are also selectable and the selected mod-
el will be shown in the top right pane for exploration. If the
user believes one of them is in the direction of their intended
editing, the user can choose one of them, and it is incorporat-
ed into the energy formulation (Eqn. 2) as a hard constraint.
The data-driven morphing algorithm is applied to generate a
new morphing sequence. If the user is not yet satisfied with
the new result, further editing can be incrementally applied.

5. Results

Our experiments were carried out on a computer with an
Intel Xeon E5-2620 CPU with 8GB memory and sped up
in parallel by OpenMP. We used various datasets from the
existing research, including SCAPE [ASK∗05], face [ZSC-
S04], dancer, lion [SP04], handstand, jumping [VBMP08]
and a shape collection containing 23 face scans and 65 hand
models (see the supplementary material for a list of shapes).
Running times for typical examples are shown in Table 1.
Our method is interactive, even with a reasonably large num-
ber of example models. After a one-off path optimization
which takes under a second, it takes less than a second to re-
construct a frame, whereas [GLHH13] takes 25.45s for path
optimization for the hand example (Fig. 1) and several sec-
onds to reconstruct a frame. Note that the timing for frame
reconstruction is based on a single thread, and in practice
as each frame can be reconstructed independently, we use
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Dataset # Vertices # Models. Path Optimization (s) Frame Reconstruction (s)
Scape 12500 71 0.860 0.690
Face 13637 41 0.902 0.716
Hand 7207 65 0.629 0.683

Table 1: Statistics of the datasets and average running times. The timing of frame reconstruction is based on a single thread.

Figure 12: Morphing results using the handstand dataset

from [VBMP08]. First row: [HAWG08], second row: exist-

ing data-driven morphing [GLHH13], third row: our data-

driven morphing.

multi-threading so that the morphing sequence can be gen-
erated within a couple of seconds, which makes interactive
editing feasible.

We now show various morphing results and compare our
method with state of the art (either non data-driven or data-
driven). For these results, the leftmost and rightmost shapes
are the source and target models and several in-between
models from the animation sequence are shown in the pa-
per; please refer to the supplementary video for the morph-
ing animations. For our method, we use the first model in
each dataset as reference. While different reference models
may lead to somewhat different morphing results, our ap-
proach is robust to the choice of reference models: similar
and plausible morphing results are obtained with different
reference models.

Fig. 11(a) shows an example of a dancer morphing us-
ing the dataset from [VBMP08]. Geometry based method-
s such as [XZWB06] produce a smooth transition but have
self-intersections in space. Our data-driven method produces
a smooth and artifact-free result. To better understand how
these methods compare, we use PCA to visualize the exam-
ple models and morphing paths by projecting them to the

Figure 13: Morphing results using the jumping dataset

from [VBMP08]. First row: patched based LRI [BVGP09],

second row: existing data-driven approach [GLHH13], third

row: our data-driven morphing.

Figure 14: Morphing results using the SCAPE dataset

from [ASK∗05]. Top row: existing data-driven approach

[GLHH13], bottom row: our data-driven morphing.

first two principal dimensions (Fig. 11(b)). The geometry
based method (purple) is shorter but out of the shape dis-
tribution. Our method (green) produces a smooth path that
nicely follows the shape distribution.
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Figure 15: Morphing results of a lion using the dataset

from [VBMP08] . First row: [HAWG08], second row: exist-

ing data-driven approach [GLHH13], third row: our data-

driven morphing, fourth row: our data-driven morphing re-

sult transferred to a cat.

Figs. 12 and 13 show two examples of human morph-
ing. For the handstand example, significant deformation ex-
ists and the existing geometry based method produces a
very rigid result which cannot be performed by a human
and thus does not look realistic. The existing data-driven
method [GLHH13] produces a slightly better result. How-
ever, because discrete subspaces are used, their method fails
to find good reference models. Our method produces a re-
alistic morphing result. For the jumping example, existing
methods produce self-intersections (although less artifact-
s exist on the result of [GLHH13]). Our method manages
to find a smooth path following the shape distribution, thus
avoids the artifacts. Our method also produces more time-
uniform animation than [GLHH13]; see the supplementary
video. Fig. 14 gives the morphing results of a human using
the SCAPE dataset. The existing data-driven method [GLH-
H13] fails to find useful references, producing smooth mor-
phing but involves unbalanced poses which are not humanly
possible. Our data-driven method produces natural morph-
ing result.

Similar to [GLHH13], our method assumes an example
model database is provided. To apply to models which are
different from those in the database but has similar behavior,
deformation transfer [SP04, GLHH13] is used. An example
is shown in Fig. 15. Geometry based method [HAWG08]
produces self-intersection and the existing data-driven ap-
proach [GLHH13] generates a rather twisted tail (see the
region highlighted in the blue squares). Our data-driven
method produces more realistic results for lion morphing.
By using deformation transfer, morphing results are trans-
ferred to a cat model (bottom row).

Figs. 16 and 17 show two examples of our data-driven

Figure 16: Data-driven morphing editing of the face

dataset. Top row: before editing, bottom row: after editing.

Figure 17: Data-driven morphing editing of the hand

dataset. Top row: before editing, bottom row: after editing.

morphing editing. For each example, only two reference
models are interactively selected, and the resulting morphing
sequences are both realistic and much richer: the face exam-
ple introduces additional eye blinking and the hand example
produces multiple finger actions. The morphing is solved as
a whole, so the smoothness is not compromised even with
introduced user constraints.

6. Conclusion

In this paper, we propose a novel data-driven approach to
realistic shape morphing by exploiting knowledge in the ex-
ample models. Significantly better results than state-of-the-
art methods are obtained. We further propose a novel inter-
active data-driven morphing editing technique which allows
users to produce desired morphing with little effort.

As a data-driven approach, our method may not work well
if the example database does not sufficiently cover the plau-
sible deformation space. Compared with the existing data-
driven approach [GLHH13], we have demonstrated that giv-
en the same example shape repository, our approach better
utilizes the knowledge hidden in the shape repository and
can often produce better results. It is still an open question
to further exploit the information in the shape repository to
produce realistic morphing with fewer example models.

Our current implementation is purely CPU-based which
achieves interactive performance. The method could be fur-
ther sped up by GPU acceleration, potentially providing
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a more responsive, possibly real-time user interaction. We
would like to investigate this in the future.
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