
This is a repository copy of Symmetry-Aware Mesh Segmentation into Uniform 
Overlapping Patches.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/105622/

Version: Accepted Version

Article:

Dessein, Arnaud Fabien, Smith, William Alfred Peter orcid.org/0000-0002-6047-0413, 
Wilson, Richard Charles orcid.org/0000-0001-7265-3033 et al. (1 more author) (2017) 
Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches. Computer 
graphics forum. pp. 95-107. ISSN 0167-7055 

https://doi.org/10.1111/cgf.12997

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Volume 0 (1981), Number 0 pp. 1–12 COMPUTER GRAPHICS forum

Symmetry-Aware Mesh Segmentation into

Uniform Overlapping Patches

A. Dessein1, W. A. P. Smith2, R. C. Wilson2, and E. R. Hancock2

1IMB / LaBRI, Université de Bordeaux, France 2Department of Computer Science, University of York, UK

Abstract

We present intrinsic methods to address the fundamental problem of segmenting a mesh into a specified number

of patches with a uniform size and a controllable overlap. Although never addressed in the literature, such a seg-

mentation is useful for a wide range of processing operations where patches represent local regions and overlaps

regularise solutions in neighbour patches. Further, we propose a symmetry-aware distance measure and symmetric

modification to furthest-point sampling, so that our methods can operate on semantically symmetric meshes. We in-

troduce quantitative measures of patch size uniformity and symmetry, and show that our segmentation outperforms

state-of-the-art alternatives in experiments on a well-known dataset. We also use our segmentation in illustrative

applications to texture stitching and synthesis where we improve results over state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Mesh structures have become a ubiquitous tool in computer
graphics for 3D modelling of real-world and virtual ob-
jects. In this realm, a profusion of mesh processing tech-
niques have arisen, being either designed according to in-
herent mesh specificities (e.g. rendering, remeshing, recon-
struction) or borrowed from image processing ideas (e.g. fil-
tering, denoising, segmentation). Adapting techniques from
image processing, however, is not always straightforward
and might require a conceptual rethinking of 2D notions for
a meaningful extension to 3D models. In the context of seg-
mentation, [SPDF14] generalise the idea of superpixels to
superfacets. We follow here a complementary approach, and
transfer the fundamental problem of segmenting an image
into uniform overlapping patches to the domain of meshes.

1.1. Context and Motivations

In contrast to superpixels, which trade off the size unifor-
mity against the content homogeneity, a uniform overlap-
ping 2D patch structure is independent of the image con-
tent. Segmenting an image into such a structure is easy
and can be specified by the height and width of rectangular
(often square) patches, and the vertical and horizontal off-

sets between them. Methods that use 2D uniform overlap-
ping patches are numerous and come from a wide range of
problem domains including super-resolution [FJP02], sparse
coding [MES08], denoising [DFKE07], restoration [ZW11],
texturing [LLX∗01], quilting [EF01], editing [CAF10], hy-
bridisation [LW11], synthesis [WLKT09], face hallucination
[LLT05] and generation [MPK09]. Some 3D mesh texturing
schemes also exploit 2D uniform overlapping patches in the
plane after surface flattening [PFH00, ZHW∗06, WSBY06].

Given the ubiquity of 2D uniform overlapping patches in
image processing, it is surprising that there are no existing
methods for segmenting a 3D mesh similarly. Any operation
that we would like to apply over the mesh surface to process
texture, geometry, or any given function defined on the mesh,
may benefit from such a segmentation. We could notably ex-
tend the above 2D methods to operate on 3D meshes, and
process 3D meshes intrinsically without an arbitrary flatten-
ing, other extrinsic operations, and their inherent distortions.

Such a mesh segmentation, however, is not trivial to com-
pute because one cannot rely on the simple translation of a
given base shape. This is a result of emphasising the intrinsic
mesh geometry compared to flat images. In addition, many
objects and associated meshes possess symmetries as inher-
ent components of their geometry. While most mesh pro-

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

cessing methods just ignore such symmetries for simplicity,
it nonetheless seems natural to expect output solutions to be
equivalent for symmetric parts. All in all, the desired seg-
mentation should satisfy a certain number of properties:

• the patches be uniform in size, so that they encompass
equal amounts of local data and exert a similar influence
over global solutions;

• the number of patches or patch size, and hence the seg-
mentation granularity, can be controlled;

• the degree of overlap, and hence the influence of neigh-
bouring constraints, can be controlled;

• the methods be intrinsic, so that results are invariant un-
der pose changes involving rigid deformations and robust
against non-rigid ones;

• the symmetries can be preserved, so that symmetric re-
gions of the mesh lie in symmetric patches.

1.2. Related Work

Mesh segmentation algorithms partition vertices, edges or
faces to optimise a chosen objective. The survey of [Sha08]
distinguishes between two types of objectives: part-type to
produce semantically meaningful regions (typically, volu-
metric components such as arms, legs, body and head for
a human body), and surface-type to create locally consis-
tent patches under some criteria (often, disc-homeomorphic
patches for the purposes of flattening). Segmentation is also
related to sampling where samples determine patch centres.

Centroidal Voronoi tessellation (CVT) [CSAD04] use
Lloyd’s k-means clustering in Euclidean space to form a
CVT (i.e. a Voronoi tessellation where centres are centroids)
for surface-type segmentation. [YBZW14] locally enhance
such an extrinsic CVT to ensure that Voronoi cells form
single connected regions. [PC04] propose an intrinsic CVT
based on geodesic distances, but centroids are not always
well-defined, and clusters are not guaranteed to converge due
to the manifold curvature. These algorithms provide a non-
uniform segmentation. [VC04] approximate a CVT for uni-
form segmentation, but in the extrinsic setting. In addition,
all these methods are not aware of any symmetry.

Poisson-disc sampling (PDS) [LLLF08] address PDS (i.e.
uniform drawing of disjoint discs with a specified radius)
for surfaces using an extrinsic algorithm. [FZ09] advocate
the use of geodesic distances, but introduce an extrinsic
relaxation step and make topological assumptions on the
mesh. [CJW∗09] develop a fully intrinsic PDS algorithm
based on dart throwing. [CCS12] enhance PDS with drawing
constraints such as importance sampling instead of uniform
drawing. [YW13] show useful results for processing gaps in
Poisson disc sets. Inherent to PDS, sampling is stochastic
and disc centres can be spaced arbitrarily as long as they do
not violate the minimum distance constraint (uniform draw-
ing does not mean uniform spacing). Hence, it is difficult to
specify the number of samples while ensuring an even spac-
ing. Lastly, there is no obvious way to preserve symmetry.

Furthest-point sampling (FPS) [MD03] use FPS (i.e. it-
erative selection of the vertex that is furthest from previ-
ous ones) to sample surfaces evenly based on geodesic dis-
tances, and obtain a surface-type segmentation via the under-
lying Voronoi tessellation. [PC06] improve the fast marching
scheme used to compute geodesic distances. FPS can be seen
as a highly biased PDS where all samples are distant from
a minimum distance but sampling gets deterministic after
the first point is drawn. This allows selecting the number of
samples while favouring an even spacing and thus uniform
patches. Again, it is yet non-trivial to preserve symmetry.

Symmetry-aware segmentation [PSG∗06] detect approxi-
mate planar symmetries and segment the mesh accordingly.
[SKS06] further decompose the mesh into a hierarchy of
symmetric parts. [MGP06] also find rotation, translation and
scaling in addition to reflexion. [PMW∗08] detect more gen-
eral structural regularity under the same set of transforma-
tions. [LCDFh10] define a symmetry factored embedding
(SFE) to detect complex symmetries and segment the mesh
by extrinsic clustering in the SFE space. [XZJ∗12] extend
SFE for detection of multi-scale partial symmetries. These
algorithms lead to part-type, non-uniform segmentations.
They also do not necessarily seek a symmetric segmentation,
but rather use symmetry as a cue for segmentation. [PGR07]
introduce symmetry constraints in a CVT, but work in the ex-
trinsic setting and build a non-uniform segmentation. In all
approaches, the symmetry measure quantifies how symmet-
ric different parts of the mesh are under a prescribed group
of transformations. We are not aware of any work defining a
symmetry-aware distance over the mesh vertices themselves.

Overlapping segmentation [TCY09] use an extrinsic patch
dilation to build up overlapping segments that are required
to be disc-homeomorphic, which prevents segmentation of
meshes with a boundary and constrains the number of
patches for meshes with a positive genus. [HGLT09] grow
patches using a distance criterion based on the boundary
length between neighbours, which allows an intrinsic dila-
tion when using the geodesic distance, and puts no con-
straints on the mesh or patches. Both methods, however, pro-
duce non-uniform patches and do not preserve symmetries.
Moreover, they do not provide intuitive controls on overlap.

Discussion None of these existing works addresses either
a uniform overlapping, a symmetry-aware overlapping, or a
symmetry-aware uniform segmentation. Many methods also
neglect the intrinsic mesh geometry, or suffer from issues
such as stochastic indeterminacy, topological constraints on
the mesh or patches, and lack of algorithmic guarantees.

1.3. Overview and Contributions

We propose intrinsic methods for symmetry-aware segmen-
tation of mesh vertices into a user-specified number of
patches that are of uniform size and that overlap by a de-
sired proportion. To do so, we revisit FPS on manifolds.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

Although it allows for an intrinsic mesh segmentation into
uniform patches, classical FPS fails both to produce over-
lapping patches and to preserve mesh symmetries.

A naive solution is to compute classical FPS [PC06] on a
single symmetry orbit and then copy patches. However, re-
sults would not only depend on the arbitrary choice of the
reference orbit, but also feature uniformity issues at bor-
ders between orbits. Another solution is to run FPS based
on distances in the state-of-the-art SFE space [LCDFh10].
Nonetheless, this would hinder both uniformity and symme-
try. Lastly, even with symmetric, uniform input segments,
the existing patch growing [HGLT09] would degrade unifor-
mity and break symmetry of the overlapping output patches.
These issues are verified and discussed in our experiments.

We tackle these issues with three technical contributions:

1. We define a symmetry-aware distance over the mesh ver-
tices which accounts for all symmetry orbits (Sect. 2)

2. We propose a symmetric FPS that fixes uniformity issues
at borders between orbits and ensures symmetry (Sect. 3).

3. We develop a patch growing scheme that builds up uni-
form overlaps while preserving symmetry (Sect. 4).

We also introduce quantitative measures of patch size uni-
formity and symmetry, and present experiments on a well-
known dataset to show that only the coupling of all our three
contributions together can provide a symmetry-aware, uni-
form and overlapping segmentation compared to the above-
mentioned alternatives (Sect. 5). We finally motivate the util-
ity of our segmentation on applications to texture stitching
and texture synthesis problems, where we improve results
over state-of-the-art methods (Sect. 6).

Our pipeline has a number of advantages. It is fully auto-
matic, though the user can interact by specifying patch cen-
tres as seeds to control sampling and remove any stochastic
indeterminacy. There are also no issues of algorithmic guar-
antees nor topological constraints on the mesh or patches.

1.4. Assumptions and Notations

We consider a triangular mesh M = (K,S). The connectiv-
ity is given by the simplicial complex K, whose elements
can be vertices {i}, edges {i, j}, or faces {i, j,k}, with in-
dices i, j,k ∈ [1 ..N], where N is the number of vertices. The
shape is given by the matrix S ∈ R

3×N which contains the
3D coordinates si ∈R

3 of the respective vertices. We assume
that the mesh surface S forms a 2D manifold with geodesic
distance map DS . We often write a vertex {i} simply as i

and conflate i with si when the intended meaning is clear.

The mesh may also exhibit symmetries. We do not solve
here the problem of finding these symmetries, but assume
that they have been modelled directly with the mesh, or at
least that they have been detected and that a remeshing has
been applied accordingly. For simplicity, we focus on bilat-
eral symmetry, though other symmetries can be handled as

j j0

i0i

DS(i, j) 6= DS(i
0, j0)

(a) No symmetry.

j = j0

i = i0

DS(i, j) = DS(i
0, j0)

(b) Self-symmetry.

j = i0i = j0

DS(i, j) = DS(i
0, j0)

(c) Symmetry.

Figure 1: Geodesic distance on a symmetric mesh with

no exact extrinsic nor intrinsic symmetry. In general, the

geodesic distance DS does not preserve symmetry for ar-

bitrary vertices i and j, except from self-symmetric vertices

i = i′ and j = j′, or symmetric vertices i = j′ and j = i′.

explained in our conclusions. This does not necessarily mean
that the shape S is geometrically symmetric from extrinsic or
intrinsic viewpoints, just that each vertex i has a semantically
symmetric partner i′. We extend the symmetry operator to
sets and simplicial complexes by applying it element-wise.

We define a patch P as a subset of vertices i ∈ K. Two
patches Pm and Pn are neighbours if they contain vertices
i ∈ Pm and j ∈ Pn that are connected by an edge {i, j} ∈
K. A standard segmentation covers M with M patches
P1, . . . ,PM ⊂K, such that all vertices belong to exactly one
patch. A segmentation thus defines a dual graph G = (V,E),
where V = [1 ..M], and (m,n) ∈ E if Pm and Pn are neigh-
bours. We here loosen the hard partition constraint to allow
vertices to be shared by adjacent symmetric patches along
the symmetry line, or by overlapping patches Q1, . . . ,QM

once the patches P1 ⊂Q1, . . . ,PM ⊂QM are grown.

2. Symmetry-Aware Distance

The geodesic distance DS is not aware of symmetry as soon
as the shape S is not perfectly symmetric (Fig. 1). Thus, DS

does not in general preserve the distances between two ver-
tices and between their symmetric partners. Hence, any oper-
ation based on DS , such as point sampling or patch growing,
will hinder symmetry. To tackle this, we define a symmetry-
aware distance that preserves the mesh symmetries, if any.

2.1. Formulation

We seek to construct a symmetry-aware distance D̃S over
the surface of a symmetric mesh, that naturally extends the
geodesic distance DS for non-symmetric meshes. With this
aim in mind, it is relevant to consider the points by pairs, and
hence to work on the Cartesian square S×S of the manifold.

We notice, however, that the symmetry operator being de-
fined on the mesh vertices si ∈ S only, we need a means
to extend it to any point s ∈ S on the whole mesh surface.
This can be done by extending the symmetry inside sym-
metric faces using the barycentric coordinates within the tri-
angles. We assume that such an extension has been chosen,
and show hereafter that the arbitrary choice of this extension
does not actually alter the symmetry-aware distance itself.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

We now define the symmetry-aware distance D̃S as the
geodesic distance DS×S computed between pairs of sym-
metric points on the Cartesian square manifold:

D̃S(r,s) = DS×S((r,r
′),(s,s′)) , (1)

where S × S is endowed with the canonical structure of
product manifold induced by that of S. For a general product
manifold, the canonical structure is obtained by orthogonal
copies of the respective manifolds (i.e. by direct product of
their charts and direct sum of their tangent planes). As a re-
sult, the induced metric is given by the element-wise sum
of the respective metrics, and hence geodesic distances are
computed according to the Pythagorean theorem.

Thus, the symmetry-aware distance between two vertices
is the quadratic mean (up to 1/

√
2) of geodesic distances be-

tween those vertices and between their symmetric partners:

D̃S(i, j) =

√
DS(i, j)2 +DS(i′, j′)2 . (2)

This expression is clearly independent of the choice of an
extension for the symmetry operator on S.

Interestingly, the symmetry-aware distance D̃S(i, i
′) be-

tween two symmetric vertices reduces (up to
√

2) to their
geodesic distance DS(i, i

′). The same holds for two self-
symmetric vertices, so that we can use the convention that
all vertices are self-symmetric for a non-symmetric mesh
to make the symmetry-aware distance D̃S equivalent to the
original geodesic distance DS . Hence, our framework natu-
rally extends the non-symmetric case to handle symmetry.

2.2. Implementation

The symmetry-aware distance D̃S amounts to calculating
two geodesic distances DS . In practice, this can be done with
numerical methods such as fast marching. We use an exist-
ing and efficient MATLAB implementation [PC06]. This al-
gorithm is designed for triangular meshes, and is based on
directional derivatives with unfolding of obtuse triangles for
numerical stability, as well as optimisation of the sorting-
based priority queue with a Fibonacci heap.

With this algorithm, we can compute the symmetry-aware
distance map to a vertex i, by calculating either one geodesic
distance map if vertex i is self-symmetric, or two geodesic
distance maps otherwise (although we need not always cal-
culate the full maps when pruning vertices by front confine-
ment or early abandon). Additionally, we can compute dis-
tance maps to an arbitrary set of vertices, instead of a single
vertex, by propagation from this set as a starting front.

For practical considerations, we also use a slight variant
of the symmetry-aware distance. When considering vertices
that lie in a subset of interest, we confine front propagation
within the induced surfaces R⊂ S and R′ ⊂ S for the first
and second geodesic distance maps, respectively. This al-
lows a symmetric sampling by separating propagations on

i?
1

i?
2

i?
3

i?
4

i?
5

(a) Asymmetric sampling.

i?
1

i?
2

i?
1

0

i?
2

0

i?
3
= i?

3

0

(b) Symmetric sampling.

Figure 2: Uniform mesh sampling. In this example, we sam-

ple 5 vertices on a symmetric mesh. We seed the asymmet-

ric version with vertex i⋆1, and select next samples i⋆2, i
⋆
3, i

⋆
4, i

⋆
5

successively by maximising the minimum geodesic distance

to previous ones. In our symmetric version, we take sym-

metric partners i⋆1, i
⋆
1
′ for seeding, and systematically sample

vertices i⋆2, i
⋆
2
′, i⋆3, i

⋆
3
′ by pairs using the symmetry-aware dis-

tance and accounting for pairwise distances. The obtained

segmentation preserves the original mesh symmetries with

the symmetric version in contrast to the asymmetric one.

the respective sides of the mesh. Not only does it provide a
more efficient scheme, but it also prevents unwanted effects
from occurring along the symmetry line by dimensional col-
lapse from the product manifold to the mesh. This further
proves useful when restricting propagation to grow a given
patch within each of its respective neighbours only.

3. Symmetry-Aware Furthest-Point Sampling

We here enhance classical FPS [PC06] with a symmetric ver-
sion (Fig. 2). First, we use our symmetry-aware distance D̃S

rather than geodesic distance DS . Second, we systematically
sample vertices by symmetric pairs. Third, when sampling a
new pair of vertices i⋆ 6= i⋆′, the pairwise distance D̃S(i

⋆, i⋆′)
is also considered to avoid uniformity issues along the sym-
metry line, by favouring self-symmetric vertices rather than
proper symmetric vertices that are close.

3.1. Algorithm

We consider one side of the mesh without lack of generality,
recalling that as soon as vertex i⋆ is sampled, its symmetric
partner i⋆′ is sampled too. Since our symmetry-aware dis-
tance D̃S accounts for both sides evenly, subsequent devel-
opments do not depend on the arbitrary choice of a side. We
denote by K̃ the connectivity induced by K on that side.

We grow the sample set iteratively by adding a new sam-
ple one at a time. We denote by Ĩl = {i⋆1, . . . , i

⋆
l } ⊂ K̃ the

set of first l selected samples. We also define D̃l as the
symmetry-aware distance map to Ĩl :

D̃l(i) = min
i⋆∈Ĩl

D̃S(i, i
⋆) . (3)

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

To select the next sample i⋆l+1, we look for the vertex which
is the furthest from the current samples, and from its sym-
metric partner if proper. To formalise this, we pose the con-
vention that D̃0(i) is the symmetry-aware distance from i to
i′, except from self-symmetric vertices where it is infinite:

D̃0(i) =

{
D̃S(i, i

′) if i 6= i′;

+∞ otherwise.
(4)

The next sample i⋆l+1 is then chosen as follows:

i
⋆
l+1 = argmax

i∈K̃

min
{

D̃0(i), D̃l(i)
}

. (5)

For the next iteration, the new distance map D̃l+1 can sim-
ply be updated as the minimum between the previous dis-
tance map D̃l and that to the new sample i⋆l+1:

D̃l+1(i) = min
{

D̃l(i), D̃S(i, i
⋆
l+1)

}
. (6)

We repeat the process until M′ pairs of symmetric vertices
are sampled, where M′ is such that we obtain M distinct sam-
ples in total (up to a tolerance of one sample more because
of selecting one or two distinct points at each iteration).

In the end, patches P1, . . . ,PM′ are constructed via the
Voronoi tessellation based on symmetry-aware distances:

Pm =

{
i ∈ K̃ : D̃S(i, i

⋆
m) = min

i⋆∈ĨM′

D̃S(i, i
⋆)

}
. (7)

After copying patches across the second side, we may ob-
tain self-symmetric patches that span both sides of the mesh.
Other patches might also share some self-symmetric vertices
as soon as they are adjacent along the symmetry line. We fi-
nally note that our symmetric FPS is a natural extension of
classical FPS for non-symmetric meshes, where all vertices
are considered as self-symmetric, distances DS and D̃S co-
incide and no pairwise distances D̃0 alter sampling.

3.2. Implementation

Typically, classical FPS is seeded by sampling randomly the
first vertex i⋆1. As a refinement, one can replace i⋆1 with its
furthest vertex. When doing so for symmetric FPS we must
again include pairwise distances in the distance criterion.
Optionally, we also propose to initialise sampling with a set
{i⋆1, . . . , i

⋆
L} of fiducial keypoints that represent semantically

meaningful regions and can be selected manually or auto-
matically. A by-product advantage is to make sampling de-
terministic since seeding with at least one keypoint removes
the stochastic indeterminacy due to random initialisation.

Although unlikely in practice, there may exist multiple
vertices that reach the maximum distance to previous sam-
ples at a given iteration. If this happens, we randomly select
one of them. It also allows using the algorithm on discon-
nected meshes, where some maximum distances are infinite
until a vertex is sampled in each connected component.

For efficiency, we also assume that each vertex is assigned
to a single patch (except from shared vertices on the sym-
metry line). Whenever the minimum distance to centres is
reached for several patches, which is again quite unlikely,
we keep the patch whose centre was sampled first. A single
vector is thus required along iterations to store and update
distances D̃l . The respective closest samples, and hence the
associated Voronoi tessellation, can also be updated itera-
tively with a single vector of sample indices.

To update D̃l+1, we need to compute the distance map to
the new sample i⋆l+1. This can be done efficiently by starting
respective fronts from i⋆l+1 and i⋆l+1

′ via fast marching. For

initialisation, we need to compute the distances D̃1, . . . , D̃L

from each seed keypoint. This is also done via fast march-
ing from the seeds i⋆1, . . . , i

⋆
L, and their symmetric partners

i⋆1
′, . . . , i⋆L

′. We thus propagate two fronts for each of the M′

sample pairs, requiring O(MN logN) operations in the worst
case. We can improve this by confining the fronts for D̃l be-
fore step l to the set {i ∈ K̃ : D̃S(i, i

⋆
l−1)≤ D̃l−1(i)}.

More precisely, the first front from i⋆l−1 is restricted to

vertices i ∈ K̃ such that DS(i, i
⋆
l−1) ≤ D̃l−1(i). The sec-

ond front from i⋆l−1
′ is then restricted to vertices i′ such

that DS(i
′, i⋆l−1

′)2 ≤ D̃l−1(i)
2 − DS(i, i

⋆
l−1)

2. This makes
the computation more efficient. Indeed, assuming that ver-
tices are evenly spaced, which approximately holds for a
sufficiently fine meshing, we expect the new patch to con-
tain about N/2l vertices. Thus, the complexity for confined

propagation is roughly bounded by ∑
M′

l=1(N/l) log(N/l), im-
plying an asymptotic complexity of O(N logN logM).

Lastly, we need to initialise pairwise distances D̃0 be-
tween symmetric vertices. This can be done in batch be-
fore segmentation. It leads to propagating about N/2 fronts
(slightly less due to self-symmetric vertices) for a pes-
simistic complexity of O(N2 logN). Although this compu-
tation is the bottleneck of our whole segmentation pipeline,
there are several heuristics that result in a large speed-up.

3.3. Heuristics

To begin with, we stop the respective fronts as soon as the
symmetric partners have been reached. Even if effective in
practice, this heuristic improvement is hard to quantify.

Another improvement is to calculate pairwise distances
greedily along iterations. Before sampling at iteration l, we
sort the vertices in decreasing order according to the fol-
lowing distance criterion: D̃l(i) if D̃0(i) has not been com-
puted yet, or minimum between D̃l(i) and D̃0(i) otherwise.
We then compute D̃0(i) and stop when reaching a vertex for
which it has already been computed, or for which the min-
imum between D̃l(i) and D̃0(i) is greater than the distance
criterion of the next vertex. We know that all subsequent ver-
tices are not candidates for symmetric FPS at iteration l, and
that we need not compute their pairwise distances now if not

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

Pm

Pn

edmn

(a) Before projection. (b) After projection.

Figure 3: Patch agglomeration. A patch Pm is grown by pro-

jecting vertices from surrounding patches Pn. The vertices

that are aggregated to the grown patch Qm are such that

their distance to Pm is less than a controlled threshold d̃mn.

already done. We finally sample among the first vertices, for
which all required quantities are now available.

A further optimisation is the early abandon of required
distances D̃0(i) during front propagation. Because the front
distance to i increases monotonically along fast marching
iterations until reaching i′, we stop propagation as soon as
the front distance exceeds D̃l−1(i).

Lastly, we also test early abandon of D̃0(i) by first using
an inexpensive lower bound. If this bound is greater than
D̃l−1(i), we need not compute D̃0(i). Moreover, we will not
need it for subsequent iterations l′ > l either. This reveals
effective for proper symmetric vertices i 6= i′ that are far from
the symmetry line. A convenient bound is the 3D Euclidean
distance ‖si − si′‖2 ≤ DS(i, i

′) = D̃S(i, i
′)/

√
2, which can

be computed in O(1) instead of the worst-case O(N logN).

4. Symmetry-Aware Uniform Patch Growing

To grow patches and make them overlap, we proceed by ag-
glomeration (Fig. 3). The existing patch growing [HGLT09]
is not designed so that the grown patches will have uniform
areas nor be symmetric. Moreover, it fails to provide natu-
ral controls on overlap. Symmetry can be handled easily by
plugging in our symmetry-aware distance for projection of
surrounding vertices. We grow Pm by computing distances
to the vertices of neighbour patches Pn. The grown patch
Qm is then obtained by adding vertices whose distance is
less than a threshold d̃mn. We choose different thresholds d̃mn

for local adaptation to the approximate uniformity. These
thresholds are derived from a single global parameter σ that
controls overlap intuitively over the whole mesh.

4.1. Algorithm

To grow a given patch Pm, we consider separately each of
its neighbours Pn with (m,n) ∈ E , and define thresholds as:

d̃mn = σ× D̃S(i
⋆
m, i

⋆
n) , (8)

where the overlap ratio σ ≥ 0 is set by the user. The thresh-
old d̃mn is thus proportional to the distance between the two
patch centres. Hence, the threshold d̃nm of Pn into Pm will
equal the threshold d̃mn of Pm into Pn, so that both patches

interpenetrate in each other within the same proportion. The
overlap Omn of Pm onto Pn is then given by:

Omn =

{
i ∈ Pn : min

j∈Pm

D̃S(i, j)≤ d̃mn

}
. (9)

The parameter σ controls the overlap size intuitively over
the mesh. For σ= 0, no growing occurs at all. When σ= 0.5,
the grown patch Qm reaches the centres i⋆n of its neighbours
Pn, independently of their distances D̃S(i

⋆
m, i

⋆
n) to the refer-

ence patch centre i⋆m. Indeed, the patch boundaries are ex-
actly halfway from the neighbour patch centres. Assuming
the vertices are evenly spaced over the mesh, we would thus
expect about half of the vertices in Pn to be included in Omn.
For σ increasing up to 1 or greater, the overlap Omn spreads
after i⋆n and ends up spanning the whole neighbour patch Pn.

A grown patch Qm is eventually constructed by concate-
nation of Pm and of the respective overlaps:

Qm = Pm ∪
⋃

n|(m,n)∈E

Omn . (10)

By symmetry, we only need to grow half (slightly more be-
cause of self-symmetric patches) of the patches P1, . . . ,PM′

into Q1, . . . ,QM′ . We finally note that the proposed growing
scheme again generalises naturally the non-symmetric case,
where projections according to the geodesic distance DS in-
stead of the symmetry-aware distance D̃S are used.

4.2. Implementation

On the one hand, computing a given distance threshold d̃mn

requires propagating one or two fronts. If both patches are
self-symmetric, we just need to start a single front from the
reference centre i⋆m = i⋆m

′ to the neighbouring centre i⋆n = i⋆n
′,

with restriction to Pm ∪Pn. Similarly, if both patches are
symmetric, we start a single front from i⋆n = i⋆m

′ to i⋆n = i⋆m
′.

Otherwise, we need to start two fronts: one from i⋆m to i⋆n, and
one from i⋆m

′ to i⋆n
′, where the former is restricted to Pm∪Pn,

while the latter is restricted to P ′
m ∪P ′

n. Since thresholds
d̃mn = d̃nm are symmetric, we actually only need to compute
half of them. On the other hand, growing a reference patch
Pm within a given neighbour Pn systematically requires two
front propagations starting from the whole patches Pm and
P ′

m, with restriction to Pn and P ′
n, respectively.

The expected number of patch neighbours is asymptot-
ically bounded (see supplementary material for a proof).
Hence, we need to propagate a bounded number of fronts
for each patch. The overall pessimistic complexity is thus
in O(MN logN), though we have a lower practical com-
plexity. Since each patch contains about N/M vertices,
for a sufficiently fine meshing, growing a patch requires
O((N/M) log(N/M)) computations. We thus expect an over-
all complexity of O(N log(N/M)).

To go further, we can also confine the fronts, with respect
to local thresholds d̃mn in neighbouring patches, in the re-
spective sets {i ∈ Pn : D̃S(i,Pm) ≤ d̃mn}. More precisely,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

the first front from Pm can be restricted to vertices i ∈ Pn

such that DS(i,Pm) ≤ d̃mn. The second front from P ′
m can

further be restricted to vertices i′ such that DS(i
′,P ′

m) ≤
d̃2

mn −DS(i,Pm)
2. As a result, the number of required oper-

ations decreases with the overlap ratio σ, even if the overall
complexity is similar because of computing thresholds d̃mn.

5. Experimental Results

We now consider a well-known dataset and introduce quan-
titative measures of patch size uniformity and symmetry to
evaluate our methods for symmetry-aware segmentation into
uniform overlapping patches. We also provide experimen-
tal evidence that intuitive alternatives adapted from classi-
cal FPS [PC06], state-of-the-art SFE [LCDFh10] and patch
growing [HGLT09], cannot achieve such a segmentation.

5.1. Evaluation Setup

We use a subset of the TOSCA dataset [BBK08], comprising
4 objects (Cat, Dog, Horse, Victoria) with resolution ranging
from 19k to 46k vertices, a null genus but positive number
of boundary components, and varying poses for a total of 40
meshes. All objects possess bilateral symmetry, the corre-
spondence for which we get via the perfect mirror symmetry
of the neutral pose per object. Since pose changes are asym-
metric and non-isometric, the meshes have neither extrinsic
nor exact intrinsic symmetry (apart from neutral poses). We
compare different segmentation methods by using two met-
rics we introduce (all scores will be given in percentage).

We first propose a quantitative measure of size uniformity
with the normalised coefficient of variation for patch sizes:

SU(P1, . . . ,PM) =
1√

M−1
× stdevi(size(Pi))

meani(size(Pi))
, (11)

where the patch size is the sum of areas for all faces con-
tained within the patch. The coefficient of variation is a stan-
dardised measure of dispersion and thus provides a scale-
invariant uniformity index. Here, a value of 0% means a per-
fectly uniform, best-case segmentation (i.e. all patches have
identical size), while higher values indicate the degree to
which patch sizes vary up to 100% for a worst-case segmen-
tation (i.e. all patches but one have null size).

We also use a quantitative measure of segmentation sym-
metry with the ratio of vertices that violate symmetry:

SS(P1, . . . ,PM) =
1
N

× card(∪i{Pi \ P̃ ′
i }) , (12)

where P̃ ′
i is obtained by applying the symmetry operator to

the patch that is paired with Pi as sharing symmetric centres.
A value of 0% indicates a perfectly symmetric, best-case
segmentation (i.e. all paired patches are symmetric), while
higher values mean less symmetry up to 100% for a worst-
case segmentation (i.e. each vertex belongs at least to a patch
whose paired patch does not contain its symmetric partner).

Patch number (M) 25 50 75 100 150 200

SFE-GTS SU(%) 95.1 82.1 58.3 48.0 21.0 18.4
SFE-GIS SU(%) 81.8 40.8 20.4 15.8 12.1 10.5
FPS-NS SU(%) 8.5 4.8 3.7 3.1 2.5 2.2
FPS-SA SU(%) 8.0 4.3 3.3 2.8 2.2 2.0

Table 1: Quantitative evaluation of mesh segmentation uni-

formity. Using the proposed measure of size uniformity SU,

our symmetry-aware FPS method FPS-SA outperforms the

naive FPS adaptation FPS-NS and both variants SFE-

GTS/GIS of classical FPS in state-of-the-art SFE space.

5.2. Mesh Segmentation

We begin by evaluating the uniformity of segmentation be-
fore building overlaps. We do not show the non-symmetric
version here since this reduces to classical FPS (see supple-
mentary material for additional results and failure cases).

We compare our symmetry-aware FPS (referred to as
FPS-SA) with two main alternatives. First, we test a naive
symmetric adaptation of classical FPS [PC06]. Half of the
mesh is discarded (self-symmetric vertices are retained), the
remaining half is segmented using FPS and the segmenta-
tion is copied over to the discarded half (FPS-NS). Sec-
ond, we perform extrinsic FPS in SFE space [LCDFh10].
For a fair comparison, we build the correspondence matrix
with the ground-truth symmetry, by computing dissimilar-
ity on the neutral pose and sampling the known planar mir-
ror symmetry as the only transformation (SFE-GTS). In a
variant, we construct the correspondence matrix using their
suggested dissimilarity measure of global intrinsic symme-
try (SFE-GIS). We set the time parameter to 20, the local-
isation parameter to 1% and retain 100 eigenvectors of the
correspondence matrix in both versions. We also keep 100
eigenvectors of the cotangent Laplacian in the latter version.

We vary the number M of patches and display size uni-
formity (SU) averaged over all meshes (Tab. 1). Naive sym-
metric FPS FPS-NS and our symmetry-aware FPS FPS-

SA clearly outperform SFE versions SFE-GTS/GIS. This
is not surprising because distance in SFE space is related to
the degree of symmetry between points, there is no notion of
geodesic distance over the mesh surface. Hence, uniformity
in SFE space does not produce uniform patches. FPS-SA
also outperforms FPS-NS. In addition, FPS-NS has some
practical drawbacks which make it unattractive. Segmenta-
tion results depend on which half of the mesh is discarded
(we compute both alternatives and show the average), and
there is no obvious way to fix uniformity issues that arise
along the symmetry line when the segmentation is copied.

We visualise examples on the Cat model for M= 100
patches (Fig. 4). In the top row, we show the neutral pose
with exact extrinsic symmetry. In this case, our symmetry-
aware distance reduces to the geodesic distance. Neverthe-
less, FPS-SA provides a more uniform segmentation than
FPS-NS because of our symmetric modification to FPS.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

(a) SFE-GTS (SU=32.7%). (b) SFE-GIS (SU=13.0%). (c) FPS-NS (SU=2.3%). (d) FPS-SA (SU=2.0%).

(e) SFE-GTS (SU=34.4%). (f) SFE-GIS (SU=19.8%). (g) FPS-NS (SU=2.8%). (h) FPS-SA (SU=2.3%).

Figure 4: Visualisation of mesh segmentation examples. The Cat model with exact extrinsic symmetry (top row) and approximate

intrinsic symmetry (bottom row) is segmented using the four different algorithms (size uniformity is shown in brackets).

(a) FPS-NS (SU=2.3%). (b) FPS-SA (SU=2.0%).

Figure 5: Effect of symmetric modification. The naive FPS

adaptation FPS-NS fails to produce uniform patches by

placing symmetric keypoints close to the symmetry line in

contrast to our symmetry-aware FPS modification FPS-SA.

This effect can be seen by overlaying the samples (Fig. 5).
FPS-NS sometimes places proper symmetric samples close
to, but not on, the symmetry line (e.g. between ears). With
FPS-SA, the same region is segmented by a proper sym-
metric pair, but the distance between centres is accounted for
by FPS leading to a more uniform sampling. In the bottom
row, the model exhibits only approximate intrinsic symme-
try. Here, the advantage of our symmetry-aware distance be-
comes apparent as the size uniformity only slightly degrades,
whereas results are significantly less uniform for other meth-
ods. Besides the clear non-uniformity of SFE-GTS/GIS,
there are also some practical drawbacks. The method has
a number of parameters that need tuning. In addition, the

patches are not necessarily connected and there is no distinc-
tion between self-symmetric and proper symmetric patches.
These would need to be detected as a post-processing step.

5.3. Patch Growing

We now evaluate the uniformity of our symmetry-aware
patch growing based on the distance between patch centres
(DPC-SA), and test the non-symmetric version (DPC-GD)
using the geodesic distance instead of our symmetry-aware
distance (see supplementary material for additional results).
We also compare to the existing patch growing [HGLT09]
based on the length of patch boundaries (LPB-GD).

We fix a number of M=100 patches, vary the overlap ra-
tio σ and display size uniformity (SU) as well as segmenta-
tion symmetry (SS) averaged over all meshes (Tab. 2). Us-
ing the distance between patch centres in DPC-GD/SA out-
performs the criterion based on the length of patch bound-
aries in LPB-GD with respect to uniformity. Moreover,
LPB-GD does not provide intuitive controls on overlap (we
grow patches with a binary search on the overlap parame-
ter per mesh until their total size is within 1% of that for
our method). It is also unclear how to define the boundary
lengths (we define two boundaries per neighbours, consist-
ing of all edges from one patch that belong to a face such
that the remaining vertex is in the other patch, and average

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

Overlap ratio (σ) 0 0.05 0.1 0.15 0.2 0.25

LPB-GD SU(%) 2.8 2.9 3.2 3.3 3.3 3.2
SS(%) 0.0 0.4 1.2 1.9 2.6 3.2

DPC-GD SU(%) 2.8 2.9 3.1 3.0 2.9 2.9
SS(%) 0.0 0.5 1.1 1.6 2.3 2.9

DPC-SA SU(%) 2.8 2.9 3.1 3.0 2.9 2.9
SS(%) 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Quantitative evaluation of patch growing unifor-

mity and symmetry. Using the proposed measures of size uni-

formity SU and segmentation symmetry SS, our symmetry-

aware patch growing method DPC-SA outperforms the ex-

isting strategy LPB-GD, while preserving the uniformity of

the asymmetric version DPC-GD, as well as the symmetry

constraints in contrast to both methods DPC/LPB-GD.

their lengths). Lastly, only DPC-SA inherently provides a
perfectly symmetric segmentation, while both DPC/LPB-

GD violate symmetry constraints to a significant extent.

We visualise examples on the Victoria model for an over-
lap ratio σ= 0.2 (Fig. 6). In addition to maintaining uni-
formity, only our approach DPC-SA is perfectly symmetric,
whereas the grown patches of DPC-GD and LPB-GD contain
respectively 1,333 and 1,057 vertices that violate symmetry.

6. Segmentation Applications

We finally show the utility of our segmentation methods on
applications to texture stitching and texture synthesis, where
we improve results over state-of-the-art approaches.

6.1. Texture Stitching

The first application we consider is stitching a texture from
multiple partial views, where we exploit a uniform over-
lapping (but non-symmetric) segmentation. Standard tech-
niques either average the available textures or select tex-
tures from the best view per vertex. Such baselines, how-
ever, are likely to contain seams and blurs. A state-of-the-art
technique is rather to blend the best textures per vertex by
solving a screened Poisson equation [CLB∗09]. Neverthe-
less, some artefacts may still appear due to numerous noise
sources in the acquisition pipeline. We propose to tackle this
with a patch-based rather than vertex-based approach.

We use the Rooster dataset of [CLB∗09], which consists
of a model reconstructed from 8 depth maps, aka range
scans, by zippering. The mesh has 68,612 vertices, a genus
of 1 due to a visible handle, and 1 boundary component as
a result of a small hole in the top. We first sample views
on the mesh via depth buffering and bilinear interpolation
in the pixel grid. We then segment the mesh into uniform
overlapping patches. For each view, we compute the mean
angle between the viewer and vertex normals in the differ-
ent patches. Unobserved vertices, due either to occlusion or

(a) FPS-SA
(SU= 3.7%,
SS=0.0%).

(b) LPB-GD
(SU= 4.2%,
SS=2.3%).

(c) DPC-GD
(SU= 3.6%,
SS=2.9%).

(d) DPC-SA
(SU= 3.6%,
SS=0.0%).

Figure 6: Visualisation of patch growing examples. The seg-

mentation of the Victoria model (left) is grown using three

different algorithms (size uniformity and segmentation sym-

metry are shown in brackets).

missing information, are assumed to have a viewing angle of
π/2. Hence, patches with unobserved data are penalised, and
no difference on the nature of non-observability is made. For
each patch now, we select texture from the view with small-
est average viewing angle. Unobserved vertices are filled in
with subsequent sorted views. We finally blend all selected
textures by solving a screened Poisson equation via a global
least-square problem (see supplementary material for further
explanations), where texture gradients are selected by least-
angle per face. We also fill in unobserved vertices by setting
their gradients to zero. Regularisation in the screened Pois-
son equation is done via a coarse texture obtained by av-
eraging the selected textures in overlaps, and using a small
penalty λ = 10−6 to remove colour offset indeterminacies.

The results demonstrate the benefits of our methods on
this difficult dataset (Fig. 7). The two baseline vertex-based
strategies suffer from variations in illumination across scans.
Averaging textures produces multiple seams where some
scans become or cease to be observable, and a general colour
offset resulting in a darker texture due to accounting for
shadowed vertices (Fig. 7a). Selecting the less foreshort-
ened vertices addresses these issues, but introduces even
more marked seams at transitions between selected scans
(Fig. 7b). The coarse texture obtained by selecting patches
(M=100,σ=0.5) and averaging textures in overlaps reduces
this latter problem, but some seams are still visible (Fig. 7c).
Moreover, inherent to all three approaches, unobserved ver-
tices are not textured at all. Our approach tackles all these
issues. To assess the effect of the patch number and over-
lap, we compute stitching for different values of M,σ. For a
small number of patches (M=50,σ=0.0), we observe slight

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

(a) Averaging. (b) Vertex selection. (c) Patch selection.

(d) M=50,σ=0. (e) M=100,σ=0. (f) M=100,σ=0.5.

(g) [CLB∗09]. (h) [CLB∗09]. (i) [CLB∗09].

Figure 7: Texture stitching of multiple partial views. We

compare our patch-based approach to a simplified one, as

well as two baseline and one state-of-the-art vertex-based

schemes. Merging vertex information is not sufficient on this

dataset, whereas patch blending improves quality and re-

moves seams when using enough patches and overlap.

seams, a ghosting effect around the eye and blurred specu-
larities (Fig. 7d). Increasing the patch number (M=100,σ=
0.0), specularities are improved, yet we still observe slight
seams and the ghosting artefact (Fig. 7e). The best result is
when further growing the patches to overlap (M= 100,σ=
0.5), where the obtained stitching is seamless (Fig. 7f). In
contrast, the state-of-the-art texture stitcher [CLB∗09] blurs
the specularities with the painted pattern (Fig. 7g). This is
even more marked on the frontal view, where the central
specularity is missed and the details in the bottom half of the
painted pattern are lost due to a noticeable colour bleed from
the base (Fig. 7h). However, this is not necessarily due to
using a vertex-based approach. Indeed, their pipeline differs
from ours in several stages (e.g. selection by least-distance,
different sampling, screening term and Poisson solver). For
a fair comparison, we thus reimplemented their algorithm in
our pipeline, so that results only depend on whether we use
patches or not for robustness to noise. In this case, the spec-

ularities are preserved and the colour bleed is removed, but
a ghosting artefact still appears around the eye (Fig. 7i).

6.2. Texture Synthesis

As a second application, we employ our symmetric, uniform,
overlapping segmentation for texture synthesis. Specifically,
we address 3D face texture synthesis. A state-of-the-art ap-
proach is to generate random realisations of a 3D morphable
model (3DMM), such as the Basel Face Model [PKA∗09].
A drawback is that details are averaged out due to statisti-
cal regularisation. We tackle this by importing texture from
a patch database to hallucinate missing details.

We use the 3DMM [PKA∗09]. The model has 53,490 ver-
tices, a null genus, 1 boundary component, and has been
symmetrically remeshed via template fitting. We segment
the mean face with symmetric eye centres as seeds (M=
200,σ= 0.5), and build a patch database with images from
the CMU PIE face database [SBB02]. The fitted 3DMM pro-
vides a model for each subject and a dense correspondence
to each image. We stitch textures from the 3 available views
under same illumination per subject to provide a complete
texture. As the 3DMM does not account for glasses or facial
hair, we exclude corresponding subjects, leading to a total of
770 faces representing 35 subjects under 22 lightings.

We obtain the reference face by randomly generating
shape and texture coefficients from the 3DMM and arbitrary
lighting parameters for rendering. We then replace patches
from this target face with patches from the database, by se-
lecting them so as to minimise the Euclidean error. We fi-
nally apply Poisson blending (see supplementary material
for further explanations), with least-error selection of gra-
dients in overlaps. To illustrate the importance of overlap,
symmetry and seeding, we also try out reconstruction by
removing one of these features at a time. The asymmetric
version uses both asymmetric segmentation and growing,
whereas symmetric variants employ a symmetric segmen-
tation and growing, and pick patches by symmetric pairs.

Overall, the results prove the usefulness of our methods
(Fig. 8). The state-of-the-art 3DMM [PKA∗09] provides a
globally coherent texture but locally lacks of realistic asper-
ities (Fig. 8a). In contrast, we import plausible details and
produce a coherent face both globally and locally (Fig. 8b).
Moreover, the synthesised face represents an original indi-
vidual as a hybrid between several training subjects, which
can be seen from assigning a colour to each patch based on
the selected identity (Fig. 8c). Importantly, having no over-
lap at all makes some artefacts appear, notably below the
right eye (Fig. 8d). Even more dramatic, the asymmetric ver-
sion leads to an unrealistic face where the left eye is much
darker than the right one (Fig. 8e). We also point out a subtle
colour difference between two halves of the left iris when not
having eye centres as seeds (Fig. 8f). Finally, hallucinating
other random face realisations provides as many different but
still plausible hybrids (Fig. 8g–i).

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

(a) [PKA∗09]. (b) Hallucination. (c) Identities.

(d) No overlap. (e) No symmetry. (f) No seeds.

(g) Hallucination. (h) Hallucination. (i) Hallucination.

Figure 8: Texture synthesis of random faces. A random face

is generated from a state-of-the-art 3DMM and improved by

importing texture patches. This provides a hybrid, realistic

face with global consistency and local details, where arte-

facts are reduced via overlap, and colour issues of the eyes

are avoided via semantic constraints of symmetry and seeds.

7. Conclusion

We presented methods for symmetry-aware mesh segmenta-
tion into uniform overlapping patches. We now discuss some
limitations and possible extensions for future work.

Mesh modeling We restricted to triangular meshes, due to
the fast marching code used here for convenience. By plug-
ging in a more elaborate scheme for geodesic computation,
our methods could further be applied to polygonal meshes.

Segmentation criteria We considered a specified number of
patches and overlap ratio. However, it is straightforward to
choose other patch criteria (e.g. minimum distance between
patch centres, average patch size or boundary length). We
can also enforce alternate overlapping criteria (e.g. growing
patches up to next neighbouring depths), though care should
be taken to maintain patch uniformity. We could even ob-
tain almost (due to discretisation) perfectly uniform patches
by growing them until they reach a given size, although this
obviously removes any intuitive controls on overlap.

Symmetry types We focused on a single and full, reflex-
ive symmetry. Translational or rotational symmetry can be
handled easily by including the previous samples on both
sides instead of that on one side only plus the virtual sym-

metric sample. For multiple symmetries, we duplicate the
manifold as necessary and define the symmetry-aware dis-
tance on the product manifold accordingly. If a symmetry is
partial, then uninvolved vertices can be set to self-symmetric
for this symmetry. In all cases, we must sample simultane-
ously all vertices that lie in the same symmetry orbit, and
account for the minimum pairwise distance within orbits.

Texture stitching We assumed a constant appearance across
the views to be stitched. A potential improvement is to
include colour calibration and correction steps for camera
and light parameters. In addition, preserving specularity for
stitching is not always desired, and an interesting perspective
to address this is to incorporate an inverse rendering model.

Texture synthesis We observed limitations in the synthe-
sis variability and quality. Variability could be addressed ei-
ther by adding more training face examples to the database,
or by building a database of intrinsic textures and optimis-
ing for camera and illumination parameters during synthesis.
Quality could be enhanced by improving the database qual-
ity itself. Our stitching procedure from 2D images also leads
to inherent artefacts on training faces that are inevitably
transferred to synthesised faces. Exploiting 3D capture for
training would tackle this issue. Lastly, we could favour
the neighbouring compatibility of selected patches to reduce
seams, via belief propagation instead of our greedy strategy
where patches are selected independently of each other.

Further applications Other potential applications of our
segmentation methods include mesh restoration tasks such
as super-resolution, denoising, deblurring and inpainting.
Our symmetry-aware distance may also find different appli-
cations than segmentation in flattening, matching or classi-
fying surfaces with symmetries. A thorough consideration of
each task is however needed to assess whether our methods
can improve results compared to traditional approaches.

Additional Resources

We provide supplementary material and MATLAB source
code on a companion website: http://www-users.
cs.york.ac.uk/wsmith/segmentation.

Acknowledgements

This work was supported by grant DSTLX1000070369 from
the Defence Science & Technology Laboratory. We are
grateful to P. Simari for providing us with symmetric mesh
data, to H. Elgabou for his help to process some models, and
to G. Peyré for his assistance with the fast marching code.

References

[BBK08] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL R.:
Numerical Geometry of Non-Rigid Shapes. Springer, 2008. 7

[CAF10] CHO T. S., AVIDAN S., FREEMAN W. T.: The patch
transform. IEEE Trans. Pattern Anal. Mach. Intell. 32, 8 (2010),
1489–1501. 1

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



A. Dessein, W. Smith, R. Wilson, & E. Hancock / Symmetry-Aware Mesh Segmentation into Uniform Overlapping Patches

[CCS12] CORSINI M., CIGNONI P., SCOPIGNO R.: Efficient and
flexible sampling with blue noise properties of triangular meshes.
IEEE Trans. Vis. Comput. Graphics 18, 6 (2012), 914–924. 2

[CJW∗09] CLINE D., JESCHKE S., WHITE K., RAZDAN A.,
WONKA P.: Dart throwing on surfaces. Comput. Graph. Forum

28, 4 (2009), 1217–1226. 2

[CLB∗09] CHUANG M., LUO L., BROWN B. J., RUSINKIEWICZ

S., KAZHDAN M.: Estimating the Laplace-Beltrami operator by
restricting 3D functions. Comput. Graph. Forum 28, 5 (2009),
1475–1484. 9, 10

[CSAD04] COHEN-STEINER D., ALLIEZ P., DESBRUN M.: Va-
riational shape approximation. ACM Trans. Graph. 23, 3 (2004),
905–914. 2

[DFKE07] DABOV K., FOI A., KATKOVNIK V., EGIAZARIAN

K.: Image denoising by sparse 3-D transform-domain collabo-
rative filtering. IEEE Trans. Image Process. 16, 8 (2007), 2080–
2095. 1

[EF01] EFROS A. A., FREEMAN W. T.: Image quilting for tex-
ture synthesis and transfer. In Siggraph (2001), pp. 341–346. 1

[FJP02] FREEMAN W. T., JONES T. R., PASZTOR E. C.: Exam-
ple-based super-resolution. IEEE Comput. Graph. Appl. 22, 2
(2002), 56–65. 1

[FZ09] FU Y., ZHOU B.: Direct sampling on surfaces for high
quality remeshing. Comput. Aided Geom. D. 26, 6 (2009), 711–
723. 2

[HGLT09] HÉTROY F., GÉROT C., LU L., THIBERT B.: Simple
flexible skinning based on manifold modeling. In Int. Conf. on

Computer Graphics Theory and Applications (2009), pp. 259–
265. 2, 3, 6, 7, 8

[LCDFh10] LIPMAN Y., CHEN X., DAUBECHIES I., FUNK-
HOUSER T.: Symmetry factored embedding and distance. ACM

Trans. Graph. 29, 4 (2010), 103:1–103:12. 2, 3, 7

[LLLF08] LI H., LO K.-Y., LEUNG M.-K., FU C.-W.: Dual
Poisson-disk tiling: An efficient method for distributing features
on arbitrary surfaces. IEEE Trans. Vis. Comput. Graphics 14, 5
(2008), 982–998. 2

[LLT05] LIU W., LIN D., TANG X.: Neighbor combination and
transformation for hallucinating faces. In IEEE Int. Conf. on Mul-

timedia and Expo (2005), pp. 145–148. 1

[LLX∗01] LIANG L., LIU C., XU Y.-Q., GUO B., SHUM H.-
Y.: Real-time texture synthesis by patch-based sampling. ACM

Trans. Graph. 20, 3 (2001), 127–150. 1

[LW11] LIU S., WU J.: Fast patch-based image hybrids synthe-
sis. In IEEE Int. Conf. on Computer-Aided Design and Computer

Graphics (2011), pp. 191–197. 1

[MD03] MOENNING C., DODGSON N. A.: Fast marching far-
thest point sampling. In Eurographics (2003). 2

[MES08] MAIRAL J., ELAD M., SAPIRO G.: Sparse representa-
tion for color image restoration. IEEE Trans. Image Process. 17,
1 (2008), 53–69. 1

[MGP06] MITRA N. J., GUIBAS L. J., PAULY M.: Partial and
approximate symmetry detection for 3D geometry. ACM Trans.

Graph. 25, 3 (2006), 560–568. 2

[MPK09] MOHAMMED U., PRINCE S. J. D., KAUTZ J.: Visio-
lization: Generating novel facial images. ACM Trans. Graph. 28,
3 (2009), 57:1–57:8. 1

[PC04] PEYRÉ G., COHEN L. D.: Surface segmentation using
geodesic centroidal tesselation. In Int. Symp. on 3D Data Pro-

cessing, Visualization and Transmission (2004), pp. 995–1002.
2

[PC06] PEYRÉ G., COHEN L. D.: Geodesic remeshing using
front propagation. Int. J. Comput. Vis. 69, 1 (2006), 145–156.
2, 3, 4, 7

[PFH00] PRAUN E., FINKELSTEIN A., HOPPE H.: Lapped tex-
tures. In Siggraph (2000), pp. 465–470. 1

[PGR07] PODOLAK J., GOLOVINSKIY A., RUSINKIEWICZ S.:
Symmetry-enhanced remeshing of surfaces. In Eurographics

Symp. on Geometry Processing (2007), pp. 235–242. 2

[PKA∗09] PAYSAN P., KNOTHE R., AMBERG B., ROMDHANI

S., VETTER T.: A 3D face model for pose and illumination in-
variant face recognition. In IEEE Int. Conf. on Advanced Video

and Signal Based Surveillance (2009), pp. 296–301. 10, 11

[PMW∗08] PAULY M., MITRA N. J., WALLNER J., POTTMANN

H., GUIBAS L. J.: Discovering structural regularity in 3D geom-
etry. ACM Trans. Graph. 27, 3 (2008), 43:1–43:11. 2

[PSG∗06] PODOLAK J., SHILANE P., GOLOVINSKIY A., RUS-
INKIEWICZ S., FUNKHOUSER T.: A planar-reflective symmetry
transform for 3D shapes. ACM Trans. Graph. 25, 3 (2006), 549–
559. 2

[SBB02] SIM T., BAKER S., BSAT M.: The CMU Pose, Illu-
mination, and Expression (PIE) database. In IEEE Int. Conf. on

Automatic Face and Gesture Recognition (2002), pp. 46–51. 10

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Comput. Graph. Forum 27, 6 (2008), 1539–1556. 2

[SKS06] SIMARI P., KALOGERAKIS E., SINGH K.: Folding
meshes: Hierarchical mesh segmentation based on planar sym-
metry. In Eurographics Symp. on Geometry Processing (2006),
pp. 111–119. 2

[SPDF14] SIMARI P., PICCIAU G., DE FLORIANI L.: Fast and
scalable mesh superfacets. Comput. Graph. Forum 33, 7 (2014),
181–190. 1

[TCY09] TOTZ J., CHUNG A. J., YANG G.-Z.: Patient-specific
texture blending on surfaces of arbitrary topology. In Workshop

on Augmented environments for Medical Imaging and Computer-

aided Surgery (2009), pp. 78–85. 2

[VC04] VALETTE S., CHASSERY J.-M.: Approximated cen-
troidal Voronoi diagrams for uniform polygonal mesh coarsen-
ing. Comput. Graph. Forum 23, 3 (2004), 381–389. 2

[WLKT09] WEI L.-Y., LEFEBVRE S., KWATRA V., TURK G.:
State of the art in example-based texture synthesis. In Eurograph-

ics (2009), pp. 93–117. 1

[WSBY06] WU Q., SHI L., BOND S., YU Y.: Laplacian texture
synthesis and mixing on surfaces. In Pacific Conf. on Computer

Graphics and Applications (2006), pp. 50–59. 1

[XZJ∗12] XU K., ZHANG H., JIANG W., DYER R., CHENG Z.,
LIU L., CHEN B.: Multi-scale partial intrinsic symmetry detec-
tion. ACM Trans. Graph. 31, 6 (2012), 181:1–181:11. 2

[YBZW14] YAN D.-M., BAO G., ZHANG X., WONKA P.: Low-
resolution remeshing using the localized restricted Voronoi dia-
gram. IEEE Trans. Vis. Comput. Graphics 20, 10 (2014), 1418–
1427. 2

[YW13] YAN D.-M., WONKA P.: Gap processing for adap-
tive maximal Poisson-disk sampling. ACM Trans. Graph. 32,
5 (2013), 148:1–148:15. 2

[ZHW∗06] ZHOU K., HUANG X., WANG X., TONG Y., DES-
BRUN M., GUO B., SHUM H.-Y.: Mesh quilting for geometric
texture synthesis. ACM Trans. Graph. 25, 3 (2006), 690–697. 1

[ZW11] ZORAN D., WEISS Y.: From learning models of natural
image patches to whole image restoration. In IEEE Int. Conf. on

Computer Vision (2011), pp. 479–486. 1

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.


