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Abstract

Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They offer promising
perspectives through a more realistic simulation of the way humans navigate according to their perception of the surrounding
environment. In this paper, we propose a new perception/motion loop to steering agents along collision free trajectories that
significantly improves the quality of vision-based crowd simulators. In contrast with solutions where agents avoid collisions in
a purely reactive (binary) way, we suggest exploring the full range of possible adaptations and retaining the locally optimal
one. To this end, we introduce a cost function, based on perceptual variables, which estimates an agent’s situation considering
both the risks of future collision and a desired destination. We then compute the partial derivatives of that function with respect
to all possible motion adaptations. The agent then adapts its motion by following the gradient. This paper has thus two main
contributions: the definition of a general purpose control scheme for steering synthetic vision-based agents, and the proposition
of cost functions for evaluating the perceived danger of the current situation. We demonstrate improvements in several cases.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and

Volume 35 (2016), Number 2

Realism—Animation 1.6.5 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

Crowd simulation is rapidly extending over various application
fields (e.g., entertainment industry, architectural design, etc.) which
demand a high level of visual quality and/or realism. Our paper fo-
cuses on microscopic approaches which formulate the crowd simu-
lation problem at the individual scale. The core of these approaches
is the model of local interactions which defines how each agent’s
motion is influenced by other neighbor agents and obstacles. The
search for the best possible model is thus of prime importance to
improve the quality of crowd simulators. However, due to perfor-
mance constraints, only a small amount of computing time can be
devoted to the task of steering an agent. Consequently, the main
difficulty is to keep simple model formulations, while generating
artifact-free motions.

The crowd simulation field has been very active in the recent
years and proposed many models of local interactions, most of
them dedicated to collision avoidance. They can be divided into
two categories: position-based and velocity-based approaches. The
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former maintain agents’ clearance by controlling them based on a
distance field (either explicitly computed [TCP06] or not [HM95]).
The latter steer agents so that their velocity does not lead to a colli-
sion in the near future. Both approaches generate artifacts of differ-
ent natures. A well known artifact for position-based methods is the
lack of anticipation leading to non-natural individual trajectories in
mid-density conditions or instabilities in higher ones. A typical ar-
tifact of velocity-based approaches is produced by the partition of
the agents’ velocity space into admissible and non admissible ve-
locities, depending on whether or not they lead to collisions in the
near future. As a consequence, agents are allowed to move at quasi-
contact distances which can cause non-natural spatial distributions
of agents during motion.

The key idea of this paper is to revisit the motion control scheme
for velocity-based algorithms. Instead of adapting trajectories if
and only if a collision is predicted, we steer agents by constantly
minimizing the risk of collision. We consider a continuous defini-
tion of the risk of collision so that increasing the future distance of
closest approach beyond the contact distance will decrease the risk
of future collision. We build a solution based on a synthetic vision
technique. Our objective is to make the motion control loop more
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Figure 1: The mechanics of steering agents with our gradient-based synthetic vision model. (a) Three agents walk toward their goal, with a
potential collision between agents A and B. (b) obstacles detected by agent A for the situation depicted in (a). (c) and (d) show the time to
closest approach (ttca) and distance of closest approach (dca) for each perceived obstacle (blue encodes a low value, while red corresponds
to a high value). Obstacles with low ttca and dca convey a significant risk of collision, which leads to high cost in (e). To solve the problem,
the agent determines the partial derivatives of the obstacles cost w.r.t. direction and speed ((f) and (g), respectively). Collision is avoided by
descending the gradient so as to reduce the cost. The resulting trajectories are shown in (h).

robust to complex situations of collision avoidance by adopting a
locally optimal steering approach. To this end, we define a cost
function that is used to characterize the current situation accord-
ing to the visual information, accounting for both the danger of all
visible obstacles and the agent’s goal. At each time-step, the cost
function and its gradient are evaluated. Agents adapt their motion
by resorting to a gradient, in order to minimize the cost function,
which is equivalent to selecting a motion that corresponds to the
best trade-off between reaching the agent’s goal and reducing the
perceived danger of the situation.

The contribution of this paper is twofold. The first is the defini-
tion of a cost function, used to evaluate both the risk of future colli-
sion of the agent, as well as whether or not it is heading towards its
goal. Instead of a binary definition of collision risk, as used in pre-
vious velocity-based approaches, we consider the danger of passing
close to obstacles, based on the notion of closest distance of future
approach. Our second contribution is a control method that steers
agents resorting to a gradient descent of this cost function. As op-
posed to previous position-based methods, which mapped position
changes (velocity) to the gradient of a distance field, we map accel-
erations to the derivatives of our cost function. In addition, our al-
gebraic formulation avoids the need for explicit optimization of the
cost function. The remainder of this paper is organized as follows.
In Section 2, we discuss the most relevant related work. In Section
3, we present an overview of the model, the details of which are
given in sections 4, 5 and 6. In Section 7, we describe the most im-
portant aspects of the implementation and we report the influence
of the parameters on the model. The results are presented in Section
8, which is followed by a discussion and some conclusions.

2. Related work

The main objective of crowd simulation is to compute the mo-
tion of many characters which results from collective behaviors.
This objective has received a wide attention from various disci-
plines and many solutions can be found in the literature [PABOS,

TM13, ANMS13]. These solutions can be classified in two distinct
groups: macroscopic and microscopic approaches. Macroscopic
approaches consider a crowd as a continuous mass and simulate
its motion based on conservation laws. Models based on guidance
fields [Che04, TCP06, NGCL09, PvdBC* 11] are representative ex-
amples. The microscopic approaches, on the other hand, model lo-
cal interactions between agents which influence each other’s mo-
tion. Collective behaviors and global patterns emerge as a conse-
quence of the agent’s local interactions. Our new model falls in the
category of microscopic crowd simulation algorithms.

A large number of microscopic algorithms have been proposed.
Example-based approaches create a crowd motion by concate-
nating or editing pre-recorded trajectories [LCLO7, KLLT08] or
by learning the relations between motion variables during spe-
cific types of interactions [JCP*10]. Those approaches preserve
the realism of local trajectories, but do not generalize as well
as the microscopic approaches which try to mathematically for-
mulate the main principles by which humans move in crowds.
This category of approaches provides an interesting trade-off be-
tween animation control, computational efficiency and animation
quality. In this latter category, some approaches formulate a set
of rules [Rey87, ST07, SKH*11], whereas other authors resort
to forces such as those of a particle system [HM95, HFV00].
Recently, velocity-based approaches have received increased at-
tention. Such models anticipate the danger by extrapolating the
agents’ trajectories to detect potential collisions in a near future.
Extrapolating trajectories for collision prediction is not new. In
[Rey99], Reynolds presented the unaligned collision avoidance be-
havior for this purpose and, in the following years, other works on
this direction have been presented [PPD07, vdBLMO08, KHvBO09,
POO*09, KSHF09, GCK*09, KSH* 12]. The most recent evolution
of velocity-based obstacles is represented by the Optimal Recip-
rocal Collision Avoidance (ORCA) approach [vdBGLM11]. It ef-
ficiently computes the optimal solution in the velocity-space by
extrapolating trajectories to predict potential collisions, hence re-
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ciprocally avoiding collisions between agents in a near future.
A particularly interesting velocity-based approach is the one of
[OPODI10], based on Synthetic Vision and inspired by literature
which acknowledges the role of the human vision system in the
locomotion perception-action loop [CVB95, WF04, RRW 14].

Despite the recent improvements, crowd simulation algorithms
still suffer from important drawbacks. The reasons are many and
depend on each particular approach. In this paper we explore two
of them. First, the reactive process by which interactions are solved
(e.g., [Rey99, OPOD10, KHvBOO09]): agents react to a collision
danger with a basic and unique response, which drastically lim-
its the range of possible strategies. This unique solution is gen-
erally relevant in the simple case of a single interaction, but may
turn into a totally inefficient strategy in the general case of multi-
ple interactions combination. Furthermore, residual collisions are
often observed since agents only focus on avoiding the most im-
minent danger and neglect the consequence of their motion adap-
tations on other potential dangers. Finally, although these strate-
gies often yield emergent patterns under specific traffic conditions
(as expected), those patterns often seem too strong and unnatural,
probably because the agents tend to act similarly. Velocity-based
approaches provide an answer to this problem because they com-
bine interactions to determine the full set of admissible velocities
that allow agents to avoid any collision with any agent in their sur-
roundings in the near future. But this paradigm raises the second
problem we explore in our work. The agent’s motion will be steered
with velocities guiding them at the limit of future contact with other
agents. This does not fully capture human behaviors which may
adapt the interaction distance depending on the context.

In this paper, we present a new model aimed at overcoming most
of those limitations. Unlike existing approaches which make agents
react only if a risk of contact is predicted, our agents adapt their
motion even if no collision is detected so as to further diminish
the risk of future collision. This new principle is implemented as
a cost function used to continuously perform locally optimal adap-
tations. Previous gradient descent methods existed in the literature
(e.g., [TCP0O6,HFV00]), but they all proposed cost functions which
relate agent position to the distance to other agents. Most recent
gradient based approaches also explored time-to-collision based
functions [KSG14]. In contrast, our cost function relates risk of
future collision with velocity adaptations. This way, like velocity-
based techniques, we enable anticipated reactions to solve interac-
tions. Moreover, we avoid the problem raised by the dichotomous
partition of the reachable velocity space into admissible and col-
liding components, since our method evaluates the risk of colli-
sion through a continuous cost function, as explained in the next
section. Our proposal also has some resemblance to the egocen-
tric field approach [KSHF09, KSH* 12] given that both approaches
resort to a control loop for steering agents. In their approach, the
control is composed of sensory, affordance and selection phases.
This could be associated to our perception, evaluation and action
phases (which will be detailed later). However, our approach dif-
fers in several aspects. The major difference is the way the risk of
future collision is evaluated and minimized. The Egocentric field
performs a space-time local motion planning to evaluate an opti-
mal solution, whereas our approach evaluates a solution directly
from instantaneous motion data.
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3. Overview
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Figure 2: The 3-phase control loop. Perception: the agent per-
ceives the surrounding environment resorting to its synthetic vision.
Evaluation: the agent assesses the cost of the current situation. Ac-
tion: the agent takes an action to reduce the cost of the situation.

This section gives an overview of the control loop according to
which agents are steered in our simulation (Section 3.1), as well as
the mathematical notation (Section 3.2).

3.1. Control loop

‘We propose a new control loop to steer agents in crowded environ-
ments with static and moving obstacles. An example of a simula-
tion result is depicted in Fig. 1. Fig. 1 (a) shows the environment
and the initial state of three agents that should move toward their
goals. The motion of agents A and B presents a risk of collision.
With our model, agent A changes its linear trajectory and adapts
its velocity in order to pass behind agent B (Fig. 1 (h)). Agents
are steered to reach their goals and to avoid collisions according to
the loop shown in Fig. 2. The control loop is composed of three
phases: perception, evaluation and action. The complete 3-phase
loop is performed for each time-step of the simulation and for each
agent.

In the perception phase each agent perceives the relative motion
of neighbor obstacles (both static and dynamic). In our approach,
we model each obstacle as a set of points and estimate the relative
motion for each of these points (under the hypothesis of constant
velocity for agent and obstacle, just as any other velocity-based
approach). We then compute, for each point, the time to closest ap-
proach (ttca) and the distance of closest approach (dca). The per-
ception phase is detailed in Section 4. Fig. 1 (b) illustrates the en-
vironment as perceived by agent A in Fig. 1 (a). Figs. 1 (c) and (d)
show the respective ttca and dca maps.
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The role of the evaluation phase is to estimate how ‘good’ the
agent’s current velocity is, given the risk of collision with the per-
ceived obstacles and the alignment with the goal. Such evaluation is
made through the definition of a cost function C;, which consists of
two components: the obstacles cost C,, which captures the risk of
collision based on the perceived tfca and dca values; and the move-
ment cost Cy,, which considers the task of reaching a goal based on
the agent’s speed s4, orientation 8, and angle with the goal og. The
evaluation phase is detailed in Section 5. Fig. 1 (e) illustrates the
C, associated with each pixel. Note the high risk of collision with
agent B given by the high obstacle cost values.

The role of the action phase is to update the agent’s velocity to
minimize the cost function C;. To this end, the partial derivatives of
C; with respect to the agent’s motion variables are computed and
the locally optimal move is deduced. The action phase is detailed
in Section 6. Fig. 1 (f) and (g) illustrate the partial derivatives of C,
for each pixel.

The agent’s change of orientation and speed is determined
through the collective information of the gradient of the cost
functions computed at each pixel. Thus, the values illustrated in
Fig. 1 (f) and Fig. 1 (g) induced agent A to perform a left turn and
to reduce its speed in order to avoid collision with agent B. A small
noise € is added to the agent’s new direction 8, so as to disrupt
symmetry as shown in Fig. 2.

3.2. Mathematical characterization of the agent’s state

Table 1: Description of symbols. Bold face notation represents vec-
tors, otherwise the notation represents scalar variables.

Symbol Description

to Current time-step
P.(t)  Position of agent a at time ¢ (2D point)
Pa Current position of agent a (p, = Pa(19))
Va Velocity of agent a (2D vector)
Sa Speed of agent a (sq = ||Val|)
Sacomy ~ Comfort speed of agent a
04 Orientation of agent a (angle measured with the x-axis)
O Bearing angle with respect to the goal
P,,(r) Position of obstacle o; at time 7 (2D point)
Po; Current position of obstacle o; (po; = Po,; (1))
Velocity of obstacle o; (2D vector)
Vola  Velocity of obstacle o; relative to agent a (2D vector)
Pojja  Current position of obstacle o; relative to agent a
ttcaos;« Time to closest approach between agent a and obstacle o;

dca,, o Distance between agent a and obstacle o; at the closest approach

The current state of an agent a is defined by its position pg, ori-
entation 0, and a velocity vector v, given by:

Va = (Vxa, Vya) = (54 €08 04, 545in04) = sa¥q . (D

Obstacle 7

Pa

Agent a

Figure 3: lllustration of the variables used to model interactions.

These quantities and others which are used throughout the paper
are summarized in Table 1 and illustrated in Fig. 3. A more detailed
description of these quantities is given in the following sections.

4. Perception: Acquiring information

The perception phase (see top left of Fig. 2) is the phase where each
agent gathers information about the surrounding environment. In
our implementation, this step is achieved by equipping agents with
a synthetic vision, as in [OPOD10]. This technique results in a spe-
cific way to model and abstract obstacles, which are sampled and
represented as a cloud of points moving relatively to the agent. As
described in [OPOD10], this is achieved by graphically rendering
the scene from the agent’s point of view. Each visible obstacle is
then perceived as one or more pixels, the set of which composes
the perceptual space O = {o0;}. In other words, O is the cloud of
points representing obstacles and independently moving relatively
to the agent. However, other more classical techniques for acquir-
ing information, such as resorting to the position and shape of the
obstacles typically known by the environment, could also be used.

For each point o; perceived by a given agent, we compute its rel-
ative position p,,|, and relative velocity v,, |, as follows (see Table 1
for notations):

ojla

po,-\a =Po; —Pa and Vo,'\a = Vo, = Va . )

Po;|o and v, |, allow us to deduce trcdo;qa and dcao,q (Fig. 1 (¢)
and Fig. 1 (d), respectively). Assuming that the relative motion of
a point is constant, tfcao, o quantifies the remaining time before
agent a reaches the minimum distance to the obstacle o;; dcao, q is
the distance between the agent and the obstacle at the time of the
closest approach. They are computed as follows:

teR 2V, 10 = (0,0)

ttcao; a Poyla Vol ol 7 ) 3)
- Han-\aH’2 *Voila #(0,0)

dcag,a = ”dcaoi-ﬂH: ||po,-|a+ttca0isavui\u|‘ > )

where ¢ is any time value belonging to R. For more details on the
computation of ttcap; o and dcao, q, please refer to the additional
material document.

In Figure 1, the maps are encoded using a color code in which
blue represents a value close to zero and red represents a large
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value. Because we assume a linear motion and the agent is ori-
ented parallel to the right wall (see Fig. 1 (a)), the dca of the agent
with respect to the right wall is constant. The corresponding zca,
on the other hand, increases with the distance from a point on the
wall to the agent. Note that Several Neuroscience articles describe
the internal model humans use to anticipate obstacles’ motion (e.g.,
[Kaw99]). It appears that linear extrapolation models often fit well
empirical data. In the collision avoidance case, it was proven that
linear extrapolation of obstacles’ motion (in our case, points) is cor-
related with the presence of avoidance maneuvers. This means that
the future dca value as we compute is relevant to encode the notion
of risk of collision. The tfca and dca maps, along with the quanti-
ties defining an agent’s motion (i.e., the speed, s4; the orientation,
04; and the angle with respect to the goal, o) allow a full charac-
terization of the current situation. This information is thus passed
to the evaluation phase, which is described in detail in the next sec-
tion.

5. Evaluation: A cost function to evaluate risk of collision

The goal of the evaluation phase (top right of Fig. 2) is to estimate
the risk of collision with obstacles while the agent is steadfastly
heading toward the goal. To this end, for each agent a, we define a
cost function C; composed of two terms:

Ct :Cm+Co 5 (5)

where the movement cost Cy, accounts for whether or not the agent
is heading toward the goal; and the obstacles cost C, evaluates the
importance of risk of collision with obstacles. In the following sec-
tions, we give the details regarding C;, and C,.

5.1. Movement cost

The movement cost function Cy; is defined so that it is minimal
when the agent is heading toward the goal at its comfort speed:

szl—i‘a (6)

where

_1<Lx>2 _l(J)z
Co=e \"%/) and Cs=e '\ * ) %)

0ig and s4 are the function arguments and Gq, and G5 are parameters
used to adapt the shape of the cost function. Cy, is thus defined
as a sum of two Gaussians (Eqs. (6) and (7)). The width of both
Gaussians can be independently controlled through Gq, and o;. As
detailed in Section 7.2, changing these parameters will directly play
on the agents’ avoidance strategy, i.e., their preference to adapt their
speeds or their orientations to perform collision avoidance.

5.2. Obstacles cost

The cost Cy,; 4 accounts for the risk of collision between agent a
and each perceived obstacle o;. This function results from our in-
terpretation that the risk of collision must be based on a notion of
both distance (dca) and time (ttca). Considering only dca would
make an agent react to objects on a collision course even though
they are at very far distances. In the other hand, considering only
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ttca would make an agent react to obstacles in front of it moving
in the same direction at very close distances because in this case
ttca is infinite. Given that, the resulting cost of this function is high
when both the distance at the closest approach dca (which indicates
an existing risk of collision) and the time to closest approach ttca
(which indicates how imminent the collision is) have low values.
Co;a 1s defined as a two-dimensional Gaussian function:

1 ttcag; a 2+ deag; a2
2 Sttca Sdca 8
) @)

where ttcao,; q and dcay, 4 are the function arguments and Gycq and
Gcq are parameters used to adapt the shape of the function. Grrcq
controls avoidance anticipation time, whereas G, controls the dis-
tance the agent must keep from obstacles.

Coja=e

Let us recall that the obstacle o; corresponds to the obstacle seen
by agent a through the pixel p; (see Section 4). However, agent
a can detect several obstacles from its visual flow (one for each
pixel), where visual flow concerns the sequence of rendered images
as seen by the agent. We combine the costs Cy, 4 of each obstacle
by simply averaging the cost of all the visible obstacles, to obtain
the obstacles cost C, as Cp = %):l”:l Co;,a, Where n is the number
of visible obstacles. Fig. 1 (e) shows the obstacles cost for the situ-
ation depicted in Fig. 1 (a). Note that the pixels for which the cost
is high (marked in red in Fig. 1 (e)) correspond to those which have
a low value for both tfca and dca (i.e., marked in blue in Fig. 1 (¢)
and (d)).

6. Action: Gradient descent

Each agent aims at moving toward its goal while avoiding some risk
of collision with obstacles. As the cost function C; models these
two criteria, agents continuously adapt their velocity in order to
locally optimize the cost function C;. Technically, this is efficiently
done by computing the gradient of C; and by updating the agent’s
velocity to follow the gradient (steepest descent). This operation is
repeated at each time-step.

We assume that an obstacle’s motion is constant. The gradient of
the cost function VC; only depends on the agent’s motion variables
(5a,04). The agent’s new motion, given by (sﬁ,“e‘”), Gflnew)), is thus

computed by giving a step of size A, such that:
(557", 00Y)) = (50,0a) = M VCi(50,00) + (0,€) ,  (9)

where a small noise value € ~ U/(—0.1,0.1) is added to disrupt
symmetric situations. Regarding the step A, used in the gradient
descent, we have experimentally found that using A, = 1 yields
good results. V(; is evaluated as follows:

)} .10

_[acac] _ [(aCu . ac, A, |, o,
VG = [FW} = [(asa + asﬂ> (aea + e,

Note that the partial derivatives of both Gy, and C, can be explicitly
evaluated as detailed in the additional material. The values of the
partial derivatives of the obstacles cost function Cy, 4, for the situa-
tion in Fig. 1 (a), can be visualized in Fig. 1 (f) and (g). In those im-
ages, blue represents a negative value, green a value close to zero,
and red a positive value. Since most of the obstacles in Fig. 1 (f)
with non-zero value have a blue color, the agent will tend to turn
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left. In Figure 1 (g) the obstacles with non-zero (neutral) value have
mostly a red color, causing the agent to reduce its speed.

7. Implementation and Parameters

7.1. Implementation

Algorithm 1 Gradient-based model implementation.

1: for all agents a do
Pa,Va < get_state(a)
camera < set_up_camera(pa, Va)
perc_space < render_environment()
for all pixels p; € perc_space do
if has_visible_obstacle(p;) then

0; < get_obstacle(p;)

Po;; Vo; < get_motion(o;)

Po;|a> Vo, ¢ relative_motion (PasVasPo;s Vor)

R AR AR

—
e

ttcao;,a <— compute_ttca (p{,i| a> Vo a)

—_

dcay,; q < compute_dca (Pm la» Voi|as ttcaoha)

9Cp,.a 9Co,;a .
12: < I 36 >egrad_plxel_cost(ttcag,,a7dca0i,a)

9Co,.a 9C,a
13: perc_space (p;) < ( ot )
14:  end if
15: end for
16: VC, = (%f% gg“) < grad_obstacle_cost (perc_space)
17: VCpn = <%€”1 , %) < grad_movement_cost (A, Og)
18: V(i < grad_cost (VCo, VCp)
19: end for

20: for all agents a do
21:  v4 < adapt_agent_motion (VC )
22: end for

Algorithm 1 shows a pseudocode of our approach. It consists of
two successive loops: computing C; and its gradient VC; 4 for each
agent a (lines 1 to 19); and a second loop to update the state of
the agents in terms of VC; 4 (lines 20 to 22). The first loop fetches
the agent’s current position p, and the current velocity v, (line 2)
which are then used to set up its virtual camera (line 3). In line 4,
environment obstacles are rendered to the perceptual space (a tex-
ture). The loop over perceived pixels starts in line 5. If an obstacle
0; is visible through pixel p; (line 6), we retrieve the corresponding
obstacle and deduce its relative motion (lines 7 to 9). Note that the
velocity vy, is not extracted from any analysis of the visual flow. In-
stead, we directly retrieve the velocity of visible 3D obstacles from
the simulation state. To compute the velocity of each point, we use
GPU interpolation. This approach allows treating objects of arbi-
trary shapes where different parts of the object move with different
velocities (e.g. rotating volumes). In line 10, tfca,, o is computed
according to Eq. (3). Similarly, in line 11, Eq. (4) is used to com-
pute dcay,;q. The partial derivatives of the current obstacles cost
are then computed in line 12. Next, the gradient of the obstacles
cost (line 16), the gradient of the movement cost (line 17) and the
gradient of the total cost (line 18) are computed. The second loop
(lines 20 to 22) updates the simulation by iterating and adapting
the motion of each agent, using the gradient VC; and Eq. (9). Per

.\_ %

T e &

Ottca = 2, Ogeq = 0.6 Learned parameters (Tab. 3) Gttca = 0.3,0404 = 0.3

(@) (®) ©
° ® °
° o ° o ° °
° ° o ° o °
N
° Ne ° ° ° °
° ° °
o5 =3, Go, = 1 Learned parameters (Tab. 3) oy =1, Go, = 3
(d) (e) ()

Figure 4: Influence of the parameters on the agents’ motion. Top:
variation of the obstacles cost function’s parameters. Bottom: vari-
ation of the goal cost function’s parameters.

pixel operations in lines 5 to 15 can be executed in parallel: they
were implemented in OpenGL Shading Language (GLSL). More
precisely, lines 7 to 9 were implemented in the vertex shader while
lines 10 to 13 were implemented in the fragment shader. The com-
putation of the gradient of the obstacles cost (line 16) is suitable
for parallelization, but for now we have implemented just a CPU
version. The rest of the algorithm was implemented using C++. As
for the camera setup we have used the same settings as [OPOD10]:
a field of view of 150°, a height of 80°, an orientation towards the
ground with an angle of —40°, and a resolution of the vision texture
of 256 x 48 pixels. The agents have been represented in a similar
fashion to [OPOD10] so as to enable comparisons: cones with 0.3m
of radius and 1.7m of height. However, our approach allows agents
and obstacles to have arbitrary shapes and sizes.

7.2. Influence of model parameters

Our algorithm has four parameters: Gycq and G, for the obsta-
cles cost function; and o5 and G, for the movement cost function.
Their values can be intuitively adapted by users. Indeed, Grzcq di-
rectly affects the agent’s anticipation time whereas 6,4, modulates
the minimum distance to obstacles. Their effects on avoidance tra-
jectories are shown in Fig. 4 (a), (b) and (c). Increasing G ., re-
sults in a larger minimum distance between the agents whereas in-
creasing Gyscq results in an earlier motion adaptation to avoid col-
lisions. In addition, movement cost parameters have direct impact
on avoidance strategies. Greater G5 values result in a preference
for adapting speed in order to avoid collisions, whereas larger G,
values favor the agents’ reorientation. This effect is illustrated in
the bottom line of Fig. 4: eight agents are initially disposed in a
circle and have to reach the diametrically opposite position. The
left plot (Fig. 4 (d)) corresponds to a large o5 and a small Gq, (re-
spectively 3 and 1): speed adaptation is favored over changes of
direction. Trajectories are mainly rectilinear, some agents wait and
give way to others rather than going around the obstacles (speed is
color coded). The right plot (Fig. 4 (f)) corresponds to the opposite
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configuration: a large Oo, and a small o5. It can be seen from the
depicted trajectories that agents tend to prefer an adaptation of the
motion’s direction. Fig. 4 (e) shows results for an intermediate con-
figuration (using the learned parameters of Table 3 discussed in the
next section), in which the agents adapt both speed and direction to
avoid collisions.

8. Results and Evaluation

In this section we provide results for both quantitative and qual-
itative analysis of the trajectories generated by our technique, as
well as those generated by some previous models, under different
scenarios. An in-depth discussion of the results presented in this
section will then be made in Section 9.

8.1. Experimental set up

We evaluated our new approach by considering several different
scenarios. We describe our results through the following sections.
The companion video shows the corresponding animations with
moving 3D characters and the provided additional material shows
some variations of the proposed scenarios to demonstrate the ro-
bustness of the presented results.

Our model is compared with the following models: OSV, the
original approach based on synthetic vision proposed by Ondfej
et al. [OPOD10], which we selected as a representative of previ-
ous vision-based algorithms; RVO2, a broadly used algorithm (and
therefore an excellent benchmark model), which is representative
of velocity-based avoidance techniques [vdBGLM11], and; Pow-
erLaw, the most recent state-of-the art technique [KSG14] eval-
uated against experimental data. For all these techniques we have
used their standard formulations as provided by the authors. For
example, as regards RVO2, we have only changed two parameters
(radius and comfort speed) to make them adequate to our agents
properties (0.5m and 1.5m/s, respectively).

We have also compared our model with a particle-based model
[HFVO00]. However, since its results were consistently worse than
those of OSV, RVO2 and PowerLaw, we have not reported results.
Ideally, we would compare to many other techniques, but we how-
ever retained the most relevant techniques to compare with. We
have used two sets of parameters for our model in the tested scenar-
ios which only differ slightly between each others (see Tab. 2). For
the other models, we have used the default parameters (except for
the comparison to real data, where optimal parameters were used
for all tested models).

Table 2: The two sets of parameters used for our model. Set 1 can
be considered as a default parameter, since it is used for the most
conventional scenarios. Set 2 is used for cases in which agents must
perform drastic adaptation of speed.

| Stca  Guea  Oa O
Set 1 1.0 03 20 20
Set2 | 20 03 20 30
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Figure 5: Comparison of experimental trajectories (b) with the
trajectories generated by our model after fitting the model to data
(c). It can be seen that, after calibration, the agents are able to fol-
low the experimental data. Nevertheless, for some particular cases,
a different parameter setting might be required.

Table 3: Model’s parameters learned from data. N.D. stands for
neighbor distance, M .A. for maximum acceleration, and M.N. for
maximum number of neighbors.

Our Model (0% RVO2 PowerLaw
Oq, =2.0 A=1.1 M.N.=11 m=24,k=15
c; =33 B=1.6 N.D.=16.2 N.D.=11.6
Gitca = 1.8 Cc=23 Agentt.h. =5.6 To =4.47, ksi =0.91
Odca = 0.3 | Scomg =1.6 | Obstaclet.h. =4.9 M.A.=23.0
Scomf = 1.5 Scomp = 1.4 Scomf = 1.5
ksi =0.91

8.2. Quantitative evaluation
8.2.1. Microscopic features

We have evaluated our model by comparing its generated individ-
ual trajectories and those generated by OSV, RVO2 and PowerLaw
against real data. To this end, we have used the framework devel-
oped by [WGO™14] to learn the model’s parameters from experi-
mental data. We used motion captured data illustrated in Fig. 5(a)
which, in our opinion, exhibit relatively rich behaviors with several
agents interacting at the same time, hence providing interesting el-
ements of comparison. Real and simulated trajectories were quanti-
tatively compared using a progressive difference metric. This vari-
ant of Guy’s metric [GvdBL™12] is prone to capture global motion
features and avoids overfitting problems. Tab. 3 shows the values
of the model’s parameters after calibration. The results depicted in
Fig. 5 (b) and (c) show that, after calibration, our model produces
trajectories with motion adaptations similar to the real data. We also
fit OSV, RVO2 and Power Law in the same way. The progressive
difference metric resulted in the following scores: 0.26 for RVO2,
0.35 for OSV, 0.09 for Power Law and 0.06 for our gradient-based
model, where a lower score means better performance.

Figure 6 shows the results of the four tested models when solv-
ing a classic circle scenario, where 20 agents must reach a diamet-
rically opposed position. To break the symmetry, the initial agents’
positions contain a small noise value. Such a scenario is used to test
the models’ ability to solve situations of potential agglomeration,
in which different agents should take different decisions so as to
reach their goal without collisions and without the emergence of
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Figure 6: Results for Circle scenario. Top: the agent’s color en-
codes the speed. Blue means slow, green means comfort speed,
and red means fast. Note that, our model is the only model which
makes agents significantly accelerate to avoid collisions (although
very tiny accelerations can seldom be remarked for the Power Law
model). Bottom: histogram of the agent’s speed, with the dashed
red line marking their comfort speed.

strong motion patterns. Fig. 6 (top) shows the resulting trajectories,
at two different steps of the simulation for each model. The trajecto-
ries’ color encodes the speed of the agent according to the color bar
shown at the right: green for comfort speed (1.5 m/s); warm colors
(yellow, orange and red) for speeds greater than the comfort speed;
and cold colors (blue) for agents moving slower than the comfort
speed. The histogram of Fig. 6 (bottom) shows the number of oc-
currences of the agents’ speed during the simulation, for the four
tested models. Note that RVO2 makes most of the agents move at
a very low speed, and that our model is the one where more agents
move at their comfort speed. Moreover, our model is the single one
in which agents move faster than their comfort speed.

8.2.2. Macroscopic features

The objective of the analysis made in this section is to quantify
and compare global features of the trajectories generated by the
four tested models. Let us focus on the initial configuration of the
Crossing scenario shown in Fig. 7 (top left), where two perpendic-
ular flows of agents must cross. The trajectories generated using
this initial configuration by our model, OSV, RVO2 and PowerLaw
are shown from the second to the fifth columns of Fig. 7 (top). A
histogram of the crossing distance between agents, shown in Fig. 7
(bottom left), characterizes the crossing distances for each model.
Note that the occurrences of large distances is dominated by the
OSV model and the occurrences of distances very close to zero

are dominated by RVO2 and PowerLaw. Moreover, when analyzing
real crowds crossing in similar configurations, recent literature has
reported the emergence of 45° lanes patterns on the crowd struc-
ture after the two flows cross [CARH13]. We have quantitatively
evaluated this effect by implementing the clusters detection algo-
rithm of [MGM*12] which states that “two pedestrians belong to
the same cluster at a given moment of time if one of them is follow-
ing the other”. We determine the orientation of each detected clus-
ter by fitting a line to its agents. The bottom row of Fig. 7 shows
the detected clusters for a given step in the crossing scenario. Note
that no clusters have been detected for RVO2 and PowerLaw, and
that the average slope of the clusters found is of 45° for our model,
and 41° for OSV.

8.3. Qualitative evaluation

Synthetic vision enables processing static and dynamic obstacles of
any shape in the same fashion: everything is abstracted as visible
pixels moving relatively to each agent. This process also implic-
itly filters invisible obstacles and gives priority to nearer obstacles
(of equivalent size) as they are represented by more pixels. These
properties are illustrated by the Room, Columns and H-corridor
scenarios which mix static obstacles and moving agents. For more
detailed results on each of the scenarios, please refer to the accom-
panying video or to the additional material.

Another non-trivial scenario is given by Fig. 8, where two groups
of agents with opposite flow directions must cross, while avoiding
a set of static obstacles (columns). The presence and position of
such obstacles forces the groups to reorganize and break their initial
formation to successfully reach their goal. Our model and OSV
accomplish this goal although with rather different trajectories. On
the other hand, RVO2 and PowerLaw cause part of the agents to
stay stuck behind the obstacles. The histogram at the left gives an
insight on the agents’ speed in this scenario. Note that for our model
the large majority of the occurrences corresponds to agents moving
close to their comfort speed (1.5m/s).

In the H-corridor scenario (Fig. 9), a group of controlled agents
(in red) has the goal of horizontally traversing a corridor from left
to right. However, two groups of non-controlled agents (in green)
vertically cross the corridor, from the top to the bottom, temporarily
obstructing the controlled agents’ path. To reach their goal without
collisions, some of the agents must stop, wait for the moving ob-
stacles to pass, and finally restart their movement towards the goal.
Fig. 9 shows that the four models provide clearly different results:
our model perfecly solves the scenario; agents controlled by OSV
can, with a single exception, stop to avoid collisions and then re-
take their movement; for RVO2 some of the agents are dragged by
the non-controlled agents; and finally, for PowerLaw, agents tend
to agglomerate after the passage of the non-controlled agents.

8.4. Performance

Simulations ran on a MacBook, 2.13 GHz Intel Core 2 Duo pro-
cessor, 4.0 GB of RAM, NVidia GeForce 9400M graphics card, 16
CUDA cores and 256 MB of dedicated RAM. The algorithm was
written in C/C++ and we used OpenGL for graphics. Fig. 10 dis-
plays the simulation loop runtime compared with OSV on the Op-
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Figure 7: Results for the Crossing scenario. The image at top-left shows the initial configuration of the scenario. The images in the following
columns show the groups of agents separated by flow (red goes to the right and blue goes to the bottom) on the top and separated by clusters
on the bottom for each of the three tested models. The image at bottom-left shows the distribution of distances for each model.
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Figure 8: Results for the Columns scenario. The histogram on the
left shows the distribution of speeds for each model, with the dashed
red line marking comfort speed. The remaining figures show a com-
parison of the trajectories synthesized by the four tested models.

posite scenario. Synthetic vision techniques cannot compete with
RVO2-like geometrical approaches, but still show reasonable per-
formance, being able to run at 10 FPS for 300 agents. Compared
with OSV, we perform a larger amount of computations in GPU.
However, we only need a 2-channel texture to store the results (the
two partial derivatives), whereas OSV requires a 4-channel texture.
This makes the GPU/CPU data transfer time slightly faster for our
model. Moreover, we only process two texture channels in CPU
whereas OSV must process four. This is why, overall, both meth-
ods roughly exhibit the same execution time.
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9. Discussion
9.1. Comparison with previous approaches

In this section, we discuss the results presented in the previous sec-
tion with a view on comparing the four tested models. Note that
these four models work in the velocity space and on dca and ttca
values to allow agents anticipating their reactions. Their difference
lies in the guiding principles of each approach according to which
agents are steered. RVO2 steers agents so as to always keep dca
over a threshold value when the time horizon is bounded. OSV
takes a similar approach but, however, dca is not explicitly com-
puted. Instead it is estimated from the motion of pixels in the vir-
tual optical flow. PowerLaw will steer agents to always increase
ttca values. Finally, in comparison, our method will steer agents so
as to always reduce the risk of future collision, by penalizing low
pairs of dca and ttca values.

We first compared the avoidance strategies. Our algorithm
shows a very heterogeneous strategy to avoid collisions, with the
agents exploring the full range of available adaptations (any com-
bination of acceleration, deceleration or direction adaptations),
as it was observed for real humans performing collision avoid-
ance [OMC*13]. This behavior is clearly visible in Fig. 6. Trajec-
tory traces exhibit early re-orientations, and the speed histogram
demonstrates that our method covers a larger spectrum of attain-
able speeds. In comparison, OSV agents are limited to a small set
of reactions (turn to avoid future collisions, and decelerate to avoid
imminent collision). RVO2 and PowerLaw penalize large devia-
tions from the desired velocity vector (pointing towards the goal),
and thus do not explore the full range of possible strategies. For
example, RVO2 will always retain a solution velocity at the bound-
ary of the constraints imposed by a moving obstacle, at the closest
distance from the desired velocity: strategies of the same kind are



10 T. Dutra, R. Marques, J. Cavalcante-Neto, C. Vidal and J. Pettré / Gradient-based steering for vision-based crowd simulation algorithms

Our model
o9
29
5 0,90 N 3
o —0—o—® ¢ © e 0o e o o o uoeceucoeeeou oy T
141
00— 00§ lgg—o0 G Lo ——0-0—g—0 o8 005 o 560,° so00g o
| | | 2l |
23
o9
29
)
P § A & % ~—— N
©5 25 00000, P o5 00 TEg6 0 S0 songo gt o 0gat oF 00° P
0272 %0 o e=0g” 2%, ¢4 s "o SRR B e =
8
| | ‘ | 22l |
23
6 4
o
g4 o . -
o—o—o—o—sogl? B S oo oo o050 oy . -
oo 0 © % goo ogss o—o—o o oo e g L= %
'3 ® g ol
s
4
k4
Power Law

Ino

o 0 0 0 000 °

% oo oo 000l °
5 s
oh

o]

Figure 9: Comparison of the trajectories synthesized by the four
tested models for the H-corridor scenario.
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Figure 10: Performance comparison for the Opposite scenario
with different number of agents.

thus repeatedly selected. The quantitative comparison of the vari-
ous simulations against real data (Section 8.2) proves that, in the
selected example, the variety of strategies employed by our model
leads to trajectories which are closer to the real data. This variety
and their impact on the final results can also be observed in the
companion video.

We also compared our results in terms of interaction distances
between agents. It is logical to assume that humans accept close
interaction distances in dense situations, but may take larger ones

when room is available around them. Our method results in such
types of adaptation, because agents tend to always diminish the
risk of future collision even when the future distance of closest ap-
proach is greater than contact distance. This can be observed in the
H-corridor scenario (Fig. 9): interaction with the groups moving
vertically makes the controlled agents (in red) get closer to each
others, but a relaxation occurs after interaction and the red agents
recover their initial interpersonal distances. Such relaxation is not
observed for RVO2. Indeed, after interaction, the absence of future
collision will make agents keep moving straight. The PowerLaw
approach behaves in a similar way. Finally, OSV tends to make
agents move in the same direction, following each other. This emer-
gence of a following behavior occurs because the predecessor agent
occludes other obstacles while not provoking a reaction of the fol-
lower. The distance histogram in the crossing scenario (Fig. 7) also
reveals the difference of distance distributions resulting from the
considered algorithms. Note that this distance adaptation does not
prevent our method from exploring narrow paths. When a collision
risk exists everywhere, such as in the Columns scenario (Fig. 8),
the local optimization loop is able to find the minimum in the
cost function and to steer agents in this difficult situation. In the
Columns scenario, an efficient self-organization of the traffic can
be observed. Moreover, for scenarios where physical obstacles are
present (such as the Columns scenario and the H-corridor), the im-
proved performance of our model is probably better explained not
only from better agent-agent interaction, but also from better agent-
obstacle collision avoidance. Indeed, the models RVO2 and Power
Law focus on agent-agent interactions and assume rather simplis-
tic obstacle representations, which could explain some behavioral
issues observed in these scenarios.

The situation introduced in Fig. 7 demonstrates the ability of our
approach to produce the formation of 45° bands (acknowledged by
the literature [CARH13]) when orthogonally moving flows meet.
OSV is also able to achieve it, however, the tendency of OSV agents
to turn to avoid future collisions (see above) results in large de-
viations from the initial path, that we estimate to be exaggerated.
RVO?2 and PowerLaw are not able to simulate this emergent pat-
tern: the reason is again that these algorithms restrict agents to the
smallest required adaptation to avoid collision (agents adapt to pass
at contact distance).

9.2. Limitations

Despite the results obtained, some limitations of our approach can
be pointed out. Firstly, a quantitative evaluation of how close our
control loop is to one of real humans is not possible at the current
stage. This is because the definition of real human’s control loop in
crowds is still an open problem and thus there are no available met-
rics to perform such an evaluation. Secondly, our cost function is
limited to collision avoidance and goal reaching behaviors. The ex-
tension to other behaviors is discussed below. Thirdly, our method
is not able to deal with complex navigation in large environments
and should be integrated to a global motion planner. Finally, as the
notion of risk of future collision exists beyond the contact thresh-
old, agents may perform maneuvers the origin of which is some-
times difficult to interpret.

Another limitation concerns the parameter setting. Although we
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have kept the parameters setting intuitive and the number of param-
eters low, we could not find a single parameter setting which fits
all types of situations. More precisely, on the one hand, we could
find a set of parameter values that fit a similar context, such as the
Opposite, the Columns and the Crossing crossing examples which
show similar situations of intersecting flows of agents moving in
two different directions. On the other hand, we had to adapt param-
eters values for different contexts. In the H-Corridor the situation,
adapting the speed obviously is a more efficient strategy than adapt-
ing the direction, due to the presence of walls on the side. Conse-
quently, we had to increase Os,,,,, to favor this strategy. Note that
parameter sensitivity to context is a more general limitation for all
existing algorithms.

9.3. Possibilities of extending to a geometrical approach

In our work, we equip agents with a synthetic vision system to per-
ceive the surrounding environment. This choice has several inter-
esting properties. One of them is an implicit model which weights
the interactions between agents and obstacles. Indeed, the sampling
density of each visible obstacle depends on the position of the ob-
stacle relatively to the agent: the closer the obstacle, the more pixels
correspond to it, which causes the obstacle to have a larger weight
in the cost function. Another interesting property is that visibil-
ity and partial occlusions are automatically accounted for (hidden
and out-of-the-field parts of the obstacle are surely not sampled).
Finally, abstracting the obstacles as sets of moving points simpli-
fies the computation of t7ca and dca terms (Eq. (4)), whilst the real
shape of obstacles can still be considered. Even though we use sim-
plified shapes for agents, we consider the volume they occupy, and
the approach would easily support agents and obstacles of more
complex shapes.

Given the above, an interesting question is the possibility of ap-
plying the same control loop described in Section 3.1 to agents
without synthetic vision (e.g., agents perceiving the surrounding
environment through a classic geometrical modeling approach to
identify neighbor agent in interaction). This is perfectly doable. In
such a case two questions need to be addressed. First, a criterion
should be defined to determine which agents or obstacles an agent
should interact with. Second, the obstacles cost function needs re-
vision so as to explicitly weight the obstacles according to some
criteria such as, for example, the distance to the agent and the vol-
ume of the obstacle.

9.4. Extension to other behaviors

In our approach, agents are able to perform collision avoidance
during goal directed navigation tasks. We believe that our control
scheme can relatively easily be extended to other kinds of behav-
iors. The main principle governing an agent’s motion is formulated
as a cost function which is constantly locally optimized. A techni-
cal solution to extend other solutions would be to create a set of
different cost functions, each one describing one kind of behavior.
Then, we could imagine different approaches to successively se-
lect cost functions to chain different behaviors, or to mix them by
weighting a combination of functions, so that agents move accord-
ing to several simultaneous criteria. The limitation of this approach
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is that each behavior should be formulated as a cost function which
is formally derivable with respect to orientation and speed.

10. Conclusion

In this paper, we present a new simulation algorithm based on syn-
thetic vision. Our main contribution is a new steering scheme based
on: a) a cost function which evaluates the agents’ situation w.r.t.
their target and risk of collision and b) a locally optimal gradient-
descent scheme. Our results show that we can generate high-quality
trajectories which is also a useful feature for entertainment applica-
tions. In particular, our new method prevents some known artifacts
generated by previous methods as demonstrated in the previous sec-
tion. Our contribution is not a simple revisiting of vision-based al-
gorithms, it makes this method more robust, especially with its new
mathematical foundations. The new control scheme is more eas-
ily extendable to new behaviors and types of interactions between
agents by defining some corresponding cost functions. Besides, we
changed the mechanism by which agents adapt their trajectory: our
agents continuously perform locally optimal adaptations whereas
previous approaches set logical criteria to trigger adaptations.

In our opinion, our model shows a more human-like behavior
than the other models. We base our opinion on the fact that our
model is able to more closely follow the experimental data than the
other models (see Section 8.2.1). Moreover, our model produces
agent behaviors which are commonly observed in the day-to-day
life, but which the other models cannot reproduce, such as acceler-
ating to avoid collisions. Finally, the presented histograms indicate
that, in our model, agents keep a more natural distance between
them, which reduces the strong and unrealistic patterns produced
by other models.

Future work aims at directly tackling the limitations we identi-
fied in the previous section. Regarding the variation of parameters
with different scenarios, we think that the focus of future research
should be put on identifying the current situation and selecting the
appropriate parameter setting, rather than trying to find a single pa-
rameter setting which would work well in all situations (and which
might not exist). To this end, one could resort to machine learning
and image processing techniques, so as to classify the situations
and to learn their respective parameters based on features of the
visual flow. The use of a data-driven layout design approach such
as the one proposed in [FYY*16] could also be useful for helping
defining/validating proper parameters for specific scenarios.

To extend our method with a richer set of behaviors, as well as
to handle larger sets of contexts such as high density ones, we plan
defining and combining different cost functions. As an example,
instead of tfca and dca, a cost function for ‘high-density’ contexts
could be based on the pressure agents perceive from other agents
in contact with them, or the simple distance they keep to the others.
Another example is interactions with more dynamic obstacles like
cars, for which a notion of collision energy could be added to avoid
more carefully the most threatening obstacles. With such future
extensions, we expect to develop more generally the idea of per-
ceptual models for crowd simulation, and to provide the relevance
of the subtleties of human behaviors in such contexts. Finally, the
model could also be improved based on the observation that, in real
life, we react differently when avoiding humans or other obstacles.
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Indeed avoiding humans implies keeping an interpersonal distance
which varies according several aspects. However, when avoiding
other obstacles (e.g., a column or a wall), this interpersonal need
not be respected. Future work could aim at modifying the obstacle
cost function in order to treat differently those two types of entities.
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