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Abstract
We present a method to automatically decompose a light field into its intrinsic shading and albedo components. Contrary to
previous work targeted to 2D single images and videos, a light field is a 4D structure that captures non-integrated incoming
radiance over a discrete angular domain. This higher dimensionality of the problem renders previous state-of-the-art algorithms
impractical either due to their cost of processing a single 2D slice, or their inability to enforce proper coherence in additional
dimensions. We propose a new decomposition algorithm that jointly optimizes the whole light field data for proper angular
coherence. For efficiency, we extend Retinex theory, working on the gradient domain, where new albedo and occlusion terms
are introduced. Results show our method provides 4D intrinsic decompositions difficult to achieve with previous state-of-the-art
algorithms. We further provide a comprehensive analysis and comparisons with existing intrinsic image/video decomposition
methods on light field images.

1. Introduction

Intrinsic scene decomposition is the problem of separating the
integrated radiance from a captured scene, into physically-based
and more meaningful reflectance and shading components, so that
Scene = Albedo× Shading; enabling quick and intuitive edits of
the materials or lighting in a scene.

However, this decomposition is a very challenging, ill-posed
problem. Given the interplay between the illumination, geometry
and materials of the scene, there are more unknowns than equations
for each pixel of the captured scene. To mitigate this uncertainty,
existing intrinsic decomposition methods assume that some addi-
tional properties of the scene are known. However, the prevailing
goal is always the same: the gradients of the depicted scene need to
be classified as coming from a variation in albedo, shading, or both.
In this work, we build on classical Retinex theories to obtain better
predictors of these variations leveraging 4D information from the
light field data.

At the same time, light field photography is becoming more
popular, as multi-view capabilities are progressively introduced
in commercial cameras [Lyt13, Ray13], including mobile de-
vices [VLD∗13]. Such captured light fields are 4D structures that
store both spatial and angular information of the radiance that
reaches the sensor of the camera. This means a correct intrinsic
decomposition has to be coherent in the angular domain, which in-
creases the complexity with respect to 2D single images and 3D
videos (x,y, t). Not only because of the number of additional infor-
mation to be processed, but also because of the kind of coherence
required.

A naïve approach to intrinsic light field decomposition would be

to apply any state-of-the-art single image algorithm to each view
of the light field independently. However, apart from not taking ad-
vantage of the additional information provided by multiple views,
angular coherence is not guaranteed. Hence, additional processing
would be required to make all the partial solutions, typically around
9× 9, converge into a single one. Another approach could be to
extend intrinsic video decompositions to 4D light field volumes,
as these techniques rely on providing an initial solution for a 2D
frame (usually the first), which is then propagated along the tem-
poral dimension. These algorithms are already designed to keep
consistence between frames, but they do not respect the 4D struc-
ture in a light field as all images need to be arranged as a single
sequence, where the optimal arrangement is unknown. Moreover,
the 2D nature of the decomposition propagated back and forth does
not fully exploit the information implicitly captured in 4D.

Therefore, we propose an approach that jointly optimizes for the
whole light field data, leveraging its structure for better cues and
constraints for solving the problem; and enforcing proper angular
coherence by design. We test our algorithm on both synthetic light
fields, and real world ones captured with Lytro cameras. Our results
demonstrate the benefits of working in 4D in terms of coherence
and quality of the decomposition itself.

2. Related Work

Intrinsic decomposition of the shading and albedo components
of an image is a long-standing problem in computer vision and
graphics since it was formulated by Barrow and Tenembaum in
the 70s [BT72]. We review previous intrinsic decomposition algo-
rithms based on their input, and then briefly cover related light field
processing.
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Single Image. Several works rely on the original Retinex the-
ory [LM71] to estimate the shading component. By assuming that
shading varies smoothly, either pixel-wise [TFA05, ZTD∗12] or
cluster-based [GMLMG12] optimization is performed. Clustering
strategies have also been used to obtain the reflectance compo-
nent, e.g. assuming a sparse number of reflectances [GRK∗11,
SY11], using a dictionary of learned reflectances from crowd-
sourced experiments [BBS14], or flattening the image to remove
shading variations [BHY15]. Alternative methods require user
interaction [BPD09], jointly optimize the shape, albedo and il-
lumination [BM15], incorporate priors from data driven statis-
tics [ZKE15], train a Convolutional Neural Network (CNN)
with synthetic datasets [NMY15], or use depth maps acquired
with a depth camera to help disambiguate shading from re-
flectance [BM13,CK13,LZT∗12]. For a full review of single image
methods, we refer the reader to the state-of-the-art [BKPB17]. Al-
though some of these algorithms can produce good quality results,
they require additional processing for angular coherence, and they
do not make use of the implicit information captured by a light
field. Our work is based on the Retinex theory, with 2D and 4D
scene-based heuristics to classify reflectance gradients.

Multiple Images and Video. Several works leverage information
from multiple images of the same scene from a fixed viewpoint un-
der varying illumination [Wei01, HWU∗14, LB15, SMPR07]. Laf-
font et al. [LBP12] coarsely estimate a 3D point cloud of the scene
from non-structured image collections. Pixels with similar chro-
maticity and orientation in the point cloud will be used as re-
flectance constraints within an optimization. Assuming outdoor en-
vironments, the work of Duchene et al. [DRC∗15] estimates sun-
light position and orientation and reconstructs a 3D model of the
scene, taking as input several captures of the same scene under con-
stant illumination. Although a light field can be seen as a structured
collection of images, we do not make assumptions about the light-
ing nor the scale of the captured scene.

Video. A few methods dealing with intrinsic video have been re-
cently presented. Ye et al. [YGL∗14] propose a probabilistic so-
lution based a casual-anticasual, coarse-to-fine iterative reflectance
propagation. Bonneel et al. [BST∗14] present an efficient gradient-
based solver which allows interactive decompositions. Kong et
al. [KGB14] rely on optical flow to estimate surface boundaries
to guide the decomposition. Recently, Meka et al. [MZRT16] pre-
sented a novel variational approach suitable for real-time process-
ing, based on a hierarchical coarse-to-fine optimization. While this
approach can provide coherent and stable results even applied
straightforwardly to light fields, the actual decomposition is per-
formed on a per-frame basis, so it shares the limitations with previ-
ous 2D methods.

Light fields. Related work on intrinsic decomposition of light field
images and videos has been published concurrently. Bonneel et
al. [BTS∗17] present a general approach for stabilizing the results
of per-frame image processing algorithms over an array of images
and videos. Their approach can produce very stable results, but its
generality does not exploit a 4D structure that can be used to han-
dle complex non-lambertian materials [TSW∗15, SAMG16]. On
the other hand, Alperovich and Goldluecke [AG16] present an ap-

proach similar to ours posing the problem in ray space. By doing
this, they ensure angular coherence and also handle non-lambertian
materials. While we do not handle such materials explicitly, our al-
gorithm produces sharper and more stable results, with comparable
reconstructions of reflectances under specular highlights.

Light Field Editing. Our work is also related to papers that extend
common tools and operations for 2D images to 4D light fields. This
is not a trivial task, again given the higher dimensionality of light
fields. Jarabo et al. [JMB∗14] present a first study to evaluate dif-
ferent light field editing interfaces, tools and workflows, this study
is further analyzed by Masia et al. [MJG14], providing a detailed
description of subjects’ performance and preferences for a number
of different editing tasks. Global propagation of user strokes has
also been proposed, using a voxel-based representation [SK02], a
multi-dimensional downsampling approach [JMG11], or preserv-
ing view coherence by reparameterizing the light field [AZJ∗15],
while other works focus on deformations and warping of the light
field data [BSB16, COSL05, ZWGS02]. Cho et al. [CKT14] utilize
the epipolar plane image to extract consistent alpha mattes of a light
field. Guo et al. [GYK∗15] stitch multiple light fields via multi-
resolution, high dimensional graph cuts. There are also consider-
able interests in recovering depths from a light field. Existing tech-
niques exploit defocus and correspondence depth cues [THMR13],
carefully handle occlusions [WER15], or use variational meth-
ods [WG14]. As most of these works, we also rely on the epipolar
plane for implicit multi-view correspondences and processing.

3. Formulation

To represent a light field, we use the two-plane parametrization on
ray space L(x,y,u,v), which captures a light ray passing through
two parallel planes: the sensor plane Πuv, and the virtual camera
plane or image plane Ωxy. Analogous to its 2D image counterpart,
the problem of intrinsic light field decomposition can be formu-
lated as follows: for each ray of the light field L, we aim to find
its corresponding reflectance and shading components R and S, re-
spectively.

L(x,y,u,v) = R(x,y,u,v)×S(x,y,u,v) (1)

Instead of solving for single rays directly, the problem can be for-
mulated in the gradient domain for the image plane Ωxy:

∇l(x,y,u∗,v∗) =∇r(x,y,u∗,v∗)+∇s(x,y,u∗,v∗) (2)

more compactly∇l =∇r+∇s. Where l, r and s denote the single
views for each {u∗,v∗} ∈Πuv for each input view l, its reflectance
r and shading s in log spaces. Note that we denote single views
computed in log domain with lowercase, while uppercase letters
denote the whole light field in the original domain.

The classic Retinex approach [LM71] proposes a solution to
this formulation by classifying each gradient as either shading or
albedo. As seen before, different heuristics have been proposed
over the years, with the simplest one associating changes in albedo
with changes in chromaticity. Although this provides compelling
results for some scenes, it still has the following limitations: chro-
matic changes do not always correspond to albedo changes; the so-
lution is very sensitive to high frequency texture; and more impor-
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Figure 1: Complete pipeline with a simple scene [AZJ∗15]. The central view is shown here and the whole light field is shown in the
Supplementary Material [Gar]. (a) Input light field L. (b) Filtered light field L̂. (c) Normalized input ||L̂||2. (d) Resulting shading S1 from
line 10 in 1 and Equation 8; note that although it looks consistent in one view, the global coherence is not guaranteed as shown in the
Supplementary Material videos. (e) Resulting reflectance R1 from from line 10 in 1 and Equation 8. (f) Filtered reflectance R̂1. (g) Final
shading S f . (h) Final reflectance R f .

tantly it does not take into account the effects of occlusion bound-
aries, where shading and albedo vary at the same time.

4. Our method

4.1. Overview

Our approach to the problem of intrinsic light field decomposi-
tion is based on a multi-level solution detailed in Algorithm 1: In
a first step, we perform a global 4-dimensional l1 filtering opera-
tion, which generates a new version of the light field with reduced
high frequency textures and noise, promoted relevant gradients and
edges, as well as improved angular coherence. The resulting light
field, which we call L̂, will serve to initialize a first estimation of
the reflectance R0 and shading components S0 (Section 4.2). These
initial estimations will then be used to compute the albedo and oc-
clusion cues needed for the actual intrinsic decomposition, which is
done locally per view (Sections 4.3.1 and 4.4), benefiting from the
previous global processing of the whole light field volume. A final
global 4D l1 filtering operation (Section 4.5) performed over the
reflectance finishes promoting angular coherence and stability, as
can be seen in the results section and the Supplementary Material.
The complete pipeline is shown in Figure 1.

Algorithm 1 Intrinsic Light Field Decomposition
1: Input: Light field L(x,y,u,v)
2: . Initialization (Section 4.2)
3: L̂← TV-L1(L, β = 0.05)
4: S0← ||L̂||2
5: R0 ← L̂/S0
6: . Global Analysis (Sections 4.3.1 and 4.4)
7: ωa ← getAlbedoTh(L̂, R0)
8: ωocc ← getOcclusionGradient(Ldepth)
9: . Local intrinsic decomposition

10: R1,S1← G(L̂, ωa, ωocc) . Note that R1 and S1 are both single
channel

11: . Global coherence (Section 4.5)
12: R̂1← TV-L1(R1, β = 0.05)
13: S f ← ||L̂||2/R̂1
14: R f ← L/S f
15: Result: R = R f (x,y,u,v), S = S f (x,y,u,v)

4.2. Initialization

Inspired by the work of Bi et al. [BHY15], we noticed that better
predictions of the albedo discontinuities can be done by perform-
ing an initial l1 filtering of the light field volume, since it enhances
edges and removes noise that could introduce errors in the esti-
mation of gradients. In particular, we regularize the total variation
(TV-l1):

min
L̂

1
2
‖L̂−L‖2

2 +β‖L̂‖1 (3)

As a result, from the original light field L, we obtain a filtered ver-
sion L̂, close to the original input but with sharper edges due to
the use of l1 norm on the second term. Additionally, the use of this
norm effectively removes noise while prevents smoothing out other
important features. The regularization factor β controls the degree
of smoothing, where in our experiments β = 0.05.

Working with light fields means that we need to solve this mul-
tidimensional total variation problem in 4D. For efficiency, we use
the ADMM solver proposed by Yang et al. [YWF∗13]. ADMM
combines the benefits of augmented Lagrangian and dual decom-
position methods. It decomposes the original large global problem
into a set of independent and small problems, which can be solved
exactly and efficiently in parallel. Then it coordinates the local so-
lutions to compute the globally optimal solution.

Figure 2 shows the difference in angular coherence and noise be-
tween the input L, a filtered version obtained from processing each
single view independently, and our L̂ obtained from the described
global filtering. From L̂, we compute the initial shading as, S0 =
||L̂||2. This is a convenient step to obtain a single-channel version
of the input image, with other common transformations like the
RGB average or the luminance channel from CIELab [GMLMG12]
providing similar performance. Taking S0 as baseline, we compute
the initial RGB reflectance R0 simply from L̂/S0. It is important to
note that S0 and R0 serve only as the basis over which our heuristics
are applied to obtain the final cues to solve for the actual intrinsic
decomposition (Equation 4). Figure 3 shows the impact of this l1
regularization on the detection of albedo variations.
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original epi

TVL1 global

TVL1 per view

Figure 2: Visualization of the horizonal epi view for the red scanline in Figure 3 (a). From top to bottom: the epi from the original light field;
the epi after applying TV L1 filter to each view separately; the same epi after applying a 4D TV L1 filter to the whole light field volume using
our approach. We can observe (by zooming in the digital version), areas with very similar colors are flattened, while sharp discontinuities
are preserved, effectively removing noise and promoting angular coherence.

Figure 3: (a) Central view of an input light field. (b) Albedo varia-
tions computed as the angle between RGB vectors for neighboring
pixels L̂i,L j , from the original light field L. (c) Albedo variations

obtained from our initial reflectance estimation, ̂Ri
0,R

j
0. (d) Albedo

variation from the chromaticity norm, ||L̂i− L̂ j||, used by Zhao et
al [ZTD∗12]. Our approach (c) yields cleaner gradients than (b),
and captures more subtleties than (d). Note for example the green
leaves at the right of the image. Every image is normalized to its
maximum value.

4.3. Intrinsic Estimation

As motivated before, for efficiency, we follow a Retinex approach.
We build on Zhao’s closed-form formulation [ZTD∗12], extend-
ing it to take into account our albedo and occlusion cues obtained
from the 4D light field volume. For each view l of the light field,
the system computes the shading component s by minimizing the

following equation:

min
s

λ1 f1(s)+λ2 f2(s)+λ3 f3(s) (4)

where f1 is the Retinex constraint, f2 is an absolute scale constraint,
and f3 is a non-local texture cue; and λ1, λ2, and λ3 are the weights
which control the influence of each term, set to λ1 = 1, λ2 = 1 and
λ3 = 1000. In this work we extend f1, so please refer to the original
paper for the full details of f2 and f3.

4.3.1. Retinex-Based Constraint

The original Retinex formulation assumes that while shading varies
smoothly, reflectance tends to cause sharp discontinuities, which
can be expressed as:

f1(s) = ∑
i, j∈Nxy

(∇s2
i j +ω

a
i j∇r2

i j) (5)

where Nxy is the set of pairs of pixels that can be connected in a
four-connected neighborhood defined in the image plane Ωxy, and
ω

a
i j is commonly defined as a threshold on the variations in the

chromatic channels (Section 4.4). Following Equation 2, we define
the following transformation, needed to solve Equation 4.

∇r =∇l̂−∇s (6)

However, we found that this equation ignores the particular case
of occlusion boundaries, where shading and reflectance may vary
at the same time. In order to handle such cases, we introduce a new
additional term ω

occ
i j , which has a very low value when an occlu-

sion is detected, so it does not penalize the corresponding gradients
(more details in Section 4.4):

f1(s) = ∑
i, j∈Nxy

ω
occ
i j (∇s2

i j +ω
a
i j∇r2

i j) (7)

We define G as the function that takes the whole light field and
the global cues to obtain the corresponding shading and reflectance
layers:

G(L̂,ωa,ωocc) = (S1,R1) (8)

It is important to note that s has a single channel (an interesting
future work would be to lift this restriction to allow colored illumi-
nation), so Equation 6 is also a single channel operation, where l̂
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is ||l̂||2. Therefore, Equation 4 yields single channel shading s, and
reflectance r = ||l||2− s in log-spaces. Then, S1 and R1 are:

∀u,v ∈Πuv
S1(x,y,u,v) = es

R1(x,y,u,v) = er (9)

4.4. Gradient Labeling

In the following, we describe our extensions to the classic Retinex
formulation: the albedo and occlusion terms in Equation 7. Note
that this labeling is independent from solving the actual system
(Equation 4), so each cue is computed in the most suitable color
space, or additional available dimensions like depth.

4.4.1. Albedo Gradient (ωa)

Albedo gradients are usually computed based on the chromatic in-
formation in CIELab color space. However, as we have shown, our
initial RGB reflectance R0 is better suited for this purpose, since
it shows more relevant albedo variations. Staying in RGB space,
we are inspired by the planar albedo assumption of Bousseau et
al. [BPD09] and propose an edge-based analysis where if neigh-
boring pixels {i, j} are co-linear, their albedo is assumed to be con-
stant. This is a heuristic that works reasonably well in practice ex-
cept for black and white albedo, which are handled separately. We
thus compute our weights as:

ω
a
i j =

{
0, if ̂Ri

0,R
j
0 > 0.04

1, otherwise
(10)

Setting ω
a
i j = 0 in Equation 7, means that such gradient comes from

albedo, so the gradient of the shading should be smooth. We found
a difference of 0.04 radians works well in general, producing good
results. We can see an example in Figure 3, where our measure is
compared to the original Zhao’s estimator, which only used Eu-
clidean distances.

Our proposed heuristic works reasonably well when there is
color information available, however it fails when colors are close
to pure black or white. Thus, we choose to detect them indepen-
dently and use them as similar cues as for regular albedo, so the
final shading is not affected. We propose an approach based on the
distance from a color to the black and white references in CIELab
space (given its better perceptual uniformity than RGB), which
gives a measure of the probability of a color being one of them.

From the light field L̂, we compute the perceptual distance of
each pixel to the white color as Dw

i = ‖L̂i−w‖2
2, and analogously

the distance to black Db
i ; where w and b may change depending

on the implementation. With that, we compute the probability of
a pixel of being white or black as Pw

i = exp(−Dw
i /Dw

b ), with Dw
b

being the maximum distance in CIELab space (see Figure 4). Then,
we label the gradients as:

gw
i j =

{
0, if (Pw

i ≥ τ‖Pw
j ≥ τ1)∧ (|Dw

i −Dw
j |> τ2)

1, otherwise
(11)

where τ1 = 0.85 and τ2 = 0.05. And we impose the additional con-
dition that it must be a real gradient, so |Dw

i −Dw
j | > τ2 avoids

marking pixels inside uniform areas. The black albedo labeling gb
i j

is analogously formulated. τ1 and τ2 were set empirically, but work
well for all tested scenes. Then, we compute the final albedo thresh-
old for each gradient as ω

a
i j = max(ωa

i j,g
w
i j,g

b
i j). The result of this

step is a binary labeling, where each gradient is labeled as albedo
or shading change (Figure 4).

4.4.2. Occlusion Gradient (ωocc)

Previous work assume that discontinuities come from changes in
albedo or changes in shading, but not both. However, we found
they can actually occur simultaneously at occlusion boundaries, be-
coming an important factor in the intrinsic decomposition problem.
Our key idea then is to detect the corresponding gradients and as-
sign them a low weight ω

occ
i j in Equation 7, so larger changes are

allowed in shading and albedo at the same time. Contrary to sin-
gle 2D images, 4D light fields provide several ways to detect oc-
clusions, like analyzing the epipolar planes [AF05, WG14] or us-
ing defocus cues [WER15]. In the following, we describe a simple
heuristic assuming an available depth map [TSW∗15], although it
can be easily adjusted if only occlusion boundaries are available:

ω
occ
i j =

{
0.01, if |Di−D j|> 0.02

1, otherwise
(12)

where the depth map D is normalized between 0 and 1. Note that
we cannot set ω

occ
i j = 0 because it would cause instabilities in the

optimization. Figure 5 (c), show the effect of including this new
term.

4.5. Global Coherence

After solving Equation 8 we get S1 and R1. Given the way nor-
malization of shading values is performed in Equation 4, we found
some views may become a bit unstable, affecting the angular coher-
ence of the results. A straightforward approach could be to apply
another 4D l1 filter (Equation 3) over S1. But, this tends to remove
details, wrongly transferring them to the reflectance producing an
over-smoothed shading layer and a noisier reflectance one.

We found filtering R1 provides better results. Because R1 already
features uniform regions of color, the 4D l1 filter finishes flattening
them for enhanced angular coherence, obtaining R̂1. Again, we use
β = 0.05. From there, we compute our final smooth and coherent
shading S f as ||L̂||2/R̂1. And the final RGB reflectance as R f =
L/S f .

5. Results and Evaluation

We show the whole pipeline in Figure 1. The central view is shown
after each step of the Algorithm 1, plus the whole light field is
shown in the Supplementary Material [Gar]. The input light field L,
the filtered version L̂ and the normalized version ||L̂2|| are shown in
Figures (a) to (c). We observe that the variation between the origi-
nal light field L and the filtered one L̂ is very subtle. In particular, in
this figure, it is more noticeable in very dark regions where black
gradients become grayish. This is favorable to the gradient-based
solver we use to solve Equation 4, which is very sensitive to very
dark areas (with values close to zero). The output from Equation 8
is shown in Figures (d) and (e), and, although the shading looks
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(a) (b) (c) (d) (e)

Figure 4: (a) Probability of being white, Pw
i (b) Probability of being black, Pb

i (c) White pixels masked after gw
i j (d) Black pixels masked

after gb
i j (e) Final albedo weights ω

a
i j taking into account color, white, and black information.

(b) without depth cue(a) ground truth shading and reflectance (c) with depth cue

Figure 5: (a) Ground truth shading. (b) Ground truth reflectance. (c) Without ω
occ, the algorithm classifies some prominent gradients as

albedo, so it enforces continuous shading, causing artifacts. Taking occlusions into account fixes this limitation, producing results closer to
the reference.

pretty consistent in one view, it lacks of angular consistence when
the whole volume is visualized (as shown in the Supplementary).
Finally, from the filtered reflectance R̂1 (f) and the original light
field L, we are able to recover the coherent shading S f (g) and re-
flectance layers R f (h). Note that the initial filtering operation also
removes small details in shadows and texture, which are recovered
in the reflectance layer. This is favorable if the details removed are
high frequency texture, as we can see in Figure 8 (first row), but
may also cause small remnants of shading in the reflectance, as we
can see in Figure 1 (h).

In addition to the scenes shown for the comparisons, we also pro-
vide a different set of results with our method in a variety of real
and synthetic scenes in our Supplementary Material. In Figure 6
we show the full result for sanmiguel scene without and with the
occlusion cue. In this example, knowing the depth map improves
the albedo decomposition as the left-most part of the image is more
balanced. In the other two scenes (plants and livingroom) the dif-
ference between both scenarios is more subtle so we just show here
the output with the cue. We can observe again that our filtering step
favors high frequency albedo details. As has been noted in related
work, there is a close relationship between intrinsic estimation and
high frequency detail removal [BHY15].

Intrinsic light field decomposition extends the range of edits that
can be performed to a light field with available tools [JMB∗14,
MJG14]. Figure 7 shows two examples, where simple albedo and

shading edits allow to change the appearance coherently across the
angular domain. Please note more advanced manipulations like tex-
ture replacement are still an open problem in 4D.

5.1. Discussion

In the following, we discuss and compare our approach with re-
lated work and some straightforward alternatives. Our results for
the comparisons do not make use of the occlusion cues. For all of
them we show the final decomposition for the central view of the
light field. Angular coherence can be inspected in the animated se-
quences included in the Supplementary Material [Gar].

Single Image. Figure 8 shows a comparison with 2D state-of-the-
art methods that use a single color image as input. The method of
Chen et al. [CK13] requires an additional depth map, which in com-
parable real scenarios could be reconstructed from the light field
itself (we use Wang et al. [WER15] for this matter). In terms of
overall accuracy of the decomposition, it could be argued that the
RGB-D approach provides better results, specially in the shading
component. However, results tend to be overly smooth and artifacts
appear when the reconstructed depth map is not accurate enough.
But more important, this approach requires non-trivial additional
processing for solving the remaining views given depth maps are
usually computed only for the central view. Compared to the other
single image inputs, our method provides very similar results per

submitted to COMPUTER GRAPHICS Forum (4/2017).



E. Garces, J.I. Echevarria, W. Zhang, H. Wu, K. Zhou & D. Gutierrez / Intrinsic Light Field Images 7

Figure 6: (a) sanmiguel. First row: input, depth map and ground truth albedo and shading. Second row: left, our result without occlusion
cue; right, our result with occlusion cue. (b) living room. Left column: input, ground truth albedo and shading. Right column: our result with
occlusion cue. (c) plants. Left column: input, ground truth albedo and shading. Right column: our result with occlusion cue.

Figure 7: Simple editing operations performed by modifying the
albedo (left) and shading (right) layers independently. Please check
the accompanying videos to see the complete edited light field.

view, while it keeps the angular coherence (see the Supplementary
Material to observe the flickering artifacts that appear solving the
decomposition per view). Straight processing of the whole array
of views as a single image is obviously impractical given the huge
number of equations to be solved.

Video. If the different views captured in a 4D light field are ar-
ranged as a single sequence, they can be interpreted as a video, and
so previous intrinsic video solutions can be applied. While the opti-
mal sequence is unknown, we chose the one in Figure 9 (left). Apart
from specific intrinsic video algorithms, we also tested a more
general approach based on blind temporal consistency [BTS∗15],
where the single image solutions from the previous paragraph were
applied per frame, to be then processed for enhanced coherence (an
approach that can be also found in concurrent work [BTS∗17]). As
can be seen in Figure 8, both methods, Bonneel et al. [BST∗14] and
Meka et al. [MZRT16], produce results that tend to be too smooth,
with visible flickering and haloing artifacts when played in a dif-
ferent order from the original sequence (proper angular coherence
needs to be independent of the order of visualization). Blind tem-
poral consistency [BTS∗15] applied over single frames from Zhao
et al. [ZTD∗12] and Bell et al. [BBS14] is able to produce stable re-
sults when the baseline between views is very little as the per view
decompositions are very similar. However, while this seems to be
an effective way of enforcing angular coherence, working indepen-
dently over single frames has some limitations when it comes to ex-
tensions to handle non-lambertian surfaces. This is something out

of the scope of our paper, but an interesting venue for future work as
already demonstrated in related work [TSW∗15,AG16,SAMG16].

Light Field Images. Finally, concurrent work has appeared also
decomposing 4D light field images into their intrinsic components.
In their paper, Alperovich and Goldluecke [AG16] also pose the
problem in the 4D ray space, with the additional goal of separat-
ing specular reflections from the albedo and shading. Figure 10
shows comparisons between the processed central views, while the
animated sequences in the Supplementary Material showcase an-
gular coherence. From the static images, similar overall quality
is achieved. It is interesting to see, however, that although we do
not explicitly process specular highlights, our reflectance layers are
able to recover better values in some of these regions (mirror ball
in Mona’s room and the blue owl figurine). From the animated se-
quences, our results show less flickering and so better angular co-
herence. It is worth mentioning that because of the computing re-
quirements, we were not able to get the full decomposed light fields
from Alperovich and Goldluecke [AG16]. Our method, however,
has still room for optimization, given each 2D view can be solved
in parallel, before and after the 4D operations.

6. Conclusions and Future Work

We have presented a new method for intrinsic light field decom-
position, which adds to existing approaches for single images and
video, enabling practical and intuitive edits in 4D. Our method is
based on the Retinex formulation, reviewed and extended to take
into account the particularities and requirements of 4D light field
data. We have shown results with both synthetic and real datasets,
which compare favorably against existing state-of-the-art methods.

For our albedo and occlusion cues, we currently rely on simple
thresholds. A more sophisticated solution could make use of multi-
dimensional Conditional Random Fields [JKG16]. Despite the flex-
ibility of our formulation with respect to depth data, a current lim-
itation is that its quality can directly affect the final results. More
sophisticated occlusion heuristics could combine information from
the epipolar planes to make this term more robust.

Finally, to reduce the complexity of the intrinsic decomposition
problem, some simplifying assumptions are usually made, with the
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Figure 8: (a) Input RGB and depth data (computed using Wang et al. [WER15]). (b) Our results. Single image approaches: (c) Chen and
Koltun [CK13], (d) Bell et al. [BBS14], (e) Zhao et al. [ZTD∗12]. Video approaches: (f)-(g) single image methods ((d) and (e)) filtered using
blind temporal consistency [BTS∗15], (h) Meka et al. [MZRT16], (i) Bonneel et al. [BST∗14]. The scenes are named, from top to bottom:
outdoor, Monas’ room, frog, Maria, and owlstr.
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Figure 9: Left: Sequence for video processing. Right: sequence for
the animations in the Supplementary Material.

Figure 10: Light field methods. From top to bottom: center view
of input light field; our results; results from Alperovich and Gold-
luecke [AG16], including their additional specular layer. Given this
extra layer, it is easier to compare results based on reflectance
alone, where we are able to recover more plausible values in ar-
eas covered by strong specular highlights.

most relevant ones about the color of the lighting (white light) and
the material properties of the objects in the scene (non-specular
lambertian surfaces). As we have seen, although some approaches
adapted from video processing can arguably match our method in
terms of stability and quality of the decomposition, extensions to
handle more complex materials and scenes can be posed more nat-
urally and effectively in 4D space, paving the way for interesting
future work.

Acknowledgements We thank the reviewers for their insightful
comments, Anna Alperovich for their datasets, Nicolas Bonneel
and Abhimitra Meka for kindly providing the necessary compar-
isons, Adrian Jarabo and Belen Masia for fruitful discussions and
synthetic scenes. This research has been funded by the European
Research Council (ERC Consolidator Grant, project Chameleon,
ref. 682080), as well as the Spanish Ministry of Economy and
Competitiveness (projects TIN2016-78753-P and TIN2016-79710-
P). The authors from Zhejiang University were partially supported
by the National Key Research & Development Plan of China
(2016YFB1001403), NSFC (No. U1609215) and the Fundamental
Research Funds for the Central Universities.

References

[AF05] APOSTOLOFF N., FITZGIBBON A.: Learning Spatiotemporal T-
junctions for Occlusion Detection. In Proc. Conference on Computer
Vision and Pattern Recognition (June 2005), IEEE. 5

[AG16] ALPEROVICH A., GOLDLUECKE B.: A Variational Model for
Intrinsic Light Field Decomposition. In Proc. Asian Conference on Com-
puter Vision (2016). 2, 7, 9

[AZJ∗15] AO H., ZHANG Y., JARABO A., MASIA B., LIU Y., GUTIER-
REZ D., DAI Q.: Light Field Editing Based on Reparameterization. In
Proc. Pacific-Rim Conference on Multimedia (2015), Springer. 2, 3

[BBS14] BELL S., BALA K., SNAVELY N.: Intrinsic Images in the Wild.
ACM Trans. Graphics (Proc. SIGGRAPH) 33, 4 (2014). 2, 7, 8

[BHY15] BI S., HAN X., YU Y.: An L 1 Image Transform for Edge-
Preserving Smoothing and Scene-Level Intrinsic Decomposition. ACM
Trans. Graphics (Proc. SIGGRAPH) 34, 4 (2015). 2, 3, 6

[BKPB17] BONNEEL N., KOVACS B., PARIS S., BALA K.: Intrinsic
Decompositions for Image Editing. Computer Graphics Forum (Euro-
graphics State of the Art Reports 2017) 36, 2 (2017). 2

[BM13] BARRON J. T., MALIK J.: Intrinsic Scene Properties from a Sin-
gle RGB-D Image. In Proc. Computer Vision and Pattern Recognition
(2013), IEEE. 2

[BM15] BARRON J., MALIK J.: Shape, Illumination, and Reflectance
from Shading. IEEE Trans. Pattern Analysis and Machine Intelligence
37 (2015). 2

[BPD09] BOUSSEAU A., PARIS S., DURAND F.: User-assisted Intrinsic
Images. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 28, 5 (2009). 2,
5

[BSB16] BIRKLBAUER C., SCHEDL D. C., BIMBER O.: Nonuniform
Spatial Deformation of Light Fields by Locally Linear Transformations.
ACM Trans. Graphics 35, 5 (2016). 2

[BST∗14] BONNEEL N., SUNKAVALLI K., TOMPKIN J., SUN D.,
PARIS S., PFISTER H.: Interactive Intrinsic Video Editing. ACM
Trans. Graphics (Proc. SIGGRAPH Asia) 33, 6 (2014). 2, 7, 8

[BT72] BARROW H. G., TENENBAUM J. M.: Recovering Intrinsic Scene
Characteristics from Images. In Proc. Computer Vision Systems (1972).
1

submitted to COMPUTER GRAPHICS Forum (4/2017).



10 E. Garces, J.I. Echevarria, W. Zhang, H. Wu, K. Zhou & D. Gutierrez / Intrinsic Light Field Images

[BTS∗15] BONNEEL N., TOMPKIN J., SUNKAVALLI K., SUN D.,
PARIS S., PFISTER H.: Blind Video Temporal Consistency. ACM
Trans. Graphics (Proc. SIGGRAPH Asia) 34, 6 (2015). 7, 8

[BTS∗17] BONNEEL N., TOMPKIN J., SUN D., WANG O., SUNKVALLI
K., PARIS S., PFISTER H.: Consistent Video Filtering for Camera Ar-
rays. Computer Graphics Forum (Proc. Eurographics) 36, 2 (2017). 2,
7

[CK13] CHEN Q., KOLTUN V.: A Simple Model for Intrinsic Image
Decomposition with Depth Cues. In Proc. International Conference on
Computer Vision (2013), IEEE. 2, 6, 8

[CKT14] CHO D., KIM S., TAI Y.-W.: Consistent Matting for Light
Field Images. In Proc. European Conference on Computer Vision (2014),
Springer. 2

[COSL05] CHEN B., OFEK E., SHUM H.-Y., LEVOY M.: Interactive
Deformation of Light Fields. In Proc. Symposium on Interactive 3D
Graphics and Games (2005), ACM. 2

[DRC∗15] DUCHÊNE S., RIANT C., CHAURASIA G., LOPEZ-MORENO
J., LAFFONT P.-Y., POPOV S., BOUSSEAU A., DRETTAKIS G.: Multi-
View Intrinsic Images of Outdoors Scenes with an Application to Re-
lighting. ACM Trans. Graphics 34, 5 (2015). 2

[Gar] Intrinsic Light Fields - Supplementary Material. http://
webdiis.unizar.es/~elenag/projects/intrinsicLF/
supplementary/supplementary.html. Accessed: 2017-04-
04. 3, 5, 6

[GMLMG12] GARCES E., MUNOZ A., LOPEZ-MORENO J., GUTIER-
REZ D.: Intrinsic Images by Clustering. Computer Graphics Forum
(Proc. EGSR) 31, 4 (2012). 2, 3

[GRK∗11] GEHLER P. V., ROTHER C., KIEFEL M., ZHANG L.,
SCHÖLKOPF B.: Recovering Intrinsic Images with a Global Sparsity
Prior on Reflectance. In Proc. Neural Information Processing Systems
(2011). 2

[GYK∗15] GUO X., YU Z., KANG S. B., LIN H., YU J.: Enhancing
Light Fields through Ray-Space Stitching. IEEE Trans. Visualization
and Computer Graphics, 99 (2015). 2

[HWU∗14] HAUAGGE D., WEHRWEIN S., UPCHURCH P., BALA K.,
SNAVELY N.: Reasoning about Photo Collections using Models of Out-
door Illumination. In Proc. British Machine Vision Conference (2014).
2

[JKG16] JAMPANI V., KIEFEL M., GEHLER P. V.: Learning Sparse High
Dimensional Filters: Image Filtering, Dense CRFs and Bilateral Neural
Networks. In Proc. Computer Vision and Pattern Recognition (2016),
IEEE. 7

[JMB∗14] JARABO A., MASIA B., BOUSSEAU A., PELLACINI F.,
GUTIERREZ D.: How Do People Edit Light Fields? ACM Trans. Graph-
ics (Proc. SIGGRAPH) 33, 4 (2014). 2, 6

[JMG11] JARABO A., MASIA B., GUTIERREZ D.: Efficient Propagation
of Light Field Edits. In Proc. SIACG (2011). 2

[KGB14] KONG N., GEHLER P. V., BLACK M. J.: Intrinsic Video. In
Proc. European Conference on Computer Vision (2014), Springer. 2

[LB15] LAFFONT P.-Y., BAZIN J.-C.: Intrinsic Decomposition of Im-
age Sequences from Local Temporal Variations. In Proc. International
Conference on Computer Vision (2015), Springer. 2

[LBP12] LAFFONT P., BOUSSEAU A., PARIS S.: Coherent Intrinsic Im-
ages from Photo Collections. ACM Trans. Graphics (Proc. SIGGRAPH)
31, 6 (2012). 2

[LM71] LAND E. H., MCCANN J. J.: Lightness and Retinex Theory.
Journal of the Optical Society of America 61, 1 (1971). 2

[Lyt13] LYTRO INC.: The Lytro camera. http://www.lytro.com, 2013. 1

[LZT∗12] LEE K. J., ZHAO Q., TONG X., GONG M., IZADI S., LEE
S. U., TAN P., LIN S.: Estimation of Intrinsic Image Sequences from
Image + Depth Video. In Proc. European Conference on Computer Vi-
sion (2012), Springer. 2

[MJG14] MASIA B., JARABO A., GUTIERREZ D.: Favored Workflows
in Light Field Editing. In Proc. CGVCVIP (2014). 2, 6

[MZRT16] MEKA A., ZOLLHÖFER M., RICHARDT C., THEOBALT C.:
Live Intrinsic Video. ACM Trans. Graphics (Proc. SIGGRAPH) 35, 4
(2016). 2, 7, 8

[NMY15] NARIHIRA T., MAIRE M., YU S. X.: Direct Intrinsics: Learn-
ing Albedo-Shading Decomposition by Convolutional Regression. In
Proc. International Conference on Computer Vision (2015), Springer. 2

[Ray13] RAYTRIX GMBH: 3D Light Field Camera Technology. http:

//www.raytrix.de, 2013. 1

[SAMG16] SULC A., ALPEROVICH A., MARNIOK N., GOLDLUECKE
B.: Reflection Separation in Light Fields based on Sparse Coding and
Specular Flow. In Proc. Vision, Modeling & Visualization (2016), Euro-
graphics. 2, 7

[SK02] SEITZ S. M., KUTULAKOS K. N.: Plenoptic Image Editing. In-
ternational Journal of Computer Vision 48, 2 (2002). 2

[SMPR07] SUNKAVALLI K., MATUSIK W., PFISTER H.,
RUSINKIEWICZ S.: Factored Time-lapse Video. ACM Trans.
Graphics (Proc. SIGGRAPH) 26, 3 (2007). 2

[SY11] SHEN L., YEO C.: Intrinsic Images Decomposition using a Local
and Global Sparse Representation of Reflectance. In Proc. Computer
Vision and Patter Recognition (2011), IEEE. 2

[TFA05] TAPPEN M., FREEMAN W., ADELSON E.: Recovering Intrinsic
Images from a Single Image. IEEE Trans. Pattern Analysis and Machine
Intelligence 27, 9 (2005). 2

[THMR13] TAO M. W., HADAP S., MALIK J., RAMAMOORTHI R.:
Depth from Combining Defocus and Correspondence Using Light-Field
Cameras. In Proc. International Conference on Computer Vision (2013),
IEEE. 2

[TSW∗15] TAO M., SU J.-C., WANG T.-C., MALIK J., RAMAMOORTHI
R.: Depth Estimation and Specular Removal for Glossy Surfaces Using
Point and Line Consistency with Light-Field Cameras. IEEE Trans. Pat-
tern Analysis and Machine Intelligence (2015). 2, 5, 7

[VLD∗13] VENKATARAMAN K., LELESCU D., DUPARRÉ J., MCMA-
HON A., MOLINA G., CHATTERJEE P., MULLIS R., NAYAR S.: PiCam:
An Ultra-thin High Performance Monolithic Camera Array. ACM Trans.
Graphics 32, 6 (2013). 1

[Wei01] WEISS Y.: Deriving Intrinsic Images from Image Sequences. In
Proc. International Conference on Computer Vision (2001), IEEE. 2

[WER15] WANG T.-C., EFROS A. A., RAMAMOORTHI R.: Occlusion-
aware Depth Estimation Using Light-field Cameras. In Proc. Interna-
tional Conference on Computer Vision (2015), Springer. 2, 5, 6, 8

[WG14] WANNER S., GOLDLUECKE B.: Variational Light Field Analy-
sis for Disparity Estimation and Super-Resolution. IEEE Trans. Pattern
Analysis and Machine Intelligence 36, 3 (2014). 2, 5

[YGL∗14] YE G., GARCES E., LIU Y., DAI Q., GUTIERREZ D.: Intrin-
sic Video and Applications. ACM Trans. Graphics (Proc. SIGGRAPH)
33, 4 (2014). 2

[YWF∗13] YANG S., WANG J., FAN W., ZHANG X., WONKA P., YE J.:
An Efficient ADMM Algorithm for Multidimensional Anisotropic Total
Variation Regularization Problems. In Proc. International Conference
on Knowledge Discovery and Data Mining (2013), ACM. 3

[ZKE15] ZHOU T., KRÄHENBÜHL P., EFROS A. A.: Learning Data-
driven Reflectance Priors for Intrinsic Image Decomposition. In Proc. In-
ternational Conference on Computer Vision (2015), IEEE. 2

[ZTD∗12] ZHAO Q., TAN P., DAI Q., SHEN L., WU E., LIN S.: A
Closed-Form Solution to Retinex with Nonlocal Texture Constraints.
IEEE Trans. Pattern Analysis and Machine Intelligence 34, 7 (2012).
2, 3, 4, 7, 8

[ZWGS02] ZHANG Z., WANG L., GUO B., SHUM H.-Y.: Feature-based
Light Field Morphing. ACM Trans. Graphics 21, 3 (2002). 2

submitted to COMPUTER GRAPHICS Forum (4/2017).

http://webdiis.unizar.es/~elenag/projects/intrinsicLF/supplementary/supplementary.html
http://webdiis.unizar.es/~elenag/projects/intrinsicLF/supplementary/supplementary.html
http://webdiis.unizar.es/~elenag/projects/intrinsicLF/supplementary/supplementary.html
http://www.lytro.com
http://www.raytrix.de
http://www.raytrix.de

