UC Davis
UC Davis Previously Published Works

Title
Nested Tracking Graphs

Permalink
https://escholarship.org/uc/item/1b51k20d

Journal
Computer Graphics Forum, 36(3)

ISSN
0167-7055

Authors

Lukasczyk, Jonas
Weber, Gunther
Maciejewski, Ross

Publication Date
2017-06-01

DOI
10.1111/cgf.13164

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/1b51k20d
https://escholarship.org/uc/item/1b51k20d#author
https://escholarship.org
http://www.cdlib.org/

Eurographics Conference on Visualization (EuroVis) 2017
J. Heer, T. Ropinski and J. van Wijk
(Guest Editors)

Volume 36 (2017), Number 3

Nested Tracking Graphs

Jonas Lukasczyk1 , Gunther Weber2’3, Ross Maciejewski4, Christoph Garthl, and Heike Leitte!

ITU Kaiserslautern, Germany
2Lawrence Berkeley National Laboratory, USA

3University of California, USA
4 Arizona State University, USA

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

~ |

EARTI N

NEEN

20 21 22 23 24 25 26 27 28 29 30 31 32

44 45 46 47 48 49 50 51 52

I

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

— VA

N

4 T
| N \ 7 148
— - ~ AT <

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Figure 1: Nested tracking graph for one ensemble member of the viscous finger dataset with highest particle resolution. In contrast to common
tracking graphs—where edges only encode the evolution of components for a single level—nested tracking graphs additionally illustrate the
nesting hierarchy of components across levels. The x-axis represents time and the y-axis is used to minimize edge crossings. The density
levels 25, 30, and 35 are shown from dark to light red, and the width of edges encodes the size of their associated components.

Abstract

Tracking graphs are a well established tool in topological analysis to visualize the evolution of components and their properties
over time, i.e., when components appear, disappear, merge, and split. However, tracking graphs are limited to a single level
threshold and the graphs may vary substantially even under small changes to the threshold. To examine the evolution of fea-
tures for varying levels, users have to compare multiple tracking graphs without a direct visual link between them. We propose
a novel, interactive, nested graph visualization based on the fact that the tracked superlevel set components for different levels
are related to each other through their nesting hierarchy. This approach allows us to set multiple tracking graphs in context to
each other and enables users to effectively follow the evolution of components for different levels simultaneously. We demon-
strate the effectiveness of our approach on datasets from finite pointset methods, computational fluid dynamics, and cosmology

simulations.

Categories and Subject Descriptors (according to ACM CCS): Data [Computer Graphics]: Data Structures—Graphs and Networks

1. Introduction

Detecting and tracking components of time varying scalar fields is
a common approach in data analysis. Multiple techniques exist that
identify components and visualize their evolution over time through
so-called tracking graphs [WCPB12, ALS*16]. These tracking
graphs are presented using layered graph drawing techniques where
one axis represents time and the other axis serves to minimize edge
crossings. Each edge represents a component, and nodes represent
critical events such as when components appear, disappear, merge,

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

or split. Thus, tracking graphs provide an overview and summa-
rization of the evolution of components over time. Here, we focus
on superlevel set components—connected areas in the scalar field
that exceed a certain threshold—such as regions of a water filled
can that exceed a specified salt concentration threshold, or parts of
the universe where dark matter exceeds a certain density. To track
components over time one can apply methods of topological feature
tracking [ALS™16, BBD*07, BKL* 11, EHMP04, MS09] or simply
test for spatial overlaps [SB06, LMGH15, SW98, LBM*06]. One
can also augment the resulting graphs with additional information

Lukasczyk et al. / Nested Tracking Graphs

about the components or use the y-axis to visualize a metric—such
as the position, size, or integral of components—to provide addi-
tional insights [ALS*16]. However, in general tracking graphs have
the following limitations:

e atracking graph can only represent one threshold and the choice
of this threshold is not always known a priori;

e to examine multiple levels one has to compare multiple tracking
graphs, and;

o tracking graphs may vary substantially even under small changes
to the levels.

We propose a visualization that addresses these limitations. Specif-
ically, since superlevel sets for different levels (thresholds) are
nested inside each other by the definition of level sets, we can com-
pute several tracking graphs for a set of levels and subsequently
relate parts of them to each other through the nesting hierarchy
of their associated components. This nesting relationship enables
us to draw a nested representation of the tracking graphs that pro-
vides context over multiple levels as it additionally illustrates if
components of one level contain higher level components, or are
contained in lower level components. This visualization enables
users to effectively follow the evolution of components for different
levels at once. For large datasets, nested graphs might become ex-
tremely huge and detailed. To counteract this problem, we demon-
strate in three case studies how to integrate nested tracking graphs
as dynamic and interactive control devices in visual analytic frame-
works. Linked to a 3D rendering of the original data, the graphs can
be used to navigate through time and toggle the visibility of compo-
nents, enabling users to perform temporal and spatial data pealing.

The main contribution of this paper is a novel drawing algorithm
for nested tracking graphs that can be used to interactively examine
the evolution and nesting hierarchy of components across levels in
one compact visualization.

2. Related Work

Previous work has demonstrated that tracking graphs are ideally
suited to visualize the evolution and relation of components over
time [HLH*16]. Several methods have been proposed to iden-
tify and track components of time-varying scalar fields. Compo-
nents can be superlevel sets [LMGH15, SB06, BWT* 11, SW98,
LBM™06], or subdomains that fulfill geometric and topological
constraints [ALS*16, BKL*11, BBD*07]. Subsequently, the de-
tected components can be tracked by testing for spatial overlaps
in time [ALS* 16, BWT*11,LBM™06, SB06], or applying methods
of topological persistence [BKL*11, BBD*07, WCPB12]. For in-
stance, Bremer et al. [BWT™ 11] visualize and track burning cells in
large-scale combustion simulations where cells are defined as areas
exceeding a fuel consumption rate threshold and are tracked by spa-
tial overlaps. To effectively update the tracking graph when users
change the level of interest, Widanagamaachchi et al. [WCPB12]
propose a method that computes an intermediate graph structure
called the meta-graph. Although the introduced technique enables
users to navigate through different levels, it lacks a representation
that visualizes several levels simultaneously.

Building on these works, our algorithm computes a different in-
termediate graph structure that represents the nesting relationship
between components and enables us to draw a nested graph repre-
sentation of the tracking graphs. Similar to Aldrich et al. [ALS*16],
Bremer et al. [BWT*11], and Sohn et al. [SB06], we identify su-
perlevel set components and track them by testing their corre-
sponding volumes for overlaps. To determine the nesting hierar-
chy of components, we also compute the spatial overlap of compo-
nents for varying levels. We represent this hierarchy with simplified
split trees that we refer to as nesting trees. In contrast to split and
merge trees—as defined by Carr et al. [CSA03] to compute contour
trees—nesting trees only represent the nesting hierarchy of super-
level sets for a predefined set of levels. This approach is similar
to that of Hilaga et al. [HSKKO1] who also discretize the function
range to efficiently compute multiresolutional Reeb graphs. For a
small number of levels nesting trees are faster to compute than split
or merge trees, and store only necessary information. Nevertheless,
split and merge trees, especially their temporal version, can be used
to select levels for the nesting tree. Oesterling et al. [OHW™15]
proposed an algorithm to compute the time-varying merge tree for
piecewise linear functions in arbitrary dimensions. They use the
fact that the merge tree’s structure only changes when the sorting
order of adjacent tree nodes changes, and determine a sequence of
local updates of the merge tree. They visualize the tree by plot-
ting a 1D landscape profile for each timestep and connecting its
peaks with lines to indicate critical events. This enables them to
illustrate the evolution of all critical values across time at the cost
of cluttering and occlusion. Similarly, Sohn and Bajaj [SB06] track
components via spatial overlaps and compute a correspondence be-
tween contour trees for each timestep pair. Their approach is capa-
ble of segmenting, tracking, quantifying, and visualizing the evo-
lution of user defined levels but lacks a comprehensible visualiza-
tion that displays the relationship between the different thresholds.
Widanagamaachchi et al. [WBS™ 14] proposed a friends-of-friends
halo detection algorithm that is based on a variable linking distance
between particles. By increasing the linking distance more particles
are grouped together which yields a nesting hierarchy. They also
represent this hierarchy with a tree for each single timestep where
nodes indicate linking lengths for which groups join. However, to
examine the temporal evolution of halos one has to compare multi-
ple trees. By contrast, our work focuses on examining the temporal
evolution of multiple levels through a single, compact graph repre-
sentation.

3. Nested Tracking Graphs

In this section we introduce a mathematical definition of nested
tracking graphs, describe their construction and visualization, and
provide details how users can interact with these graphs in a visual
analytics framework.

3.1. Definition

A nested tracking graph consists of nodes, multiple tracking graphs,
and a nesting hierarchy between the nodes of the tracking graphs.
Each node of the nested tracking graph has an associated time and
level value. For instance, consider the bottom row of Figure 2 that
illustrates a time-varying, 2D scalar-field via three contours. We

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Lukasczyk et al. / Nested Tracking Graphs

can derive the superlevel set components for the levels of these
contours and represent each of them as a node with a time and
level value. Since the components for subsequent levels are nested
inside each other, we can represent this nesting hierarchy by edges
between nodes within the same timestep. In this set, an edge be-
tween two nodes indicates that the component of the second node
is contained in the component of the first node. This yields one set
of edges for each timestep, and since they represent the nesting hi-
erarchy of components we refer to them as nesting trees. Similarly,
for each individual level, we track the components for subsequent
timesteps and connect their respective nodes via edges if they de-
scend from one another. This yields a common tracking graph for
each level. An advantage of our approach is that it does not spec-
ify which algorithm has to be used to track the components over
time as long as their nodes have a nesting hierarchy that can be ex-
pressed by a nesting tree. The top of Figure 2 illustrates the nesting
trees (red lines), tracking graphs (blue lines), and how their nodes
are interconnected. Note that edges of the tracking graphs and nest-
ing trees only connect nodes of the same level and timestep, respec-
tively. Using the hierarchy of nodes described by the nesting trees
we can draw edges of the tracking graphs inside each other (Figure
2 middle/center row).

Formally, a nested tracking graph G = (N, E7, Ey) consists of a
node set N, a list of edge-sets E7 representing the tracking graphs,
and a list of edge-sets Ey representing the nesting trees. Each node
n € N has a time value ¢ and a level /, which we denote in the fol-
lowing as n£ Edges in E7 only connect nodes of the same level,
while edges in Ey only connect nodes of the same timestep. Ad-
ditionally, we constrain Ey such that for every node nf with [> 0
there exists exactly one edge in Ey connecting it to a node n£71 of
one level lower. This constraint ensures that there exists a unique
mapping between nodes of level / and [— 1, i.e., each edge-set in
the list Ey is a tree. Ey and E7 share the same nodes and they con-
tain all edges of the nesting trees and tracking graphs, respectively.
Finally, each node n! has a width w(n) € Rt where w(n) is greater
or equal to the sum of the width of all nodes with level / + 1 that
are connected to nf through Ey. This ensures that each node has
enough space to host all its children. This property is also naturally
satisfied by superlevel sets for subsequent levels.

3.2. Computation

In this section we describe how to derive the nested tracking graph.
Specifically, we show how to compute nesting trees and tracking
graphs for superlevel set components of time varying scalar fields
given on a voxel grid. The key idea of this algorithm is to derive
superlevel sets for a list of levels at each timestep and then test
for spatial overlaps of subsequent levels and timesteps. We start by
defining components for voxel volumes, then we introduce nesting
trees, and finally we show how they are connected through time by
tracking graphs.

A superlevel set component is a set of voxels which all are con-
nected via the 27-neighborhood and exceed a certain level. More-
over, there exists a nesting hierarchy of the components for varying
levels. By the definition of superlevel sets, a component for level a
is a subset of exactly one component of level b with b < a. Hence,
this hierarchy can be represented with a structure we refer to as a

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

ng

o

Io i 15}

Figure 2: (Top) 3D illustration of a nested tracking graph where
tracking graphs for one level are shown in shades of blue, and
nesting trees for each timestep in shades of red. Each level is also
highlighted via gray planes. (Middle) Nested graph representation
where edge colors encode levels, and edges are nested inside each
other according to the nesting tree. (Bottom) Three timesteps of a
time-varying scalar-field which was used to derive the nested track-
ing graph where each timestep is shown via three contours.

nesting tree (Figure 3 (right)). Nodes of this tree and their vertical
position represent an individual superlevel set and corresponding
level, respectively. An edge between nodes represents the fact that
the component of higher level is a subset of the component of lower
level. This is similar to a split tree [CSA03] (Figure 3 (left)), except
that the leafs and inner nodes of the split tree indicate critical val-
ues of the underlying scalar field for which components cease to
exist and split, respectively. In fact, as illustrated in Figure 3, the
nesting tree is a subset of the split tree for a set of levels. It is
important to note that we do not need to compute the entire split
tree. Instead, we derive the nesting tree by choosing a sorted list
of levels, compute the connected components for these values, rep-
resent each component by a node, and then test components for
subsequent levels for overlaps to create edges between the nodes.
If there exists an overlap, we add an edge between their respective
nodes in the nesting tree. Since we only sample the nesting hier-
archy with a discretized list of levels, it is possible that we miss
critical values and thus not derive the same structure as the correct

Lukasczyk et al. / Nested Tracking Graphs

Figure 3: A split tree (left) and a nesting tree (right).

split tree. Figure 3 shows that with the given sampling we miss that
component C splits into E and F between the samples. Although
nodes in the nesting tree generally do not represent critical values
of the data, their connectivity still represents the correct nesting re-
lation of the respective superlevel set components. In other words,
the nesting tree correctly records the hierarchy of the split tree re-
stricted to the sample values. However, the critical values of split
trees might indicate relevant levels for the nesting trees.

A tracking graph represents the temporal evolution of compo-
nents where nodes indicate when components appear, disappear,
merge, and split. Several methods exist to derive a tracking graph
by computing superlevel set components for a fixed level for each
timestep and then test the components of subsequent timesteps for
spatial overlaps [ALS*16, BWT*11,LMGHI15, SB06]. Each com-
ponent is again represented by a node and there exists an edge be-
tween nodes if their respective volumes overlap. In our approach,
we compute the tracking graphs for the same set of levels we chose
for the nesting trees. Since the nodes of the nesting tree already rep-
resent the components of the tracking graphs, each tracking graph
for a given level consists of a set of edges that connect the nodes of
the nesting trees. Hence, the nesting trees and the tracking graphs
share the same set of nodes N, and we only have to store their
edges in Ey and ET, respectively. In particular, Ey is a list of edge-
sets where each single set represents the entire nesting tree of one
timestep, and E7 is a list of edge-sets where each individual set rep-
resents an entire tracking graph for one level. Together they yield
the nested tracking graph G = (N,Er,Ey).

3.3. Implementation

In order to implement this approach efficiently, we have to com-
pute, label, and compare superlevel set components in the compu-
tational domain. The scalar values of a timestep ¢ are stored as a
1D floating-point array Dy, and the list containing all these arrays
is denoted as D. To store the ID of a component that is present at a
voxel we use additional integer arrays of the same size as D; called
the component matrices. We denote with C! the component matrix
that stores at position i the ID of the component for level / and time
t at voxel i. We can compute a component matrix C as described in
Algorithm 1 which requires a data array Dy, a level /, a component
counter n, and a set of Nodes N as input. First, we mark in C the
cells that are below the level / in D with —1, and the cells greater
or equal to [with —2. In a subsequent iteration over the cells of C,
a value of —2 indicates a component we have not identified yet. In
these cells, we start a standard 3D flood fill algorithm that labels the

new component by writing the current component counter value n
into all voxels connected to the cell via the 27-neighborhood. The
flood fill procedure returns a node that also stores additional infor-
mation about the component such as its size, bounding box, inte-
gral, and ID. This node is added to the set of Nodes N where n is
used as a unique ID for that component. Finally, we increase the
component counter by one.

Algorithm 1 Compute Component Matrix (D, 1, n, N)

1: // Initialize Component Matrix

2: C=]]
3: fori = 0..size(D;) do
. —1 ifDsi] <1
“ = { 2 ozher[v]vise
5: end for
6: // Detect Components
7: fori = 0.. size(D;) do
8: if C[i] = —2 then
9: node = floodFill3D(C,i,n)
10: N =NU{node}
11: n+-+
12: end if
13: end for

14: return C

To test for spatial overlaps of component matrices, Algorithm 2
iterates over two matrices C; and C, and adds edges to the edge-
set E if components overlap. Specifically, if both arrays at index i
store a value greater or equal to zero then the respective compo-
nents overlap and we add an edge to E containing both IDs. Note
that this algorithm can be used to test for component overlaps of
different levels and timesteps.

Algorithm 2 Connect Nodes (Cy, Cy, E)

1: fori = 0.. size(Cy) do

2 if C1[i] >0 A G[i] > 0 then
3 E=EU{ (G, i) }
4 end if

5: end for

We can compute the nesting tree with Algorithm 3 that uses the
previously described procedures. It requires the list of all voxel val-
ues D, the sorted list of levels L, and a sorted list of all timesteps
T. First, the algorithm computes the component matrices for all
levels and timesteps. Then, to generate the tracking graphs we test
for each level all neighboring pairs of component matrices for sub-
sequent timesteps for overlaps. Similarly, to generate the nesting
trees, we test for each timestep all neighboring pairs of component
matrices for different levels for overlaps. Each level yields a track-
ing graph and each timestep yields a nesting tree. This algorithm
is embarrassingly parallel and can be easily rewritten to be more
memory efficient since to fully connect two timesteps it is only
necessary to keep their respective component matrices in memory.
The most time critical part that impacts the total runtime is the 3D

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Lukasczyk et al. / Nested Tracking Graphs

flood fill procedure as it depends on the size of the components.
Table 1 provides performance results of our JavaScript implemen-
tation for single threaded computations of entire nesting graphs and
associated component properties—such as size, bounding box, and
integral—for three example datasets.

Algorithm 3 Compute Nested Tracking Graph (D, L, T)
1: // Initialize Graph and Component Counter
2 N,Er,Ey ={}
3:n=0

4: // Compute Component Matrices

5: fori = 0..size(T) do

6: t=TIJi

7: for j = 0..size(L) do

8 1=1[j]

9: cl = computeComponentMatrix(Dy,l,n,N)
10: end for

11: end for

12: // Compute Tracking Graphs
13: fori = 0.. size(L) do

14: I=L[i]

15: Erv]={}

16: for j = 0..size(T)—1do

17: to=TI|j]

18: n="T[j+1]

19: connectNodes(C,lo , C,l] JEr[v])
20: end for

21: end for

22: // Compute Nesting Trees

23: fori = 0.. size(T) do

24: t=TIi|

25: Enlfl={}

26: for j = 0..size(L)—1do

217: lo=L[j]

28: L =L[j+1]

29: connectNodes(C,CI" | Ex]t])
30: end for

31: end for

32: return (N,Er,EN)

Viscous Fingers Jet Halo Simulation
Resolution 643 1282 x 256 2563
Time Steps 100 600 854
Components 1k 139k 4,559 k
Time 8 sec 3 min 22 min

Table 1: Performance of our JavaScript implementation for three
example datasets on a machine with 6 GB RAM and an Intel i7.
The time stated in the last row excludes the computation of the
layout which can be done at interactive framerates.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

3.4. Visualization

In order to visualize the nested tracking graphs, we first calculate
an optimized layout for each individual tracking graph and subse-
quently draw them from lowest to highest level by determining the
position of new nodes according to already drawn levels. Specifi-
cally, to draw the nested tracking graph G = (N,Er,Ey) we first
represent each individual tracking graph in the edge-set E7 in the
DOT language and compute an optimized layout using the graph
library Graphviz [Gral3]. These layouts assign to each node n € N
a position p(n) = (x,y) on a x- and y-axis where the x-axis is used
to represent time and the other to minimize edge crossings. We
start by drawing the lowest level according to its optimized lay-
out. To draw an edge (n,m) we render a Bézier curve from p(n)
to p(m) where the width is linearly interpolated between w(n) and
w(m). Alternatively, we can choose the smaller of both widths. The
remaining vertical levels are drawn iteratively in a bottom-up ap-
proach: after drawing level / for / > 0 we render the next level [+ 1
by mapping the position of nodes of the current level (children) to
the locations of the already rendered nodes of one level lower (par-
ents). A child node nf“ is connected via exactly one edge in Ey to
its parent m. since this was a constraint on Ey. The render position
p(n) of a child n depends on the number and width of all other chil-
dren of its parent node. Since we require that the total width of all
children does not exceed the width of the parent we can draw them
below each other inside the available space of the parent where the
order depends on the optimized layout calculated for the tracking
graph of level / 4 1. The remaining space of the parent can be used
to create a gap between its children. After determining the posi-
tions of the children according to their parents, we can draw the
edges of the current level as described before. Although the color
scheme used to encode the different levels can be domain specific,
in general it appears sensible to use a sequential or diverging color
map.

The width used for each node is either fixed for a level or en-
codes some metric of its associated component—such as its size or
integral. In the former case, the resulting graphs clearly show the
topological relation between components where in the latter case
the graphs also show the evolution of some component property.
The only requirement is that the width of a parent is equal or larger
than the sum of the widths of its children. For instance, we can visu-
alize the size of components since it is not possible that the nested
components are larger than the parent containing them.

Nested tracking graphs for many components might become ex-
tremely large and cluttered. To counteract this problem, we inte-
grate nested tracking graphs in a visual analytics framework that
enables users to interactively explore the graphs and their corre-
spondence to the original dataset. Figure 4 shows our web-based
tool that consists of a direct volume rendering (DVR) window
(left), and the nested tracking graph (right). Per default, each level
of the nested graph is shown in a different color to provide an
overview across the different levels. Selecting a level of interest
by clicking on one of its edges grays out all other levels and uses
edge colors to encode the individual components of the selected
level. The resulting highlighted graph is a common tracking graph
where color is used to illustrate the history of the single compo-
nents as described in Aldrich et al. [ALS*16] and Lukasczyk et

Lukasczyk et al. / Nested Tracking Graphs

=

N—

Wppeatr

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

Figure 4: Interface of our visual analytics framework consisting of a DVR window (left) and the interactive nested tracking graph (right).

al. [LMGH15]. Selecting a layer also updates the extracted su-
perlevel sets in the DVR window. Although the other levels are
grayed out, they still provide context as they indicate the nesting
hierarchy with respect to the current level. For instance, the nested
graph in Figure 4 shows 1) that the huge orange component con-
tains multiple components of higher value, 2) that all components
of the selected level are contained in one single component of lower
level, and 3) that sometimes small components split from this low
level component. Components in the DVR and nested graph win-
dow are shown in the same color to link both views. One can use
the nested tracking graph to interact with the components visual-
ized in the DVR window and vice versa by selecting either compo-
nents in the 3D rendering or nodes, edges, and entire paths of the
nested graph. This selection mechanism is used to manage white-
and blacklists that control which components are visible and which
ones are grayed out.

In the following we provide some implementation details of the
tool. On initialization, we load the precomputed nested tracking
graph—represented as a JSON-Object—from the server and gener-
ate on the client via D3.js [BOH11] in real-time an interactive SVG
representation using the previously described layout algorithm. To
visualize a timestep with direct volume rendering (DVR), the tool
first loads the respective voxel volume and subsequently uses Algo-
rithm 1 to compute at interactive framerates the superlevel sets and
component IDs. However, unless the correct component counter n
is chosen the computed IDs will not match the IDs stored in the
graph. To ensure a consistent labeling, in the preprocessing when
we compute the nested tracking graph we also store each time we
execute Algorithm 1 its respective input values and attach them
to the JSON-Object. As the user selects a timestep we can sim-
ply lookup the input values and the resulting IDs will match due
to the deterministic nature of the algorithm. The computed compo-
nent matrix and the scalar field are both passed as data textures to a
WebGL shader that performs direct volume rendering with screen
space ambient occlusion to enhance spatial perception. The shader
renders for a given level the components and colors them according
to the component matrix. In addition to the resulting DVR image,
we also generate a selection buffer where each pixel stores the ID
of the component shown at that location. By clicking on the DVR
window we can identify the selected component and highlight rel-
evant parts of the nested graph.

3.5. Limitations

Although the proposed layout algorithm produces smooth and
streamlined layouts, it still contains edge crossings. Sometimes,
these are unavoidable or occur due to limitations of the used layout
algorithm. For example, the red lines of Figure 8 between timestep
835 and 840 cross even though their corresponding components do
not merge. These “false” crossings, which could be misinterpreted,
can only occur between timesteps and never at an exact timestep.
Hence, edge crossings between timesteps are only layout based and
do not have any semantic interpretation.

Another limitation is the maximum number of visible levels,
which depends on the dataset, the amount of cluttering of the re-
sulting graphs, and on whether the graphs are shown statically or in
an interactive interface. In our experience, static drawings of nested
graphs—such as those presented in this work—should not show
more than three levels at once. An interactive interface can use
zooming and focus-and-context techniques to compensate for clut-
tering, making it practical to show up to 8 levels in a nested graph.
However, using only two levels is already a significant improve-
ment over previous visualization techniques as the nested tracking
graph shows the tracking graphs for both levels simultaneously and
sets them in context to each other.

4. Results

In the following, we demonstrate how nested graphs can be used
for ensemble comparison, semantic decomposition, and interactive
exploration.

4.1. Viscous Fingers

In this case study we examine an ensemble of finite pointset method
(FPM) simulations that was provided for the 2016 scientific visual-
ization contest [IEE16]. FPMs are a common tool to solve numeri-
cal problems in fluid dynamics and continuum mechanics where the
medium is represented as a numerical point cloud with each parti-
cle storing properties of the medium at its location. The ensemble
consists of simulations that model the viscous fingering process of
salt solutions inside water. Specifically, a cylinder is filled with pure
water and contains an infinite salt supply at its top. As soon as the
salt mixes with the water the resulting solutions sink down to the
bottom since they have a higher density than the surrounding wa-
ter. In course of the simulation, the solutions form structures with

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Lukasczyk et al. / Nested Tracking Graphs

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

N

b —?\\

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

I~
a

77 78 79

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 7,

N
@
N
<
&

76 77 78 79

7

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Figure 5: Nested graphs for three simulation runs with the lowest particle resolution of the viscous finger dataset. Edges encode the evolution
of components, and their width the size of their associated components. Different levels are shown in different colors, i.e., the levels 25, 30,
and 35 are shown from dark to light red, respectively. The x-axis represents time and the y-axis is used to minimize edge crossings. Although
stochastic effects alter simulation results, the graphs show similar trends such as the initial phase where small fingers originate from the salt

supply and then merge into larger finger structures.

increased salt concentration value, called viscous fingers. However,
it is not deterministic when and where viscous fingers appear and
how they evolve. To examine the aleatoric uncertainty of the mix-
ing process, the simulations incorporate stochastic effects that alter
simulation results. Furthermore, the accuracy of the mean solution
rate and properties of the fingers also depend on the used point
cloud resolution. The ensemble consists of 50 simulations at three
resolution levels, i.e., 250k, 650k, and 1900k particles. Each simu-
lation run provides around 100 timesteps.

In the following we utilize the approach of Aldrich et
al. [ALS™16] to identify and track viscous fingers within the par-
ticle clouds. We represent the entire computational domain as a
voxel grid with 647 cells and estimate the density distribution of
the salt concentration by averaging the salt density values of all
particles in the cells. To handle gridding artifacts and reduce high-
frequency noise in the density estimate, we apply low-pass filtering
using a Gaussian kernel with a bandwidth of two voxels. Viscous
fingers are identified as areas within the domain with increased salt
concentration density, i.e., superlevel set components in the voxel
grid that exceed a certain concentration level (Figure 4 left). How-
ever, it is not sufficient to simply partition the domain according
to a threshold since most fingers are connected to the salt supply
at the top of the domain. All fingers emerging from the salt supply
together with the supply itself are identified as one single super-
level set component. To separate fingers and to filter voxels that are

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

considered noise or belong to the salt supply, we also derive the
spatial Reeb graph. After we use this graph to filter out the salt sup-
ply and noise, we determine the components within the remaining
voxels and proceed to track them according to Section 3.3. In the
approach of Aldrich et al. [ALS*16] the authors compute tracking
graphs for multiple density levels. Although each individual track-
ing graph effectively summarizes the evolution of fingers, they are
limited to said level and do not provide context. It is not appar-
ent if two fingers of the same concentration level are contained in
a finger of lower concentration level. To tackle this problem, we
can derive the nested tracking graph for a set of salt concentration
levels. We obtain this set of levels by uniform sampling values be-
tween the minimum and maximum concentration or use a set of
values manually chosen by domain scientists who are interested in
certain thresholds. Considering that we do not only analyze a single
run, but rather summarize runs and compare them to each other it
makes sense to determine a set of levels that can be used across all
simulations. Therefore, we use a uniform sampling and later enable
the user to toggle the visibility of levels within the visual analytics
framework.

Figure 5 shows the nested tracking graphs for three ensemble
members with the lowest particle resolution and the same smooth-
ing bandwidth for three levels. The graphs show the density levels
25, 30, and 35 where layers are encoded with colors ranging from
dark to light red. In previous approaches, users had to compare

Lukasczyk et al. / Nested Tracking Graphs

three separate tracking graphs per ensemble member. In contrast,
nested tracking graphs enable users to compare ensemble mem-
bers directly by illustrating the evolution and nesting hierarchy of
the fingers across levels in one compact visualization. The width
of edges encodes the size of their associated components. Obvi-
ously, the stochastic effects of the simulation have an impact on the
resulting finger structures. Although the graphs differ in various as-
pects, some trends become apparent. For instance, the fingers seem
to evolve in two phases. From timestep O to around 37 small fin-
gers emerge from the salt supply that subsequently merge into one
huge component shown in dark red. In all runs there exists only one
of these huge components that sometimes splits into—or merges
with—small components. Furthermore, the number of fingers and
their nesting hierarchy are in general highly similar for these runs.
We also explored the impact of the particle resolution on the simu-
lation to see whether those effects are visible in the nested graphs.
We use the same smoothing bandwidth to process ensemble mem-
bers with the highest particle resolution. Figure 1 shows a nested
graph for one of these members. As expected, the graph becomes
more complex since the finger structures are now very detailed.
Nonetheless, simulations with higher particle resolution still show
similar trends as they also evolve in two phases and on average have
the same number and nesting hierarchy of fingers.

With an increasing number of levels and timesteps the static
graphs become more cluttered and suffer from information over-
load. To solve this problem we created the visual analytic frame-
work described in Section 3.4 to interact with the graphs in a level-
of-detail approach. Specifically, one can toggle the visibility of lev-
els and components, encode different metrics of the fingers, and
directly validate the encoded information of the nested graphs by
linking them to a 3D rendering of the fingers. Through comparison
of the graphs and the 3D rendering, we observed that the graphs
correctly represent the evolution of components, their properties,
and their nesting hierarchy. Furthermore, the tool provides a link
between the graph and the DVR by enabling users to select compo-
nents in either view and directly see highlighted parts in the other.

4.2. Jet

The Jet dataset results from a direct, numerical, computational fluid
dynamics (CFD) simulation capturing the injection of a jet into a
medium at rest and the formation of vortical structures due to fric-
tion. Initially, a large vortex is formed at the tip of the jet. As the
simulation progresses, this vortex decays into progressive smaller
vortical structures as the system moves towards turbulence. Veloc-
ity data is given on a regular grid of resolution 128 x 256 x 128 for
a total of 600 timesteps. From this, we compute the vorticity mag-
nitude as a criterion for the local strength of rotation. Superlevel
sets of high vorticity magnitude are used to identify vortices.

With this case study we demonstrate how the nested tracking
graphs can be used to create semantic partitions of a dataset, help-
ing a user to effectively peal through the data. For example, con-
sider the components for the two vorticity magnitude levels 85 and
117 shown at the top of Figure 6. A standard tracking graph that il-
lustrates the evolution of the numerous components at level 117 is
heavily cluttered and does not provide context. However, the com-
ponents of level 117 are contained in components of lower levels,

289 290 291 292 293 294 295 296 297 298 299 300 301 302

289 290 291 292 293 294 295 296 297 298 299 300 301 302

Figure 6: (Top) Individual components of the jet dataset at timestep
302 for vorticity magnitude level 85 (left) and 117 (right). (Bot-
tom) Nested tracking graph with focus on layer 85, i.e., layer 117
is grayed out and the edge colors of layer 85 match the components
of Figure 6 top left. The graph indicates that the top component
(orange) split from the main component (red) at timestep 295.

which yields a group hierarchy that can be illustrated via a nested
graph. Figure 6 (bottom) shows the nested tracking graph for these
two values, where the layer for level 85 is highlighted and the layer
for level 117 is grayed out. The colors of the graph match the ones
used to show the individual components for level 85 of Figure 6
(top left). At timestep 302 there exist two major components, i.e.,
the main jet (red) and the top ring (orange). These components con-
tain the smaller components with higher vorticity magnitude and
thus provide context by partitioning them into groups. The graph
shows that the ring—and thus its subcomponents—split from the
main jet at timestep 295; an information that is not conveyed by
conventional tracking graphs. Furthermore, if users want to exam-
ine the components within the ring, they can click on an edge that
represents the ring to highlight the history of its subcomponents and
filter out others. The nested tracking graph can be used to organize
multiple tracking graphs and their respective components.

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Lukasczyk et al. / Nested Tracking Graphs

250 255 260 265 270 275 280 285 290 295

300

250 255 260 265 270 275 280 285 290 295

Figure 7: Nested tracking graph for one filament of the halo dataset where the density levels 2.632497 x 102, 1% 10", and 5 x 10'! are

shown in red, dark blue, and light blue, respectively.

800 805 810 815 820 825 830 835 840 845 850

Figure 8: (Top) DVR image of the Halo dataset at timestep 850 that
highlights halos with density 2.632497 x 10'? (red), 1 x 10'? (dark
blue), and 5 x 10'! (light blue). (Bottom) Nested tracking graph
for one galaxy filament (light blue) that illustrates the evolution of
halos (dark blue) and sub-halos (red).

4.3. Halos

In this case study we use nested tracking graphs to visualize
cosmology simulation data in collaboration with a domain ex-
pert. The data was generated using the Nyx [ABL*13] code co-
developed by the Center for Computational Sciences and Engi-
neering (CCSE) and the Center for Computational Cosmology
(C?) at the Lawrence Berkeley National Laboratory to explore
structure formation in the universe. We consider a data set with
256° voxels from a scaling study of a simulation of the Lyman
o, forest [LSN*15]. The simulation covers a cubic domain with
an edge length of approximately 93 million light years and con-
tains 850 timesteps spanning the interval from redshift z = 159
(approximately 10 million years after the Big Bang) to redshift
z = 0 (today, approximately 13.5 billion years later). It uses hy-
drodynamics to evolve Baryon density and treats dark matter as
collisionless particles evolved via a particle-mesh method. We
consider the total mass density, which is the sum of Baryon and
dark matter density. Our method detects halos—i.e., gravitation-
ally collapsed regions of locally higher density—as superlevel
sets exceeding a density threshold and tracks them over time.
At the scale of this simulation, individual halos correspond to
clumps of matter hosting galaxies and groups of galaxies.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

This dataset is challenging due to the vast number of compo-
nents and their complex evolution; especially at the beginning of
the simulation where halos start to form and then progressively
cluster together. To illustrate their evolution, we derive a nested
tracking graph for density levels 2.632497 x 10'2, 1 x 10'2, and
5% 10" The largest level was suggested by the domain scientists
and the other ones were chosen heuristically based on the indicated
structures of the cosmic web that are visible in the volume rendered
images of the halo dataset. Figure 8 shows that the halos with high-
est density (red) are embedded in halos with density 1 x 10'2 (dark
blue), that are in turn embedded in galaxy filaments with density
5% 10! (light blue). This hierarchy can be well represented with a
nested tracking graph. It is not possible to interactively render the
entire graph due to the large number of nodes and edges. We ex-
tended our interface to explore the nested graph in a level-of-detail
approach by filtering halos below a certain voxel size, collapsing
intermediate timesteps, and focusing on single components. Fig-
ures 8 and 7 show the nested tracking graph for the same filament
but for different timesteps and volume filters. The figures illustrate
the evolution of halos for each fifth timestep and filter halos be-
low 40 and 20 voxels. Figure 7 shows an important phase of the
simulation where until timestep 285 a large number of new halos
are born within the same filament, that are then attracted to each
other and merge. E.g., notice the vast number of small, isolated ha-
los (thin red lines) at timestep 250 that merge into two large clusters
(thick red lines) until timestep 350. Another observable trend is that
the filament and its halos do not significantly increase in size after
timestep 285 although new halos are born. Figure 8 shows the same
filament at a much later time of the simulation where most halos al-
ready converged. The most prominent feature of Figure 8 is already
visible in Figure 7, i.e., a single, huge halo containing the most and
largest sub-halos.

In contrast to standard tracking graphs, the nested representation
shows the evolution of galaxy filaments, contained halos, and how
they cluster together over time. According to the domain scientist,
containment and clustering are currently not well captured by tradi-
tional tracking graphs used in cosmology visualization. Cosmolog-
ical simulations model very large volumes and cannot account for
detailed physics, for example physics relevant for galaxy formation.
Instead, reduced models—Ilike gravitational N-body simulations—
are used. A substantial challenge in this context is to connect
clumps of matter, i.e., halos with certain galaxy types as are ob-
served with telescopes. This is ongoing research [HCT*16], and
the connection approaches rely on both assembly history of halos,
as well as their environment, both of which are conveniently cap-
tured with nested tracking graphs.

Lukasczyk et al. / Nested Tracking Graphs

5. Conclusion and Future Work

We presented nested versions of tracking graphs that represent the
evolution of components and their properties while illustrating their
nesting hierarchy. This visualization sets multiple tracking graphs
in context to each other and enables users to follow the evolution
of components for different levels simultaneously. We have demon-
strated our method on three datasets from different application ar-
eas and how it can be integrated in a visual analytic framework for
interactive data exploration and analysis.

In future work, we plan to extend our methodology to handle
large scale datasets that will require more interactive ways to effec-
tively use the resulting nested graphs. To cope with a large number
of timesteps and components we will search for ways to summarize
time intervals and branches of the graphs. Edges and nodes of the
graph can also be linked to other visualizations such as histograms
to provide addition information about the components. To improve
the layout of the graphs we have to further reduce the number of
edge crossings by considering split and merge events of other lev-
els while computing the final layout. Furthermore, to make it easier
to link parts of the graph to a rendered image of their associated
components we have to incorporate the spatial relationship between
components in the layout algorithm. We also plan to explore nested
graphs for varying levels for each timestep. In particular, we plan
to choose levels according to the contour trees of the individual
timesteps and create a link between them. Nested tracking graphs
might be capable of visualizing time-varying split and merge trees.
We think nested tracking graphs can be applied in various other
fields as well. They could be used in general for visualizing time-
varying hierarchies that are present in hierarchical clustering, hier-
archical diffusion, and threshold based methods.

Acknowledgments

This work was supported in part by the DFG IRTG 2057 “Physical
Modeling for Virtual Manufacturing”, EU grant #678727, and the
Center for Mathematical and Computational Modeling (CM?) at
the University of Kaiserslautern. Gunther H. Weber was supported
by the Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231 through the project “Towards Ex-
ascale: High Performance Visualization and Analytics Program”,
program manager Lucy Nowell.

References

[ABL*13] ALMGREN A. S., BELL J. B., LUEWSKI M. J., LUKIC Z.,
ANDEL E. V.: Nyx: A Massively Parallel AMR Code for Computational
Cosmology. The Astrophysical Journal 765, 1 (2013), 39. 9

[ALS*16] ALDRICH G., LUKASCZYK J., STEPTOE M., MACIEJEWSKI
R., LEITTE H., HAMANN B.: Viscous Fingers: A Topological Visual
Analytics Approach. IEEE Scientific Visualization Contest (2016). 1, 2,
4,5,7

[BBD*07] BREMER P.-T., BRINGA E. M., DUCHAINEAU M. A., GYU-
LASSY A. G., LANEY D., MASCARENHAS A., PAscucct V.: Topo-
logical feature extraction and tracking. Journal of Physics: Conference
Series 78, 1 (2007), 012007. 1,2

[BKL*11] BENNETT J., KRISHNAMOORTHY V., LiUu S., GROUT
R. W., HAWKES E. R., CHEN J. H., SHEPHERD J., PAscuccI V.,

BREMER P.-T.: Feature-Based Statistical Analysis of Combustion Sim-
ulation Data. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 1822—
1831. 1,2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-Driven
Documents. IEEE Trans. Visualization & Comp. Graphics (2011). 6

[BWT*11] BREMER P. T., WEBER G., TIERNY J., PAScuccCI V., DAY
M., BELL J.: Interactive Exploration and Analysis of Large-Scale Sim-
ulations Using Topology-Based Data Segmentation. /EEE Transactions
on Visualization and Computer Graphics 17,9 (2011), 1307-1324. 2,4

[CSA03] CARR H., SNOEYINK J., AXEN U.: Computing contour trees
in all dimensions. Computational Geometry 24,2 (2003), 75-94. 2,3

[EHMP04] EDELSBRUNNER H., HARER J., MASCARENHAS A., PAS-
cuccl V.: Time-varying Reeb Graphs for Continuous Space-time Data.
In Proceedings of the Twentieth Annual Symposium on Computational
Geometry (New York, NY, USA, 2004), SCG *04, ACM, pp. 366-372. 1

[Gral3] Graphviz. http://www.graphviz.org/,2013. 5

[HCT*16] HEARIN A., CAMPBELL D., TOLLERUD E., BEHROOZI P.,
DIEMER B., GOLDBAUM N. J., JENNINGS E., LEAUTHAUD A., MAO
Y.-Y., MORE S., ET AL.: High-precision forward modeling of large-
scale structure: An open-source approach with halotools. 9

[HLH*16] HEINE C., LEITTE H., HLAWITSCHKA M., IURICICH F.,
DE FLORIANI L., SCHEUERMANN G., HAGEN H., GARTH C.: A Sur-
vey of Topology-based Methods in Visualization. Computer Graphics
Forum 35, 3 (2016), 643-667. 2

[HSKKO1] HILAGA M., SHINAGAWA Y., KOHMURA T., KUNII T. L.:
Topology Matching for Fully Automatic Similarity Estimation of 3D
Shapes. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (New York, NY, USA, 2001), SIG-
GRAPH ’01, ACM, pp. 203-212. 2

[IEE16] IEEEVIS: Scientific Visualization Contest. http://www.
uni-kl.de/sciviscontest/,2016. 6

[LBM*06] LANEY D., BREMER P. T., MASCARENHAS A., MILLER P.,
Pascuccr V.: Understanding the Structure of the Turbulent Mixing
Layer in Hydrodynamic Instabilities. IEEE Transactions on Visualiza-
tion and Computer Graphics 12, 5 (Sept. 2006), 1053-1060. 1, 2

[LMGHI15] LUKASCZYK J., MACIEJEWSKI R., GARTH C., HAGEN
H.: Understanding Hotspots: A Topological Visual Analytics Approach.
In Proceedings of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems (2015), GIS ’15, ACM,
pp. 36:1-36:10. 1,2,4,6

[LSN*15] LUKIC Z., STARK C. W., NUGENT P., WHITE M., MEIKSIN
A. A., ALMGREN A.: The Lyman « forest in optically thin hydrody-
namical simulations. Monthly Notices of the Royal Astronomical Society
446, 4 (2015), 3697-3724. 9

[MS09] MASCARENHAS A., SNOEYINK J.: Isocontour based Visualiza-
tion of Time-varying Scalar Fields. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 41-68. 1

[OHW*15] OESTERLING P., HEINE C., WEBER G. H., MOROZOV D.,
SCHEUERMANN G.: Computing and Visualizing Time-Varying Merge
Trees for High-Dimensional Data. Springer. 2

[SBO6] SOHN B. S., BAJAJ C.: Time-varying contour topology. /[EEE
Transactions on Visualization and Computer Graphics 12, 1 (2006), 14—
25.1,2,4

[SW98] SILVER D., WANG X.: Tracking scalar features in unstructured
data sets. In Visualization *98. Proceedings (1998), pp. 79-86. 1,2

[WBS*14] WIDANAGAMAACHCHI W., BREMER P. T., SEWELL C., Lo
L. T., AHRENS J., PASCUCCIK V.: Data-parallel halo finding with vari-
able linking lengths. In 2014 IEEE 4th Symposium on Large Data Anal-
ysis and Visualization (LDAV) (2014), pp. 27-34. 2

[WCPB12] WIDANAGAMAACHCHI W., CHRISTENSEN C., PAscuccCI
V., BREMER P. T.: Interactive exploration of large-scale time-varying
data using dynamic tracking graphs. In IEEE Symposium on Large Data
Analysis and Visualization (LDAV) (Oct 2012), pp. 9-17. 1,2

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://www.graphviz.org/
http://www.uni-kl.de/sciviscontest/
http://www.uni-kl.de/sciviscontest/

