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Abstract
In this paper, we propose to consider the adjoint operators of functional maps, and demonstrate their utility in several tasks
in geometry processing. Unlike a functional map, which represents a correspondence simply using the pull-back of function
values, the adjoint operator reflects both the map and its distortion with respect to given inner products. We argue that this
property of adjoint operators and especially their relation to the map inverse under the choice of different inner products,
can be useful in applications including bi-directional shape matching, shape exploration, and pointwise map recovery among
others. In particular, in this paper, we show that the adjoint operators can be used within the cycle-consistency framework to
encode and reveal the presence or lack of consistency between distortions in a collection, in a way that is complementary to the
previously used purely map-based consistency measures. We also show how the adjoint can be used for matching pairs of shapes,
by accounting for maps in both directions, can help in recovering point-to-point maps from their functional counterparts, and
describe how it can shed light on the role of functional basis selection.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: —Shape Analysis

1. Introduction

Encoding and analyzing maps between shapes lies at the core of
many geometry processing applications, such as deformation trans-
fer [SP04], shape interpolation [KMP07, VTSSH15], and visual-
ization [PRMH10], to name a few. Perhaps the most primitive and
intuitive representation of a map is given by the correspondences
between points on the two shapes. However, pointwise maps both
do not allow to express more complex (e.g., one-to-many) relations
and can often lead to difficult optimization problems in practice.

Stemming from the framework of functional maps [OBCS∗12],
there has been a recent trend of employing functional approaches
in map-based shape analysis, which overcome some of the diffi-
culties arising from using pointwise correspondences. The key idea
of the functional maps is to consider the correspondences between
functions defined on shapes, which generalizes the notion of point-
to-point maps and provides a flexible and simple framework for
encoding, analyzing and inferring maps between shapes.

Although the original formulation of functional maps was pri-
marily proposed for solving shape matching problems (map infer-
ence), it can also be used to study how geometry is deformed from
one shape to the other. The connection is made explicit in a follow-
up work [ROA∗13], where the authors argue that given a map be-
tween a pair of shapes, the metric distortion induced by the map
can be encoded by a pair of so-called shape difference operators.
Moreover, they propose a closed-form expression for the shape dif-
ference operators in terms of functional maps.

Despite their appealing properties, both functional maps and
shape difference operators have their limitations. For instance,
functional maps focus on transporting function values across
shapes and thus ignore the distortion induced by the maps. Mean-
while, although shape difference operators provide a compact way
of encoding the distortion, they do not transport functions across
the shapes of interest. In fact, one usually needs to choose a base
shape and then construct the shape difference operators with re-
spect to it. This makes it inconvenient to apply shape difference
operators in analyzing shape collections, especially in cases when
there are significant deformations among the shapes since the
choice of the base shape might influence the final results.

In this paper, we propose to consider the adjoint operators
(which we also call the adjoint representation) of functional maps,
which, as we demonstrate, combine the properties of the functional
maps and the shape difference operators. Similarly to a functional
map, the adjoint transports functions across the spaces on different
shapes, but at the same time distorts the function values in a way
that reflects the deformation induced by a map.

Remark that the adjoint operator corresponds to a well-known
classical construction that is closely related to the functional maps,
and indeed can in certain cases be obtained simply via the transpose
of the functional map matrix in the discrete setting. Nevertheless,
we argue that it has certain properties that have not been fully ex-
ploited or analyzed so far, especially in relation to analyzing maps
in shape collections. Thus, we start by describing the basic proper-
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ties of the adjoint operators and their inherent connections to func-
tional maps and shape difference operators. We then demonstrate
three immediate applications, facilitated by the adjoint representa-
tion.

In the first application, we show how the adjoint operators can be
used to regularize functional map computations for shape match-
ing. Namely, we propose a simple scheme using the adjoint op-
erators to promote invertibility of the map, while giving control
over the conformality and area-preservation of the sought corre-
spondence. The resulting method maintains the linear nature of the
optimization problem and achieves improvement in map quality.

We then consider map-based exploration and analysis of shape
collections, and show how the adjoint representation can be used to
overcome the dependence of the approach proposed in [ROA∗13]
on using a prescribed base shape, by describing how this rep-
resentation can be used within the cycle-consistency framework
of [WHG13]. In particular, we show how the adjoint representa-
tion can be used to evaluate the consistency of shape distortions in
a collection, and to reveal the jointly most distorted regions.

Finally, we consider recovering a point-to-point map from a
given low-rank functional map, and demonstrate that the link be-
tween the inverse of a map and its adjoint suggests a change of the
inner product that can be used to define new functional bases, which
lead to smaller error in pointwise recovery. The resulting scheme is
simple to implement and improves upon the original nearest neigh-
bor search scheme in [OBCS∗12] and even the more advanced ap-
proach proposed in [RMC15] in the case of non-isometric shape
pairs, without using iterative optimization.

2. Related Work

Encoding and analyzing maps is one of best-studied areas of ge-
ometry processing, with its roots both in the classical problems of
shape correspondence (matching), deformation design and analy-
sis, and even parameterization, in the specific setting of mapping to
some canonical domain. Therefore, since the complete overview of
approaches for manipulating mappings is out-of-scope of the cur-
rent article, below we concentrate primarily on various representa-
tions for mappings or general relations between non-rigid shapes.

By far the most common approach for representing and analyz-
ing relations between geometric shapes is given by the classical
notion of point-to-point correspondence, and most early methods
for both rigid and non-rigid shape matching are based on finding
the optimal pointwise map under some quality criterion, such as
conformality or near-isometry (e.g., [BBK06,LF09,KLF11] among
many others). Despite their simplicity, pointwise correspondences
make it non-trivial to express more complex relations such as one-
to-many maps, can lead to noisy distortion measures and perhaps
most importantly often result in difficult non-convex non-linear op-
timization problems.

More recently another very successful set of approaches has been
proposed based on soft or approximate (also called “fuzzy”) corre-
spondences rather than point-to-point maps [SNB∗12, OBCS∗12].
This includes both maps between probability densities on the
shapes [Mém11,SNB∗12,SPKS16] and region-based maps [CK15,

GSTOG16], which can be used in a hierarchical way to obtain ac-
curate correspondences. Many of these methods are closely related
to the formalism of optimal transport, which has well-developed
theoretical and computational foundations, with some recent tech-
niques achieving remarkable scalability in solving certain prob-
lems, e.g., [SDGP∗15]. These techniques are often more robust in
the presence of geometric and discretization variability, although
they still often become costly for large-scale matching problems.

Our work is most closely related to the functional maps frame-
work introduced in [OBCS∗12], and extended in several follow-up
works, including [PBB∗13, KBB∗13, RMC15, KBBV15, RCB∗16,
LRB∗16, KGB16, LRBB17, NO17] among others, with a recent
overview provided in [OCB∗16]. Rather than trying to establish
correspondences between points or probability densisties on the
shapes, these methods consider general linear transformations be-
tween corresponding functional spaces. A key property exploited
in these techniques is the fact that certain functional spaces en-
joy a vector-space (Hilbert) structure. This allows to represent a
map via a small matrix using a multi-scale functional basis such
as the Laplace-Beltrami eigenfunctions, and, at the same time, to
express many objectives, such as descriptor preservation, as linear
constraints on the functional map, which can then be recovered by
solving a least squares system.

In addition to being flexible and leading to relatively sim-
ple optimization problems, functional maps have also been used
for finding correspondences jointly within a collection of shapes
[WHG13, HWG14] and for analyzing distortion or differences be-
tween pairs [OBCCG13] or sets of shapes [ROA∗13]. The latter
work introduced the notion of shape differences, which intuitively
measure the metric distortion induced by a functional map with re-
spect to some fixed base shape.

Despite the success of these approaches in certain settings, they
have some significant limitations. For example, the consistent map
framework [WHG13,HWG14] is only built using the notion of loop
closure of the maps themselves and thus does not allow to reveal
or analyze distortion or differences in a collection jointly. On the
other hand, shape difference operators [ROA∗13] and the associ-
ated map visualization techniques assume a prescribed base shape
and a particular direction for a map, which can lead to a bias on
the reported distortion in a shape collection. Finally, estimating a
point-to-point correspondence from a given functional map can be
a difficult problem in itself [RMC15], especially for maps between
significantly non-isometric shapes.

In this paper we argue that some of these difficulties can be
overcome by considering the adjoint representation of a map. The
adjoint is a classical construction, which is well-known to exist,
in particular, for linear maps between Hilbert spaces [RS81] and
has been exploited widely in areas as diverse as quantum mechan-
ics [Mil08], control theory [GP00] and fluid simulation [MTPS04].
In the context of shape analysis, the adjoint appears ubiquitously
in manipulating vector fields [dGDT16] and even in the definition
of the classical Laplacian operator. Indeed, when the map is repre-
sented in a basis that is orthonormal with respect to the given inner
products, then the adjoint is nothing but the transpose. Neverthe-
less, as we demonstrate below, by considering the adjoint, and in
particular its relation to the map inverse, we can shed light on some
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problems in shape analysis, including bi-directional shape match-
ing, exploration and analysis via cycle-consistency of map distor-
tions, and pointwise map recovery. Moreover, by exploring the ef-
fect of the inner product on the adjoint, we can recover functional
bases that are better suited for some transformations.

To summarize, our main contributions include:

• We introduce the adjoint operators of a functional map with re-
spect to different inner products and describe their connection to
both the map inverse and the previously proposed shape differ-
ence operators.
• We show how the adjoint operators can be used in applications

such as bi-directional shape matching, shape exploration and
pointwise map recovery.
• We demonstrate how using the adjoint operators within the cy-

cle consistency framework of [WHG13, HWG14] can reveal the
presence or lack of consistency of shape deformations in a col-
lection, complementary to purely map-based consistency.

3. Adjoint Functional Maps

We first give a brief overview of the functional maps and the shape
difference operators, which are inherently related to the adjoint op-
erators. We also introduce the notations that we will use throughout
the rest of the paper.

3.1. Notation and Background

Throughout this paper, we consider shapes to be two-dimensional
connected, compact Riemannian manifolds embedded in R3, and
represented as triangle meshes in the discrete setting. Especially,
we assume in the following that T : M→N is such that the induced
functional map CN,M is a continuous operator. One sufficient con-
dition for the continuity is that the Jacobian of T is non-degenerate.
We refer the readers to [TY99] for a more detailed discussion.

Functional Maps Given a pair of shapes M,N and a map T : M→
N, a functional map CN,M is simply a pullback of T that maps each
function in L2(N) to one in L2(M), where L2(·) is the set of square
integrable real-valued functions on a shape.

It has been demonstrated in [OBCS∗12] that by choosing proper
functional bases for both spaces L2(M) and L2(N) respectively,
the functional map can be represented by a (possibly infinite-
dimensional) matrix. In the rest of this paper, we denote by Ci j :
L2(Si)→ L2(S j) the functional map in the continuous case and its
associated matrix representation in the discrete case for a lighter
notion. Before we introduce other useful functional operators that
are based on the functional maps, we formally define two types of
functional inner products.

Definition 3.1 Given a shape S, we define the area-based inner
product on L2(S) as

hA
S ( f ,g) =

∫
S

f (x)g(x)dν(x), (1)

and the conformal inner product on H1
0 (S), the Sobolev space mod-

ulo constants, as

hC
S ( f ,g) =

∫
S
∇ f (x) ·∇g(x)dν(x). (2)

Shape Difference Operators The authors of [ROA∗13] propose
shape difference operators, which are linear operators that capture
and encode certain types of deformations between shapes with re-
spect to a given functional map. Given a pair of shapes M,N and
a functional map CM,N : L2(M)→ L2(N), in general, for a pair of
functions f ,g on M, we have

hM( f ,g) 6= hN(CM,N f ,CM,Ng),

where hM (resp. hN ) is a certain inner product on the function
space on M (resp. N). The shape difference operators are then in-
troduced to compensate for such a discrepancy. Namely, the area-
based shape difference operator, DA

M,N : L2(M)→ L2(M), is a linear
operator such that,

hA
M( f ,DA

M,N(g)) = hA
N(CM,N( f ),CM,N(g)),∀ f ,g ∈ L2(M)

Corresponding to the other inner product defined in Eq. 2, the con-
formal shape difference operator, DC

M,N : H1
0 (M)→ H1

0 (M), is a
linear operator such that,

hC
M( f ,DC

M,N(g)) = hC
N(CM,N( f ),CM,N(g)),∀ f ,g ∈ H1

0 (M)

3.2. Formulation

In this paper, our key observation is that the adjoint operator of
a functional map provides a convenient way to combine informa-
tion both from the functional maps and from the shape difference
operators, which in particular will be shown useful for both shape
matching and shape analysis.

The following theorem (which we prove in the appendix for
completeness, to draw a link to the shape difference operators)
guarantees the existence and uniqueness of the adjoint operator,
XM,N , induced by T : M→ N.

Theorem 3.1 Given two shapes M and N, endowed with inner
products hM ,hN respectively, and a map T : M → N, there exists
a unique linear operator XM,N : L2(M)→ L2(N) satisfying:

hN(XM,N( fM),gN) = hM( fM ,gN ◦T ),∀ fM ,gN . (3)

for any pair of functions fM ,gN on M,N respectively.

It is worth noting that the adjoint functional operator maps func-
tions in the same direction as the given map T , which is opposite to
that of functional maps .

As claimed in Theorem 3.1, like functional maps defined via
the pull-back, the adjoint representation XM,N is well-defined with-
out assuming T being injective nor surjective. Notice that since
gN ◦T = CN,M(gN) simply by definition of functional maps, XM,N
is the adjoint to CN,M with respect to inner products hM ,hN . In this
paper, we consider the two types of inner products defined in Def-
inition 3.1, which are used ubiquitously in geometry processing,
and denote by XA (resp. XC) the area-based (resp. conformal) ad-
joint operator.

3.3. Connection to Shape Difference Operators

As can be readily seen from the definitions above, the adjoint op-
erators are closely related to both functional maps and shape dif-
ference operators. Below we formalize this intuition by showing
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that under an additional assumption that the map T is bijective, the
adjoint of functional map C, is simply a composition of a shape
difference operator and an inverse of the map.

Proposition 3.1 Let DA
M,N (resp. DC

M,N ) be the area-based (resp.
conformal) shape difference operator, XA

M,N (resp. XC
M,N ) be the

area-based (resp. conformal) adjoint to CN,M , and CM,N : L2(M)→
L2(N) be the functional map induced by T−1. then we have

XA
M,N = DA

N,MCM,N , (4)

XC
M,N = DC

N,MCM,N . (5)

On the other hand, it was shown in [ROA∗13] that a bijection T is
locally area-preserving (resp. conformal) if and only if DA

N,M (resp.
DC

N,M) is an identity operator. Therefore, Proposition 3.1 leads to
an alternative characterization of the above equivalence in terms of
the adjoint functional maps. Under the condition of Proposition 3.1,
we claim that T is an area-preserving (resp. conformal) map if and
only if CM,N is the area-based (resp. conformal) adjoint to CN,M .
In other words, the adjoint of the map will equal its inverse, when
both are represented as functional operators, if and only if the map
is area-preserving or conformal, depending on the choice of inner
products. In the rest of the paper we will consider ways to explore
and use this property in a variety of shape processing applications.

Another connection between the area-based adjoint operator and
the functional map is stated in the following proposition (which
will be used in the pointwise map recovery scheme in Section 7).

Proposition 3.2 Let XA
M,N be the area-based adjoint operator of

CN,M , and let κ = XA
N,M(1N), where 1N is the constant function on

N. Then we have

XA
M,N(κ · f ) =CM,N( f ),∀ f ∈ L2(M).

4. Discretization

In practice, we assume that all shapes are represented as manifold
triangle meshes without boundary, and that functions are repre-
sented by values assigned to vertices of the mesh.

Given a pair of shapes M,N let C be a functional map between
functional spaces on N and M, C : L2(N)→ L2(M). For example,
C can represent the pull-back with respect to some point-to-point
map T : M→ N, or can be an arbitrary linear map across the two
functional spaces. In both cases, C is represented as a matrix with
dimensions kM×kN where kM ,kN correspond to the dimensionality
of the chosen functional bases.

Setting aside the exact choice of basis for now, in the discrete
setting the inner product between two functions f ,g, represented
via their coefficients f,g in some functional basis, is given as:
< f ,g >H = fT Hg, where H is some symmetric positive-definite
matrix. Therefore, the discrete version of Eq. 3 above becomes:

< Xf, g >N=< f, Cg >M , ⇔ fT XT HNg = fT HMCg. (6)

Here, HM and HN are inner product matrices for functions on M
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Figure 1: Map accuracy on 100 pairs of shapes in the FAUST
dataset obtained using the regular functional maps pipeline, con-
sistent maps approach of [ERGB16] and using adjoint regulariza-
tion in the case of a small number of descriptors.

and N respectively. Since this must hold for all pairs of functions
f ,g, we get XT HN = HMC, or:

X = H−1
N CT HM . (7)

Remark that X has size kN × kM and maps functions from shape M
to N, i.e., in the opposite direction to that of C.

As done in [ROA∗13], we consider the area-based (L2) and con-
formal (H1) inner products. In the discrete setting, the former cor-
responds to the area-matrix A (which can either be diagonal in
the case of lumped area weights, or more accurate FEM approx-
imation [MDSB03]), and the latter is the cotangent weight matrix
W [PP93]. Note that given a basis encoded as columns of a ma-
trix B, the corresponding area-based and conformal inner product
matrices, expressed in that basis become: BT AB and BTWB.

This leads to the following expressions for area-based and con-
formal adjoint operators:

XA = (BT
NANBN)

−1CT (BT
MAMBM) (8)

XC = (BT
NWNBN)

+CT (BT
MWMBM) (9)

The last expression involves the pseudo-inverse (+) of a matrix, to
account for the fact that WM contains a kernel, which consists of
the constant functions.

4.1. Influence of the choice of basis

The expression above is valid for any choice of functional bases.
However, in certain specific cases, it can be simplified further.
Namely, suppose that the f is expressed in some basis such that
if the basis functions are stored as columns of the matrix BN we
have: BT

NHNBN = Id. In that case, we have for any pair of func-
tions, < f ,g >HN= fT BT

NHNBNg = fT g. For example if the map
C is written in the Laplace-Beltrami eigenbasis Φ chosen on each
shape s.t. Φ

T AΦ = Id and WΦ = AΦ∆ on each shape, where A is
the area matrix, and ∆ is the diagonal matrix of eigenvalues then:

XA =CT , and XC = ∆
+
NCT

∆M . (10)
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Figure 2: Comparison of the quality of the map obtained using
the regular functional maps approach with the one obtained with
adjoint regularization based on the same descriptors.

5. Adjoint Regularization for Map Computation

To illustrate the relation between the map inverse and its adjoint,
we consider a simple modification to the functional map estimation
pipeline, proposed in the original article [OBCS∗12]. Namely, we
compute a functional map C between shapes M and N by solving
the optimization problem (see also Section 2.5 in [OCB∗16]):

Copt = argmin
CM,N

‖CM,NF−G‖2 +α‖∆NCM,N −CM,N∆M‖2.

Here, F and G are matrices storing in each column the coeffi-
cients of corresponding descriptor functions in the basis of Laplace-
Beltrami eigenfunctions, and ∆M ,∆N are the diagonal matrices of
eigenvalues of the LB operators. As has been remarked in several
works before, e.g., [ERGB16], this formulation is not symmetric
with respect to the shapes M and N. Therefore, we consider the
problem of solving for the two maps CM,N and CN,M jointly, first
proposed in [ERGB16]. In our approach, we couple the two prob-
lems via the two adjoint operators introduced above. This leads to
the following optimization problem:

min
CM,N ,CN,M

E1(CM,N)+E2(CN,M)+E3(CM,N ,CN,M),

E1(CM,N) = ‖CM,NF−G‖2 +α‖∆NCM,N −CM,N∆M‖2,

E2(CN,M) = ‖CN,MG−F‖2 +α‖∆MCN,M−CN,M∆N‖2,

E3(CM,N ,CN,M) = β‖CM,N −CT
N,M‖2 + γ‖∆NCM,N −CT

N,M∆M‖2,

where β,γ are scalar regularization parameters. Note that the cou-
pling energy E3 involves two terms, which approximate the map in-
verse using its area-based and conformal adjoint operators respec-
tively. I.e., using the notation above, we can rewrite: E3(C1,C2) =
β‖C2−XA(C1)‖2+γ‖C2−XC(C1)‖2. These two terms give an ex-
plicit control over promoting area-preservation and conformality as
well as overall invertibility of the map.

We evaluated this modification on 100 random pairs of shapes
in the FAUST dataset [BRLB14], where we used a small number
of descriptor functions (20 Wave Kernel Signature [ASC11] de-
scriptors for a map represented with 60x60 eigenfunctions). After
estimating the maps CM,N ,CN,M jointly, we then evaluated CM,N
using the same protocol as done in [KLF11, OBCS∗12] and com-
pared to the baseline standard approach. Note that even though
we used the inverse map CN,M together with the coupling to es-
timate CM,N , we did not use CN,M for pointwise map computation

Figure 3: The fraction of coverage of the target shape with
the maps computed using the regular pipeline, Coupled Maps
of [ERGB16] and adjoint regularization after ICP [BM92] post-
processing. Before ICP, the coverage is 5%, 38.3% and 49.8% re-
spectively.

or evaluation in any way. Thus, the adjoint coupling is only used for
regularization. Since we considered a particularly challenging case
with a relatively small number of descriptors, the basic approach
of [OBCS∗12] fails to produce good results. On other hand, as
shown in Figure 1, our simple regularization can produce a signif-
icant improvement in the map quality without using any additional
information, and while still maintaining the linear (least squares)
nature of the optimization problem. We also compared our regular-
ization with the Coupled Functional Maps approach of [ERGB16]
using exactly the same input descriptors. Unlike the coupled ap-
proach which enforces orthnormality as a hard constraint, here we
consider both the area-based and conformal adjoint operators to-
gether as soft constraints, since in our experiments both β and γ

play a role and activating both terms improves results over using
only one. We also notice that the framework of [ERGB16] enforces
invertibility directly using a penalty ‖CM,NCN,M − Id‖, which is
unlikely to hold in the reduced basis and leads to a non-convex
problem. Contrastingly, our regularization results in a simple con-
vex problem (quadratic in CM,N ,CN,M) so that we can find a global
optimum.

It is also worth noting that the regularization terms weighted by α

in E1(CM,N) and E2(CN,M) are used so that the resulting functional
maps represent approximately isometric maps, which in practice
promotes diagonal structure in the functional map matrices. In the
same spirit, the authors of [ERGB16] propose a term which penal-
izes the output functional maps with large off-diagonal entries. To
control for this difference, we compare the results of our method
with the ones obtained by [ERGB16] after removing the respec-
tive regularization terms favoring the diagonal-structure output. As
we show in Figure 10, the performance of [ERGB16] drops signif-
icantly, while ours remains almost the same.

To illustrate the effect of using our adjoint regularization, we also
visualize the map that we obtained using the standard functional
maps approach with ICP compared to the one obtained with our
scheme in Figure 2. Note that the map obtained with our approach
is significantly more continuous and consistent even though the
computation uses exactly the same descriptor functions. We also
plot the percentage of area covered by the pointwise map obtained
using different approaches on the same pair of shapes in Figure 3.
Here we plot a binary function on the target shape, which equals to
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1 if and only if a particular point is used as a target point of some
point from the source shape. Intuitively this function demonstrates
how invertible the map is. Note again that although our adjoint
regularization is linear in nature and the conversion from a func-
tional map to a point-to-point map is done using a simple nearest-
neighbor scheme we achieve a significant increase in map invert-
ibility. Using more advanced pointwise map recovery schemes such
as [RMC15] this can certainly be improved further.

We also performed the same test on 76 pairs of shapes in the
TOSCA [BBK08] and 71 pairs of shapes in the SCAPE [ASK∗05]
datasets, while keeping all parameters the same throughout all ex-
periments: (α,β,γ) = (0.01,5000,1.13). In terms of runtime, both
our method and the method of [ERGB16] take between 5 and 15
seconds to process (including the ICP refinement) a pair of shapes
on the FAUST, SCAPE and TOSCA datasets, depending on the
shape complexity, on a machine with 3.3GHz i5 processor and
32GB memory. The corresponding results are shown in Figures
11 and 12 in the appendix. Note that although the amount of im-
provement varies, our regularization consistently helps to improve
the map quality, especially in poorly mapped areas and reduces the
number of significantly incorrect matches.

6. Consistency of Adjoint Functional Maps

In this section, we consider the problem of map analysis and visual-
ization. Given a pair (or a collection) of shapes and the correspond-
ing functional maps, our aim is to detect and highlight the regions
on the shapes that undergo significant deformation.

6.1. A Brief Overview of Previous Approaches

A previous approach towards this problem has been taken in
[OBCCG13], which can be seen as a special application of the
shape difference operators [ROA∗13]. For the sake of generality,
we below review the previous frameworks in terms of the shape
difference operators.

Given a pair of shapes M,N and the functional map C : L2(M)→
L2(N), the associated shape difference operator DA

M,N is a linear op-
erator mapping functions from L2(M) to itself. In [OBCCG13], the
authors propose a functional measuring the area distortion induced
by C between M and N, written as:

EM( f ) =

∫
M f DA

M,N( f )dνM∫
M f 2dνM

(11)

As discussed in [OBCCG13], EM( f ) is large (resp. small) when-
ever there is an area expansion (resp. contraction) from the support
of f on M to the support of C( f ) on N. The optimizers of EM( f ) are
then expected to detect and highlight the regions on M that undergo
significant area deformations. Note that the same functional can be
written with respect to the conformal shape difference DC

M,N .

By adding a regularity condition
∫

M f 2dνM = 1, in the dis-
crete setting, maximizing (resp. minimizing) EM( f ) boils down to
computing the largest (resp. smallest) eigenvalue. Furthermore, the
eigenfunctions of DA

M,N are computed as a collection of multi-scale
highlighted functions, each of which corresponds to an eigenvalue
of DA

M,N . Typically, users need to check the highlighted functions

M NOutput w.r.t.
the red point

Output w.r.t.
the black point

Eigenfunctions of respective
Our scheme

shape difference operators

DA
M,N DA

N,M V X

(a1) (b)(a2)

Figure 4: Comparison of a pair of deformed spheres with the
shape difference operators and with our scheme. In column (a1)
and (a2), we demonstrate the spectrum and the eigenfunctions of
DA

M,N and DA
N,M corresponding to the largest(red point) and small-

est eigenvalues (black point), respectively. In column (b), we show
the results obtained by our scheme. Unlike the previous frame-
works, our method produces a pair of functions at each point in
the spectrum, and reveals the fact that the deformation at the top is
more significant than the one on the left.

with respect to the largest and the smallest several eigenvalues to
get a general picture of how the area deformations from M to N
take place.

The major limitation of this framework is that its output relies on
the base shape on which we construct the shape difference operator,
i.e., if we choose N as the base shape, the resulting functions would
be supported on N and the notions of contraction or expansion are
measured with respect to its inner products.

To illustrate this, consider a pair of deformed spheres as shown in
Figure 4. Intuitively, by comparing them, we expect to capture the
area expansion on the left and the area contraction at the top, from
M to N. If we single out one of them as the base shape, say, N, then
we need to check the highlighted functions corresponding to both
ends of the spectrum. However, as shown in the bottom row, the
function in the second panel is noisy due to the low-rank approx-
imation of the functional map. In practice, as the functional maps
are computed with truncated basis, they are not consistent even if
they are induced by consistent pointwise maps. On the other hand,
one can as well consider both the eigenfunctions corresponding to
the largest eigenvalues of DA

M,N and DA
N,M respectively, which are

relatively more stable (see the middle row of the left part of Fig-
ure 4). Nevertheless, this brings in another problem —- in this case
the functions are living in distinct function spaces and measured
by different functionals, we can not compare the deformations cap-
tured by the obtained functions. In other words, it is not justified to
compare directly the spectrum plots on the top of column (a1) and
(a2).

6.2. Consistency of Adjoint Representations

Motivated by the problems posed in Section 6.1, in this part we
propose a new scheme, which exploits the informativeness of the
adjoint operator and provides a unified way to jointly detect and
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highlight the deformations in a collection of shapes. Instead of con-
structing some functional measuring distortion based on a single
map, we incorporate the adjoint representation in the framework
on cycle-consistency of functional maps [WHG13, HWG14].

Now assume that we are given a collection of shapes {Si}n
i=1,

and a collection of cycle consistent bijections Ti j : Si → S j,
which satisfy Tik i1 ◦ Tik−1ik ◦ · · · ◦ Ti1i2 = Ti1,i1 ,∀{i1, i2, · · · , ik} ⊂
{1,2, · · · ,n}. Let Ci j,Xi j be the functional map and the adjoint rep-
resentation from L2(Si) to L2(S j), induced by the consistent maps
{Ti j}1≤i, j≤n. First of all, we justify in the continuous case the exact
cycle consistency of Xi j.

Proposition 6.1 Given a collection of shapes {Si}n
i=1, and consis-

tent bijections Ti j : Si → S j,∀1 ≤ i, j ≤ n, let Xi j (either the area-
based or conformal one) be the adjoint representation induced by
Ti j , then {Xi j}1≤i, j≤n satisfy the cycle-consistent condition below.

Xii = Idi, (12)

X jiXi j = Idi, (13)

XkiX jkXi j = Idi. (14)

Proposition 6.1 implies that the adjoint representations can be
adapted in the consistency framework proposed in [WHG13],
where the cycle consistency is posed as a soft constraint and op-
timized for using an iterative procedure.

As we mentioned in Section 4, in practice, instead of L2(Si),
we consider a reduced m−dimensional function space on Si, mean-
ing that any function in the reduced space is represented by a m-
dimensional vector and each Ci j is an m by m matrix. Now given n
functions { fi}n

i=1, one on each of the shapes, their consistency with
respect to the adjoint operators can be measured by:

Econs( f ) = ∑
i, j
‖Xi j fi− f j‖2,where f = ( f T

1 , f T
2 , · · · , f T

n )T (15)

Following the same argument as in [WHG13], we can show that
Econs( f ) = f TV X f , where V X is a square matrix of dimension mn,
and its (i, j)−th block is given as follows:

V X
i j =

{
∑ j(I +XT

i j Xi j) if i = j,
−(X ji +XT

i j ) otherwise.
(16)

Therefore, after adding a regularity condition f T f = 1 (to avoid
trivial solutions), finding a set of consistent functions with respect
to a collection of given adjoint operators maps amounts to comput-
ing the eigenvectors of V X corresponding to the smallest several
eigenvalues.

Although the procedure described above provides a simple way
to construct the most and least consistent functions with respect
to the adjoint operators Xi j , a more interesting observation we
leverage here is that functions consistent with respect to the func-
tional maps are not necessarily consistent with respect to the ad-
joint representations at the same time. In fact, consider n func-
tions f1, f2, · · · , fn such that they are consistent with respect to both
{Ci j} and {Xi j}, i.e., Ci j fi = f j and Xi j fi = f j,∀i, j. Then, accord-
ing to Eq. 4 and Eq. 5, it implies that D ji f j = f j, which in turns
suggests that f j is supported in a region on S j undergoing little
deformation.

Algorithm 1: Highlighting Jointly Area-based Deformed Re-
gions

input : n shapes {Si}n
i=1, Ci j : L2(Si)→ L2(S j), and a

parameter ε.
output: A collection of functions on each of the shapes

highlighting the jointly deformed regions.

(1) Set the area-based adjoint operators Xi j =CT
ji;

(2) Construct the (i, j)−th block of WC as follows:

WC
i j =

{
∑ j(I +CT

i jCi j) if i = j,
−(C ji +CT

i j) otherwise.
(17)

and compute the eigenvalues of WC no larger than ε and
collect the corresponding eigenvectors as a matrix
F ∈ Rmn×k;

(3) Construct V X with respect to Xi j, compute the eigenvectors
of FTV X F and sort them in descending order as
b1,b2, · · · ,bk ;

(4) Lastly, for j from 1 to k, let Fb j = ( f T
1 , f T

2 , · · · , f T
n )T and

visualize the function fi on Si.

Thus, in order to obtain functions that are supported on signifi-
cantly deformed regions, we propose to find functions that are (1)
consistent with respect to {Ci j} and (2) the least consistent with
respect to {Xi j}. Such functions can be obtained by first learn-
ing a set of functions that are consistent with respect to {Ci j} us-
ing the framework [WHG13], and then searching in the subspace
spanned by these functions for the ones that are the least consis-
tent with respect to {Xi j}. The consistency measurement is given
as a quadratic form with respect to V X . We describe how to imple-
ment the idea in Algorithm 1. It is worth noting that our scheme
provides a unified measurement of the inconsistency of the pro-
duced highlighted functions, which are equivalently the eigenval-
ues of FTW X F , where F contains the consistent functional bases
with respect to the functional maps (see step 2 in Algorithm 1),
and at each eigenvalue, instead of producing a single function on
a specified shape, our scheme produces a set of functions, one for
each shape in the collection.

We compare our result with the one based on shape difference
operators directly: as shown in column (b) of Figure 4, our re-
sult captures both of the deformed regions jointly. Perhaps more
remarkably, our result reveals the fact that the deformation at the
top is more significant than the one on the left (as the red point
higher than the black point in the spectrum), though the two de-
formations would be considered in the opposite directions from the
point of view of shape difference operators.

7. Pointwise Recovery with the Adjoint Representation

In this section, we consider another fundamental problem in shape
analysis with the functional approaches. Namely, recovering a
pointwise map from a given functional map C : L2(M)→ L2(N).

The original approach proposed for this task in [OBCS∗12] is
to construct heat kernel functions for infinitesimal time t, and for
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each heat kernel function kt(y, ·) on N an x ∈M, such that Ckt(x, ·)
is the nearest to kt(y, ·) in L2-distance. When the functional map is
expressed in the Laplace-Beltrami basis, this can be done by simply
finding for each row of ΦN the nearest neighbor among the rows
of (CΦ

T
M)T = ΦMCT . A slight variation of the same idea would

be to find for each row of ANΦN the nearest neighbor in the rows
of AMΦMC, which would correspond to approximating Dirac δ-
functions. The authors of [OBCS∗12] also propose an ICP-based
technique in the embedded functional space as a refinement on a
given functional map by iterating between finding the pointwise
map and projecting the functional map C to the nearest orthonormal
matrix, forcing CTC = Id.

In general, among the difficulties of recovering a pointwise map
from a given functional map, two are significant: one is the in-
formation loss when representing the functional map in truncated
functional basis; the other is the potential non-isometric distortions,
which can make it difficult to align functions across the shapes. In-
spired by the properties of the adjoint, we propose a modification
of this scheme, which takes into account the deformation captured
by the difference between the adjoint representation and the func-
tional map (as described in Proposition 3.1), which alleviates the
latter obstacle and can thus be applied in the more difficult non-
isometric scenarios. Our key observation is that, we can modify
the functional inner product on one of the shapes to make the two
functional spaces more comparable. Furthermore, this modification
leads to a simple change of basis under which the orthonormality
CTC = Id is meaningful even for non-area preserving maps.

Below, we first give a description for recovering the pointwise
map associated with the functional map CM,N under the assumption
that an approximation of the inverse map CN,M is given and then
show how this assumption can be lifted.

Our method proceeds in the following three steps:

1. We change the inner product on the function space on N, so that
new inner product H̃N =CT

N,MHMCN,M ;
2. We modify the function basis on shape N to make it orthonormal

with respect to H̃N .
3. We then apply the same technique as described in the original

article [OBCS∗12].

We observe that after applying the first two steps described above
the functional map CN,M expressed in the new basis will equal to
the adjoint of CM,N and therefore the latter will satisfy the orthonor-
mality property CT

M,NCM,N = Id.

When the inner product HM is the simple L2 inner product and
the maps are expressed in the orthonormal LB basis, then we obtain
H̃N = CT

N,MCN,M (since HM = Id in the standard basis ΦM). To
construct a new basis we solve the generalized eigenvalue problem
∆Nφ = H̃Nφ where ∆N is the diagonal matrix of eigenvalues of the
Laplace-Beltrami operator on N. We then store the vectors φ as
columns of a matrix e and set the new basis to Φ̃N = ΦNe.

In the following proposition, we demonstrate the difference be-
tween the nearest-neighbor search (NN-search) before and after ap-
plying the change of basis.

Proposition 7.1 Let M,N be two discrete surfaces each consisting

M N

Figure 5: Using a fixed (3-dimensional) eigenbasis on shape M,
we compared the nearest neighbor search with the original eigen-
basis on N and the modified one in our scheme. As shown in the
plot, as the dimension of the eigenbasis on N increases, the re-
covery error of our scheme vanishes while the old scheme fails to
improve.

of n vertices, and a bijective map T : N → M. Given a functional
map CM,N induced by T with eigenbases ΦM ∈ Rn×kM and ΦN ∈
Rn×kN . Assume that 3 ≤ kM � n is fixed. Then the recovery error
converges to 0 as kN increases to n after applying the change of
basis, while it does not converge in the NN-search scheme.

To illustrate this difference, we compared a pair of shapes M,N,
using only 3 eigenfunctions on the source shape M, and increased
the number of basis functions in the target shape N. Figure 5 shows
the mean recovery errors (in Euclidean distance) with respect to
the increasing number of eigenfunctions on N. It is obvious that the
error regarding our new scheme decreases and reaches zero error
when the full basis on N are taken. Meanwhile, the old scheme
without changing basis does not improve as the size of ΦN grows.

In the discussion above we assumed that the inverse map CN,M
is known (indeed, in the previous example we used CN,M in the full
basis). One possible way to CN,M is to directly compute the inverse
of CM,N . However, in the presence of significant deformations be-
tween M and N, this does not lead to reasonable results.

Instead, according to Proposition 3.1, we propose to optimize
for a semi positive-definite matrix H̃ such that ‖XA

M,N−H̃CM,N‖Fro

is minimized. Therefore, the problem reduces to computing XA
M,N

given CM,N . On the other hand, thanks to Proposition 3.2, we can
find a function κ such that XA

M,N(κ · f ) = CM,N , and as proven
in Proposition 3.2, κ = XA

N,M(1N) = CT
M,N(1N). To conclude, we

first use the given CM,N to estimate XA
M,N , then solve a convex op-

timization problem H̃ = minH∈SPD ‖X
A
M,N −HCM,N‖Fro, and fi-

nally compute e such that eT H̃e = Id. In the end, direct compu-
tation shows that the modified basis on N is Φ̃N = ΦNe and the
functional map in the new basis is C̃M,N = e−1CM,N .
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8. Additional Experimental Results

As described in the previous sections, the adjoint operators allow
us to jointly detect and visualize the deformations among a col-
lection of shapes, and to develop a simple but efficient algorithm
for map recovery. In this section, we demonstrate respectively how
these two methods work in practice. In both parts, we assume that
we are given a pair or a collection of shapes, and the functional
maps between them, which are computed from some given point-
to-point map. Typically, the input functional maps are represented
by matrices of dimension 60×60.

8.1. Joint Map Analysis and Visualization

We first verify the relevance of our approach by comparing the re-
sults generated by the previous method based on computing eigen-
decompositions of shape difference operators and by ours in the
pairwise setting. Each of the methods produces a collection of
eigenfunctions fi with respect to eigenvalues λi, we demonstrate
in Figure 6 a weighted function f = ∑i λi f 2

i for compact visual-
ization. In Figure 6(a), we plot the weighted eigenfunctions with
respect to the largest 5 eigenfunctions of DA

M,N (resp. DA
N,M) on M

(resp. N). While in Figure 6(b), we plot f combining the eigen-
functions associated to the largest 10 eigenvalues of V X . As we can
see, in Figure 6(a), the highlighted areas on M and N are incon-
sistent, while in Figure 6(b), our method produce more consistent
highlighted functions across M and N. Moreover, our result detects
all of the areas highlighted separately by eigenfunctions of DA

M,N

and of DA
N,M . (see Figure 13 in the appendix for a detailed version

of the same experiment).

DA
M,N DA

N,M Consistency framework

M N(a) (b) M N

Figure 6: (a) The weighted sum of eigenfunctions associated to
the largest 5 eigenvalues of DA

M,N on M, and that of DA
N,M on N;

(b) The weighted sum of the 10 eigenfunctions produced by our
method. We demonstrate both the front and the back of each shape
for a complete view of the highlighted areas.

As shown in Algorithm 1, the only parameter of our method
is ε, which controls the consistency of the resulting functions
across shapes in the collection. In our implementation, we man-
ually choose ε to be the largest value that is smaller than the kth

eigenvalue of WC at which a significant deviation from zero oc-
curs. Choosing a larger ε typically increases the inconsistency of
the highlighted functions with respect to the functional maps, while
allowing a larger functional subspace. This means that more dis-
torted areas can be captured at the expense of potential loss of con-
sistency.

In Figure 7, we tested our algorithm on two collections of shapes:

humans in 5 different poses (each consisting of 12500 vertices) and
horses in 4 varying gaits (each consisting of 8431 vertices). In each
case, from top to bottom, we plotted the eigenfunctions with re-
spect to the largest 5 eigenvalues of V X . As can be seen, the plotted
functions highlight the joint, knee, chest and shoulders of the hu-
man poses and the joint and hip of the galloping horses, which are
evidently deformed in the respective collection.

8.2. Pointwise Recovery

In this part, we compared our method for pointwise map recovery
introduced in Section 7 with the nearest neighbor search proposed
in [OBCS∗12] and a more recent framework of [RMC15].

In general, assume we are given a pair of shapes M,N, the ground
truth map T : N→M, and the functional map CM,N computed with
T . As mentioned at the beginning of this section, we fixed the di-
mension of CM,N as 60× 60, meaning that on each shape we trun-
cated the first 60 eigenfunctions of the respective Laplace-Beltrami
operator. We first evaluated the different schemes in a synthetic
data set consisting of 64 deformations of the unit sphere deformed
by adding two protrusions of varying sizes. The sizes of protru-
sions sample an evenly spaced 2-dimensional grid of values. Each
deformed sphere consists of 1922 vertices. We randomly sampled
25 pairs of these deformed spheres and then evaluated the three
schemes on them. In particular, after computing C̃M,N ,Φ̃N with
the above procedure, we only used the first 20 columns of C̃M,N
(and accordingly the first 20 eigenfunctions in ΦM) for the nearest
neighbor search in the modified basis. The average map recovery
accuracy is plotted in Figure 8. In this simple case, our scheme
achieved a remarkably high recovery accuracy, in fact, in 24 out of
25 pairs we obtained exact map recovery.

Then we conducted tests on four pairs of more sophisticated
data: elephant vs horse (each consists of 1199 vertices), confor-
mal bunnies (each consists of 14290 vertices), cat vs lion (7207 vs
5000 vertices), and deformed faces (each consists of 6918 vertices).
Since the geometric structures of these shapes are obviously more
complicated than the ones of the synthetic deformed spheres, we
use more eigenbasis functions on M – set to 40 in our scheme. All
these three pairs are non-isometric shapes, therefore it is in gen-
eral more challenging to recover the pointwise map with the given
low-rank approximation of the functional maps. In Figure 9, we
plotted the recovery accuracy curves in the left column, and to its
right, we demonstrated the pairs in comparison. In particular, as we
recovered a map from N to M, we computed for each vertex on
N how far its matching point is from the ground truth on M, and
we plotted the error distribution on N for the results coming from
the iterative method of [RMC15] and from ours. In general, our re-
sult shows an improvement over the naive nearest neighbor search
and is comparable with that from the more advanced approach. It
is worth noting that our method is more computationally efficient
than the one of [RMC15], since ours only consists of one step for
changing the basis and one step for nearest neighbor search while
the latter uses an iterative procedure to refine the output map. Our
method takes around 3 seconds for each of the examples in Fig-
ure 9, while the procedure of [RMC15], using 10 iterations, takes
up to 63 seconds (e.g., on the cat vs. lion example). However, the

submitted to Eurographics Symposium on Geometry Processing (2017)



10 R. Huang, M. Ovsjanikov / Adjoint Map Representation for Shape Analysis and Matching

Human Poses Galloping Horses

Figure 7: We tested our method for jointly highlighting the deformed regions in two collections of shapes and plotted the eigenfunctions
corresponding to the largest 5 eigenvalues of V X respectively. In each case, the eigenfunctions capture the deformed regions across the
respective collection without relying on a single base shape. Thus, the regions detected on each shape are consistent.

Figure 8: We evaluated our scheme on 25 random pairs of de-
formed spheres. Note that the recovery accuracy of our scheme out-
performs both the naive nearest neighbor search and the framework
of [RMC15] in this simple synthetic dataset.

computational ease can come at a price, for instance, in the second
row of Figure 9, the errors aggregate at the tip of the bunny’s ear.

9. Conclusion and Future Work

In this paper, we argue that adjoint operators of functional maps
provide a tool that can be used within a variety of map analy-
sis and processing scenarios. In particular, we establish a connec-
tion between the adjoint operators, functional maps, their inverses
and shape difference operators. We demonstrated the utility of the
adjoint operators for (1) adding regularity to bi-directional shape

matching procedure; (2) encoding and revealing the distortions
within shape collections (3) pointwise map recovery via a basis-
modification scheme.

We believe that the use of functional map adjoints can open the
door to many other tasks, such as accurate map estimation in shape
collections by exploiting consistency between distortions, and even
finding correspondences between non-isometric shape pairs by di-
rectly estimating X rather than C, as they allow to incorporate and
reveal shape deformation in a compact manner.
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Figure 10: Map accuracy on 100 pairs of shapes in the FAUST
dataset obtained using consistent maps approach of [ERGB16] and
using adjoint regularization without constraints forcing diagonal-
ity of the resulting functional maps.

Proof of Theorem 3.1 For a fixed function fM ∈ L2(M), we define
a functional on L2(N): S(gN) = hM( fM ,gN ◦T ). Note that S(gN) is
a continuous linear functional on L2(N), therefore by the Riesz-
Frechet Theorem, there exists a unique function wN (for the fixed
fM) such that S(gN) = hM(wN ,gN). We then define XM,N( fM) =
wN , it is easy to verify that XM,N is linear in fM , thus we prove
the existence of a linear operator satisfying hN(XM,N( fM),gN) =
hM( fM ,gN ◦T ). On the other hand, the uniqueness of XM,N is ob-
vious, thus we finish the proof.

Figure 11: Map estimation accuracy on 71 pairs of shapes in the
SCAPE dataset with the standard functional map pipeline vs. the
coupled approach of [ERGB16] and our adjoint regularization.

Figure 12: Map estimation accuracy on 76 pairs of shapes in the
TOSCA dataset with the standard functional map pipeline vs. the
coupled approach of [ERGB16] and our adjoint regularization.

Proof of Proposition 3.1 We deal with the area-based case below,
and the conformal case can be proven in the same way. It follows
from the definition of the area-based shape difference operator that

hA
N(D

A
N,MCM,N( fM),gN) = hA

M(CN,MCM,N( fM),CN,M(gN))

= hA
M( fM ,CN,M(gN)).

The second line is due to the assumption that CM,N is in-
duced by T−1, which means CN,MCM,N = IdM . Then accord-
ing to Theorem 3.1, XM,N is the unique linear operator satisfying
hA

N(XM,N( fM),gN) = hA
M( fM ,CN,M(gN)), thus it must be identical

to DA
N,MCM,N .

Proof of Proposition 3.2 We define two functions on M,N re-
spectively: ρM(x) =

√
det(gM(x)),∀x ∈ M and similarly ρN(y) =√

det(gN(y)),∀y ∈ N. The Riemannian measure νM on shape M is
such that dνM = ρMdλ, where λ is the Euclidean measure. We first
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(a) (b)

(c)

M N

Figure 13: (a) The eigenfunctions of DA
M,N associated to the largest 5 eigenvalues; (b) The eigenfunctions of DA

N,M associated to the largest
5 eigenvalues; (c) The eigenfunctions associated to the largest 10 eigenvalues of V X , produced by our scheme, as mentioned in Section 8.1,
the detected areas in our scheme are consistent, so we only show the functions on M. Note that all the areas highlighted in the top row on
two different shapes are captured in a specific order in the bottom row.

prove the following equation:

XA
M,N(

f
ρM

) =
f ◦T−1

ρN
. (18)

Since 〈 f◦T−1

ρN
,g〉N =

∫
N

f◦T−1

ρN
gdνN =

∫
N

f◦T−1

ρN
gρNdλ =

∫
N( f ◦

T−1)gdλ. Following the same argument, we prove that 〈 f
ρM

,g ◦
T 〉M equals to

∫
M f (g ◦ T )dλ. Since T is a diffeomorphism, we

know that N = T (M). Thus by a change of variable and the defini-
tion of XA

M,N , we prove Eq. 18.

Then we define a function κ on M, such that (κρM) ◦ T−1 =
ρN . Using Eq. 18, one can verify that XA

M,N(κ f ) = CM,N( f ). On

the other hand, since XA
M,N(κ) = XA

M,N(
κρM
ρM

) =
(κρM)◦T−1

ρN
= 1N .

According to Proposition 6.1 we prove later, we have κ is well-
defined and κ = XA

N,M(1N).

Proof of Proposition 6.1 First, it follows from Proposition 3.1
that Xii = DiiCii = Idi. Secondly, according to the functionality of
shape difference operators proven in [ROA∗13], we have D−1

i j =
C jiD jiCi j . Thus thanks to Proposition 3.1, X jiXi j = Di jC jiD jiCi j =

Di jD
−1
i j = Idi It has been shown in [WHG13] that the functional

maps {Ci j} satisfy the exact cycle-consistency, then we have

X jkXi j = Dk jC jkD jiCi j = Dk jC jkD ji(Ci jCki)Cik

= (Dk jC jkD jiCk j)Cik = DkiCik = Xik

Thus XkiX jkXi j = Idi (the last line is due to the functionality of the
shape difference operators).

Proof of Proposition 7.1 Without loss of generality, we assume
that the map between M and N be an identity map (thus in the
following we do not differentiate f and f ◦ T ), so that CM,N =

Φ
T
NANΦM and CN,M = Id expressed in the full basis, so that H̃N =

AM . Then, for any function f (including δ functions):

‖CM,NΦ
+
M f −Φ

+
N f‖= ‖ΦT

NAN(ΦMΦ
T
MAM) f −Φ

T
NAN f‖

= ‖DΦN ◦PΦM f −DΦN f‖,

where PΦM is an operator project a function onto the subspace
spanned by ΦM , and DΦN is another projection operator by ex-
presses the result in the basis of ΦN . Now, in the new basis, since
Φ̃

T
NAMΦ̃N = Id, we have C̃M,N = Φ̃

T
NAMΦM , and since C̃M,N is

orthonormal, we get, after pre-multiplying by C̃T
M,N :

‖Φ+
M f −C̃T

M,NΦ̃
+
N f‖= ‖ΦT

MAM f −Φ
T
MAM(Φ̃NΦ̃

T
NAM) f‖

= ‖DΦM f −DΦM ◦P
Φ̃N

f‖,

This implies that in the new basis, finding nearest neighbors of
Φ̃

T
NAM among C̃M,NΦ

T
MAM is equivalent to finding nearest neigh-

bors of C̃T
M,NΦ̃

T
MAM among ΦMAN and moreover, in this case, the

order of projection is reversed: in the old scheme, one compares the
projection onto the first the subspace spanned by ΦM then onto ΦN
with the projection only onto ΦN ; while in the new scheme, we are
comparing the projection onto ΦM with the composition between
projection onto ΦM and Φ̃N .

Now let kN = n, the projection of f onto Φ̃N , P
Φ̃N

, is an iden-
tity operator. Thus for any f , the projection error ‖DΦM f −DΦM ◦
P

Φ̃N
f‖ = ‖DΦM f −DΦM f‖ = 0. Contrastingly, in the old scheme,

since kM � n, ‖DΦN ◦PΦM f −DΦN f‖ 6= 0, unless f is spanned by
the first kM eigenfunctions ΦM .
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