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Abstract
On the foundations of many rendering algorithms it is the symmetry between the path traversed by light and its adjoint path
starting from the camera. However, several effects, including polarization or fluorescence, break that symmetry, and are defined
only on the direction of light propagation. This reduces the applicability of bidirectional methods that exploit this symmetry for
simulating effectively light transport. In this work, we focus on how to include these non-symmetric effects within a bidirectional
rendering algorithm. We generalize the path integral to support the constraints imposed by non-symmetric light transport. Based
on this theoretical framework, we propose modifications on two bidirectional methods, namely bidirectional path tracing and
photon mapping, extending them to support polarization and fluorescence, in both steady and transient state.
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1. Introduction

For many years, simulating light transport has exploited the sym-
metry of most common scattering operators for building efficient
methods for rendering. This symmetry involves that, independently
on whether the scattering is computed from the propagation di-
rection of the light, or from its adjoint (i.e. the direction from the
camera), the throughput of the light transport would be exactly the
same [Vea97].

Starting from ray tracing (as opposed to light tracing), these meth-
ods have taken advantage of this symmetry to compute only paths
that contribute to the image. Bidirectional methods have gone a step
further, seamlessly combining paths from the camera and the light,
either by connecting vertices of both sub-paths [LW93, VG94],
merging them via density estimation [Jen01] or a combination of
both approaches [GKDS12, HPJ12], for robustly and efficiently
handling most common light transport configurations.

Unfortunately, not all scattering operators can benefit from this
symmetry. Effects such as polarization and fluorescence are de-
fined with respect to the incoming radiance. Therefore, their adjoint
(importance) cannot be modelled symmetrically, or even cannot be
modelled at all, given its dependence on the incoming illumination.
While in most common scenes, these effects are negligible, there
are many examples where they might play a crucial role on the final

appearance: Rendering birefringent crystals [WW08, LSG12], inter-
reflections between conductors and dielectrics, phosphorescent ma-
terials [Gla95] or scattering on turbid organic media [GSMA08]
require modelling these non-symmetrical operators on light trans-
port for accurate, predictive results.

Moreover, most of these effects exhibit a strong effect on the tem-
poral domain. Therefore, while for traditional light transport, they
might be important, they might become crucial when computing
light transport in transient state. Including these effects is, however,
non-trivial in bidirectional methods, since these techniques build
upon the symmetry between radiance and importance.

In this work, we focus on developing a non-symmetric, but bidi-
rectional rendering system, supporting effects such as polarization
or fluorescence, which are dependent on the incoming illumination
and therefore break the implicit symmetry of bidirectional methods.
We first formalize this type of light transport by generalizing the
well-known path integral formulation [Vea97] into what we call the
vector light transport. This allows us to discuss the required modi-
fications on bidirectional algorithms formulated within this frame-
work, in particular bidirectional path tracing (BPT). We then show
how these changes are applicable to photon mapping (PM). Finally,
we extend this formulation to transient state, and show how under
reasonable assumptions, transient rendering can be easily modelled
within this theoretical framework.
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This paper is an extension of our previous work on bidirectional
rendering of polarization [JG16], in which we introduced a vector
formulation of the path integral and use it to generalize BPT and PM
to support polarization. This work was concurrent with the work of
Mojzik et al. [MSWK16], which had similar aim and proposed a
similar theory. Here, we reformulate the vector path integral to sup-
port a wider number of effects, which we demonstrate by rendering
fluorescence, and define it in transient state following the work of
Jarabo et al. [JMM*14].

2. Background and Related Work

Light transport simulation One of the core goals of computer
graphics is to synthesize photorealistic images, by accurately simu-
lating how light interacts with matter. While several methods have
been introduced to that aim, bidirectional techniques have stood
out as the most robust techniques. These methods compute light
transport by tracing random walks from the light and camera, which
are later connected by means of deterministic connection [LW93,
VG94], density estimation [Jen01, JNSJ11] or combinations of
both [HPJ12, GKDS12, KGH*14]. These works are formulated
to render scalar radiance, and do not support effects such as polar-
ization or elastic scattering.

Polarization Polarized light can be represented using the so-
called Stokes vectors. These were introduced in graphics by
Sankararayanan [San97], and were adopted by other authors for
efficient and practical polarization rendering [FGH99, WTP01,
WW12]. Stokes vectors model polarized light (for each wavelength
λ) as a 4-vector Sλ = 〈S0, S1, S2, S3〉 defined as [WTP01]:

S0 = I 2
s + I 2

p,

S1 = I 2
s − I 2

p,

S2 = 2 I 2
s I 2

p cos(φs − φp),

S3 = 2 I 2
s I 2

p sin(φs − φp), (1)

where Is and Ip are the intensity at the parallel and perpendicu-
lar planes of the electromagnetic wave, and φs and φp are their
respective phases. Each component of Sλ represents a type of po-
larization: S0 describes the total intensity of the light wave. The
second and third component S1 and S2 model the linear polariza-
tion at zero and 45 degrees, respectively. Finally, S3 represents the
circular polarization. The components in the Stokes vector must
hold that S0 ≥

√
S2

1 + S2
2 + S2

3 , imposing that Sj ∈ [−S0, S0] for
j = 1..3. Note that these components are defined on a particular
reference frame aligned with the propagation direction. This formu-
lation is compact and allows to represent all polarization states, and
explicitly encodes the intensity of the light wave typically used in
rendering, which allows an easier integration into current rendering
systems. It is important to note that since Stokes vectors represent
polarized light, they are only additive under the condition of lying
on the same reference frame. As we will see later (Section 3), this
has an important implication when integrating polarized light in the
pixel.

The interaction between polarized light and matter is modelled
with a matrix structure called Müller matrix, which encodes the

effect of the Bidirectional Scattering Distribution Function (BSDF)
or the phase function as a 4 × 4 matrix, representing the linear
transformation occurring to the polarized light. The Müller matrix
is defined in a particular incoming and outgoing reference frame,
which needs to be aligned with the respective light frames. This
matrix form is defined for light paths, and therefore not for its
adjoint (importance, more common in rendering).

Previous work has solved this by implementing Müller calcu-
lus on single-directional methods, such as recursive path tracing,
or light tracing, where it is relatively easy to incorporate each of
them [WW12], since there are not multiple cases to consider. Here,
we focus on extending the applicability of fully bidirectional meth-
ods for polarization-based rendering. In the following section, we
go deeper on that.

Polarization is important in a number of effects, including
Fresnel-based specular reflection, glowing specular sur-
faces [WW11] such as reflecting (i.e. no black bodies) in-
candescent objects, micro-facet-based metal [BWWM12] and
layered dielectrics surfaces [WWHN17], light transport in the
atmosphere [WZP04] and rainbows [SML*12], or uniaxial [GS04,
Hac07, WW08] and biaxial [LSG12, DK13] refringent crystals and
gems. Additional details on polarized light transport can be found
in optics literature [BW02] or in the excellent tutorial by Wilkie
and Weidlich [WW12].

Fluorescence and phosphorescence Polarization is not the only
effect that breaks symmetry on light transport: quantum effects
such as fluorescence and phosphorescence are also defined as a
function of the incoming light, and therefore they cannot be mod-
elled based on their adjoint. These phenomena are the result of a
change of its quantum state due to absorption of light. This change
is not permanent, and after some time, it returns to its initial state,
resulting into re-emission of light, in general with lower energy
(i.e. light is re-emitted red-shifted). In particular, Glassner [Gla95]
proposed a model for these two effects, based on re-radiation func-
tions. Gutierrez et al. [GSMA08] focused on fluorescence, includ-
ing its effect as part of the Russian roulette-based termination on
PM and a re-radiation term on the density estimation pass. Hullin
and colleages [HHA*10] presented a method to capture bi-spectral
re-radiation matrices, which can be used for rendering fluorescent
materials. Recently, Nalbach et al. [NSR17] introduced a pipeline
for acquiring and reproducing phosphorescent materials, including
their temporal response. Finally, closer to us, Wilkie et al. [WTP01]
used bi-spectral re-radiation BRDFs within a forward path tracing,
but do not describe how to extend this work to bidirectional methods.

Transient rendering The emergence of transient imag-
ing [JMMG17] have brought an increased interest on simulating
transient light transport in graphics and vision [Jar12, PBSC14,
ADY*17]. Jarabo et al. [JMM*14] presented a path-integral-
based framework for rendering transient light transport. Ament
et al. [ABW14] demonstrated time-resolved light transport based
on the refractive radiative transfer equation. Recently, Marco
et al. [MJGJ17] proposed an extension of photon beams for tran-
sient rendering in participating media. We show time-resolved light
transport in the context of the vector path integral, and show how
transient rendering can be modelled as a vector–matrix operation.

c© 2017 The Authors
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3. Vector Path Integral

Here, we describe a generalization of the path integral for in-
cluding polarization. We use the term vector as an analogy of
the vector radiative transfer equation used to model polarized ra-
diative transfer [Cha60]. The path integral [Vea97] is a theoretic
framework where the pixel intensity I is computed as an inte-
gral over the space of light transport paths � contributing in the
pixel:

I =
∫

�

f (x) dμ(x), (2)

where x = x0 . . . xk are the k + 1 vertices of a length-k path with
k ≥ 1 segments. Vertices x0 and xk lie on a light source and camera
sensor, respectively, while x1 . . . xk−1 are intermediate scattering
vertices. The differential measure dμ(x) denotes area integration.
The path contribution function f (x) is the product of the emitted
radiance Le, path throughput T and sensor importance We:

f (x) = Le(x0 →x1) T(x) We(xk−1 →xk). (3)

The path throughput is itself the product of the scattering function
ρ for the inner path vertices and the geometry G and visibility V

terms for path segments:

T(x)=
[

k−1∏
i=1

ρ(xi)

][
k−1∏
i=0

G(xi , xi+1)V (xi , xi+1)

]
. (4)

We assume a fractional visibility to account for transmittance within
media, as well as opaque objects. The scattering kernel at each vertex
is defined as

ρ(xi) =
{

ρs(xi−1 →xi →xi+1) xi on surface,

ρp(xi−1 →xi →xi+1)σs(xi) xi in medium,
(5)

where σs is the scattering coefficient in the medium, and ρs and ρp

are the surface BSDF and phase function, respectively.

Given that, in general, there is no analytic solution for Equa-
tion (2), Monte Carlo solutions are used to approximate the path
integral as:

〈I 〉 = 1

n

n∑
j=1

f (xj )

p(xj )
, (6)

which averages the contribution of n random paths xj , sampled
with a probability distribution function (pdf) p(xj ) = p(x0...xk) the
combined probability density of each path’s vertex. The probability
density of the path is determined by the sampling technique used to
obtain the path: for example, BPT ([LW93, VG94] independently
generates a sub-path xw from the eye with pdf p(xw) and a sub-
path xl from the light with pdf p(xl). These are then (optionally)
connected using a shadow ray to build the full path x with pdf
p(x) = p(xl)p(xw) (see Figure 1, top).

Vector path integral The vector path integral takes a similar form
as Equation (2), with a core difference on the definition of the signal

x1 x2

Light subpath vertex
Light subpath segment

x0 x3
BPT

PM

Eye subpath vertex
Eye subpath segment

Shadow connection
Density estimation

G(x0, x1) V(x0, x1) G(x2, x3) V(x2, x3)
G(x1, x2) V(x1, x2)Le(x0 → x1)

ρ(x1) ρ(x2)
We(x2 → x3)

x1 x2
x0 x3

G(x0, x1) V(x0, x1) G(x2, x3) V(x2, x3)
G(x1, x2) V(x1, x2)Le(x0 → x1)

ρ(x1)
We(x2 → x3)

x2'

K r(||x2 - x2||)'

Figure 1: Schematic description of bidirectional path tracing (BPT,
top) and photon mapping (PM, bottom). In both algorithms, a sensor
and a light sub-path are traced from the eye and the light sources,
respectively; these two sub-paths are then connected to form a full
path, via deterministic shadow connection in the case of BPT, and
via an additional random segment and density estimation in PM
(figure after Georgiev et al. [GKDS12]).

being integrated. While Equation (2) integrates a scalar value (i.e.
I ∈ R), the vector form of the path integral integrates a vector i as:

i =
∫

�

f(x) dμ(x), (7)

with i and the vector form of the path contribution function f(x)
defined by a multi-dimensional vector in R

N . As an example f(x),
let us consider a polarized, monochrome light. In this case, f(x)
would be a Stokes vector defined in R

4.

In its vector form, the scattering kernel at xi is no longer a scalar
term ρ(xi) ∈ R, but a high-dimensional matrix K ∈ R

N×N mod-
elling the relationship between incoming and outgoing light vectors
defined in R

N . Using the same example of monochromatic polar-
ized light, in this case, K would be the Müller matrix, defined in
R

4×4. Working with scattering matrices K breaks transitivity, and
therefore we need to define how the operations are concatenated:
As opposed to the traditional path integral (Equation (2)), here the
order on which the operations are concatenated is important. For
that, let us define the concatenation operation as:

k−1∏
i=1

K(xi) = K(xk−1) K(xk−2) ... K(x2) K(x1). (8)

Note that for simplicity, we are using the terms ‘vector’ and ‘matrix’
very loosely here: in both cases, they might be high-dimensional
tensors, and therefore the product operation in Equation (8) would
be a tensor product.

Once we have defined the scattering concatenation operator, we
can define the throughput of path x in matrix form Tv(x) ∈ R

N×N

as:

Tv(x)=
[

k−1∏
i=1

K(xi)

][
k−1∏
i=0

G(xi , xi+1)V (xi , xi+1)

]
, (9)

c© 2017 The Authors
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where the result of the second product is a scalar, and therefore
does not require to be included in the vector form of the scattering
kernels.

Finally, by applying Equation (9) to Equation (2) and defining
the vector form of the emission le(x0 →x1) ∈ R

N , we get the vector
form of f(x) ∈ R

N as:

f(x) = We(xk−1 →xk) Tv(x) le(x0 →x1), (10)

where We(xk−1 →xk) ∈ R
N×N is the matrix defining the sensor’s

importance. Similar to Equation (2), the vector version of the path
integral defined in Equation (7) can be computed using a Monte
Carlo estimator, with the difference of estimating a vector value
〈i〉 ∈ R

N .

Transient vector path integral Similarly to the traditional path
integral (Equation (2)), we can extend Equation (7) to sup-
port time-resolved light transport. Following the work of Jarabo
et al. [JMM*14], we generalize Equations (7), (10) and (9) to tran-
sient state as:

i =
∫
�

∫
�T

f(x, �t) dμ(�t) dμ(x), (11)

f(x, �t) = We(xk−1 →xk, �tk) Tv(x, �t) le(x0 →x1, �t0), (12)

Tv(x, �t)=
[

k−1∏
i=1

K(xi , �ti)

][
k−1∏
i=0

G(xi , xi+1)V (xi , xi+1)

]
, (13)

where �t = �t0 . . . �tk is the sequence of time delays of path x,
and dμ(�t) is the integration on the temporal domain at each path
vertex. Finally, the total temporal delay is

t−
i =

i−1∑
j=0

(
t(xxj

↔xxj+1 ) + �tj
)
. (14)

3.1. Defining vector and scattering matrices

Polarization Our original formulation of the vector path inte-
gral [JG16] was defined to support polarization. In this case, assum-
ing a single wavelength, light is represented using a Stokes vector
defined in R

4. The scattering interactions K, on the other hand, are
modelled by a Müller matrix M(xi) ∈ R

4×4. Note that Müller ma-
trices need to be defined in valid reference systems. Therefore, we
need to rotate the frames of the incoming and outgoing electromag-
netic waves to match the frame on which M(xi) is defined such that
the perpendicular plane of both frames lays in the plane defined by
the incoming and outgoing directions. Therefore, the scattering ker-
nel becomes K = R(−αo)M(xi)R(αi), where R(α) is the rotation
matrix defined by an angle α defining the rotation along the ray
direction, and αi and αo are the rotation angles for the incoming and
outgoing frames, respectively.

Fluorescence and phosphorescence Both fluorescence and phos-
phorescence involve elastic scattering, which means that light in-
coming with a given wavelength λ can be reflected with different

colour. More precisely, for an incoming light defined on the contin-
uous spectrum Li(λ), the outgoing light Lo(λ) is

Lo(λ) =
∫ ∞

0
Lo(λ

′)ρ(λ′ →λ) dλ′, (15)

where ρ is the bi-spectral and bidirectional scattering function (note
that we omit the directional dependence for simplicity). To model
this effect, we therefore need to leave the monochromatic assump-
tion. By discretizing Equation (15), we can pose Lo(λ) and Li(λ)
as vectors lo ∈ R

L and li ∈ R
L, respectively, with L the number of

discretizations of the continuum λ ∈ R. Following the same dis-
cretization, the bi-spectral scattering operator ρ is also modelled as
the matrix K ∈ R

L×L, which relates incoming and outgoing wave-
lengths λ. The diagonal of K models the common inelastic scattering
(i.e. no energy transfer between wavelengths), while off-diagonal
terms model elastic scattering. Note that Equation (15) models local
transport in a single vertex of the path. However, it is easy to see that
we can concatenate scattering operators K following Equation (8),
resulting on a path throughput Tv(x) ∈ R

L×L, and a vector integral
i(λ) ∈ R

L defined as a function of λ.

Time-resolved light transport Equation (11) models theoretically
the integration in transient state for vector light transport. However,
the vector form defined by Equation (7) can also be used for tran-
sient rendering, eliminating the need of sampling dμ(�t). The most
important operations in the temporal domain in this context are the
delays due to light propagation and scattering. Assuming that we
can define the incoming and outgoing light as continuous function in
the temporal domains Li(t) and Lo(t), respectively, both operations
can be modelled as convolutions on the temporal domain as:

Lo(t) =
∫ t

0
T (t ′)Li(t − t ′) dt ′, (16)

where T is the convolution kernel, which for propagation is a delta
function centred at t−

i (Equation (14)), and for scattering is the
temporal smoothing function due to, e.g. microscopic multiple scat-
tering [HHdD16]. Similar to fluorescence or phosphorescence, we
can discretize Lo(t) and Li(t) in the temporal domain, as lo ∈ R

T

and li ∈ R
T , with T the number of frames. With this formulation,

we can then just easily compute both propagation and scattering de-
lays as scattering matrices K ∈ R

T ×T , characterizing the outgoing
temporal profile due to scattering and propagation of an incoming
temporal profile. For example, a propagation delay of t frames in an
input temporal profile would be modelled by a transport matrix K
defined as the identity matrix shifted to the right t frames. Similar
to Equation (15), Equation (16) models the effect locally, but it can
be similarly integrated in Equation (8), resulting on a vector inte-
gral i(λ) ∈ R

T . This means that we keep track of the full temporal
profile for each path contribution. Interestingly, this novel formula-
tion allows for an easy integration with other light transport effects,
without the need of temporal sampling the scattering delays. Note
that, as opposed to the previous phenomena, the propagation delays
are bidirectional. This symmetry can be broken in the scattering
delays.

Combining different domains In order to combine different do-
mains, such as wavelength and Stokes parameters, we only need

c© 2017 The Authors
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to elevate the dimensionality of both the vector light and the ma-
tricial operators, while taking into account the operation order of
each dimensions on the high-dimensional tensors. For example, for
coloured polarized light, our vector integral i would have dimension-
ality i ∈ R

4×L, resulting in a Stokes vector for each colour sample.
In order to handle both polarization and reradiation, we would need
four-dimensional scattering tensors K ∈ R

42×L2
(i.e. each compo-

nent of the Müller matrix would be a reradiation matrix itself). This
results into high-dimensional throughput tensors Tv(x) ∈ R

42×L2
,

and might result into costly computations. However, as we discussed
later, the cost can be severely alleviated by doing the expensive ten-
sor computations only when strictly required.

4. Bidirectional Rendering of Vector Light Transport

In Section 3, we have described the mathematical framework within
which we will work, making explicit the differences between tradi-
tional scalar rendering and the novel vector formulation. Here, we
describe the algorithmic and implementation details for developing
a bidirectional rendering within this framework.

Bidirectional methods [VG94, Jen01, GKDS12, HPJ12] compute
the path integral by sampling several light paths joining the light and
the sensor. This is done by generating two different random walks
(sub-paths), each starting from the initial and final vertices of the
path. These are then joined by means of a deterministic shadow con-
nection, creating a full contributing path. These two random walks
have different probabilities, depending on the sampling strategy
used to create the sub-path.

When extending these methods to our framework, we detect that
the random walk from the light source (the light sub-path xl) fits
naturally in the vector path integral, since it follows the sequence of
events occurring to light since it is emitted. For each new scattering
event in point xi , we would compute its scattering kernel K(xi),
and apply it to the accumulated throughput of the path following
Equation (8). Generating the random walk from the sensor, as well
as performing the shadow connection, is a bit trickier. The key differ-
ence between them is that, as discussed by Mojzik et al. [MSWK16],
while the light sub-path is defined by a light vector, the sensor sub-
path is defined by an importance matrix. In the following, we explain
them on more details.

Sensor sub-path When computing the sensor sub-path xw , we need
to take into account that we are starting the sequence of events on
the reverse order. Thus, we are not tracking vector magnitudes, but
matricial operators. This is key, since it affects on how the scatter-
ing kernels at each vertex of the sub-path are defined. The main
difficulty is to keep track on whether the incoming or outgoing di-
rections follow the light direction (ωi and ωo, respectively), or its
adjoint (which we denote by ω̂i and ω̂o). For each new scattering
event in the random walk, we sample the sub-path new direction
ω̂o based on the previous direction ω̂i. We use the same sampling
routine for light and importance tracing, based on intensity in the
case of polarization, and in the diagonal of the scattering matrix
in the case of fluorescence. The reason is that it allows to sam-
ple intensity in the former case, and that re-emission is practically
Lambertian [HHA*10], so most of the directionality is kept in the
diagonal of the re-emission matrix. Then, we create the scattering

kernel K(xi) in the frame defined by the light incoming and outgoing
directions, ωi = −ω̂o and ωo = −ω̂i, respectively.

With that in place, and taking into account that for the sensor’s
sub-path, we decrement the indices of the sub-path vertices (i.e.
the sub-path vertices are generated in the reverse order, starting by
vertex k to vertex 0), we then compute the sub-path throughput using
Equation (8). Therefore, as opposed to multiplying K(xi) to the left
to the accumulated throughput as in the light random walk, we need
to apply each new scattering kernel on the right.

Shadow connection In order to join the light and sensor sub-paths,
we again need to be careful on the reference frame of the scattering
operator, and on the order at which the events are computed. In
this case, for a light sub-path xl with length m and partial through-
put Tv(xl), and sensor sub-path xw with length k − m and partial
throughput Tv(xw), we obtain the final throughput as

Tv(x)=Tv(xw)K(xk−m)G(xk−m, xm)V (xk−m, xm)K(xm)Tv(xl).

(17)

As discussed earlier, note that Tv(xw) ∈ R
N×N defines matricial

importance, while Tv(xl) ∈ R
N represents vectorial light.

4.1. Photon mapping

As shown by Georgiev et al. [GKDS12] and Hachisuka et al.
[HPJ12], PM [Jen01] can be understood as a variant of BPT, which
differs from the standard formulation on how the sensor and light
sub-paths are connected. While in BPT, we connect the last two
vertices by means of a deterministic shadow connection, and in
PM, we merge the last two vertices by using a density estimation
kernel. While this introduces bias, it has been shown that in the
limit, the algorithm is consistent (i.e. converging to the correct
solution, we refer to a recent course [HJG*13] for details).

This means that we can define PM under the path integral frame-
work, with some small modifications. Therefore, we can introduce
PM in our vector formulation of the path integral. In fact, the main
difference with respect to BDPT is how the eye and light sub-paths
are joint. While for BPT, we make use of Equation (4), here we
define the throughput of the path resulting from merging the sensor
xw and light xl sub-paths as:

T′
v(x)=Tv(xw)KR(‖xk−m − xm‖)K(xk−m)Tv(xl), (18)

where KR is the spatial smoothing kernel with bandwidth R. Note
that given that we are merging vertices xk−m and xm (see Figure 1),
we only have to apply one scattering kernel K(xk−m). Additionally,
note that the scattering kernel K(xk−m) is defined with incoming
direction the one from the light sub-path (the incoming direction
of xm), while the outgoing direction is the inverse of the (virtual)
incoming direction for the sensor sub-path’s last vertex xk−m.

4.2. Implementation

We implemented our vector-based rendering on top of an in-
house physically based renderer written in C++. In many cases,

c© 2017 The Authors
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working with the full scattering matrices K was not needed, given
that, e.g. light was unpolarized, the scattering kernel itself was a
depolarizer, or the scattering event was inelastic. We add a flag to
both the Stokes vectors, Müller matrices and reradiation matrices to
discard computations depending on the type of light and interaction
being computed. This significantly increases performance while not
affecting the accuracy of results.

While our renderer supports spectral rendering, our tests have
been performed using RGB (i.e. L = 3). In case of using a large
number of wavelengths, the costs of the multiplication of scatter-
ing kernels might be prohibitive. However, even considering their
small size (3 × 3 × 4 × 4), scattering matrices supporting polariza-
tion and fluorescence are relatively sparse for most common opera-
tions, which can be exploited to increase the performance. Note that
pre-integrating the reradiation matrix into RGB is accurate for sin-
gle reflection, but might lead to problems in full global illumination
solutions, as discussed by Meng et al. [MSHD15].

Finally, we have included five types of scattering kernels: a Lam-
bertian BRDF acting as a depolarizer [WW12], a smooth con-
ductor BRDF with complex index of refraction modelled with
the Fresnel equations for conductors [WW12], a Fresnel smooth
dielectric BSDF with support to both transmission and reflec-
tion [Azz04], a fluorescent material based on measured data for

chlorophyll [GSMA08] and a weakly polarizing Mie phase func-
tion obtained using MiePlot [Lav15].

5. Results

We demonstrate our implementation by rendering a set of scenes
with complex light interactions, including dielectric, conductors
and participating media. The selected results feature polarization,
fluorescence and time-resolved light transport.

Figures 2–4 show different scenes showing polarization. These
scenes include several diffuse surfaces, as well as both conductor
and dielectric mirrors, dielectric transparent objects and partici-
pating media with different degrees of scattering. For visualizing
the polarization, we use the techniques described by Wilkie and
Weidlich [WW10], depicting the degree of polarization, the degree
of circular polarization and orientation of linear polarization. In both
cases, this visualization is super-imposed to the luminance image:
brighter red means higher degree of polarization, while colour codes
the orientation of linear polarization. We can observe how conduc-
tors are bad polarizers, and polarize light only slightly. However,
dielectrics are very good polarizers. Moreover, in Figure 2, we can
see how linear polarization switches to circular polarization when
the frames of reference of reflection are disaligned (e.g. in poles of

Figure 2: Mirror scene, depicting a scene with a dielectric sphere and a conductor mirror reflected on a spherical conductor mirror. From
left to right: scene setup, radiance, degree of polarization, degree of circular polarization and orientation of linear polarization (colour codes
orientation). The degree of polarization and circular polarization is encoded in red (brighter is higher). While the conductors only polarize
light weakly, the dielectric specular reflection is highly polarized. In addition, the concatenation of multiple reflections on curved surfaces
shifts the linear polarization towards circular polarization.

Figure 3: Cups scene, depicting a scene with a dielectric mirror, and a set of glass cups filled with absorbing, scattering and a non-
participating dielectric media. From left to right: radiance, degree of polarization and orientation of linear polarization. The scene shows the
slightly polarizing effect of very scattering and optically thick media, specially visible in the middle cup.

c© 2017 The Authors
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Figure 4: Cornell box with a conductor mirror in the floor, and two spheres (one conductor and one dielectric). From left to right: scene
setup, radiance, degree of polarization, degree of circular polarization and orientation of linear polarization. The accumulative effect of
polarization, in particular, how it switches from linear to circular polarization, is clearly visible in the multiple reflections on both spheres.

Figure 5: Fluorescent bunny made of chlorophyll. Although the
direct reflection is bright green, some blue light is absorbed and
re-emitted in the red band, resulting a paler yellowish appearance.

the dielectric sphere or in the top of the planar mirror). In addition,
we can see how scattering media tends to slightly polarize light
transport (Figure 3), although the main polarizers in that scene are
still dielectrics.

Figure 5 shows the effect of introducing fluorescence, where a
chlorophyll bunny is illuminated by white light. The direct reflection
of the bunny is mostly green, while red and blue are mainly absorbed.
However, most of the absorbed blue is later re-emitted in the red
band, which, in the end, changes the appearance of the bunny. This
effect can be seen more clearly in transient state: Figure 6 shows
several frames of a time-resolved render of the same scene. Here,
we can see the temporal behaviour of fluorescence, where light that
is absorbed by the bunny is later re-emitted red-shifted. The full
animation can be seen in the accompanying supplemental video.

Given that the illumination comes from a point light source and
the caustic paths due to smooth dielectric and conductors are dom-
inant, we use a stochastic progressive [HJ09, KZ11] version of our
vector PM (Section 4.1) in scenes (Figures 2, 3, and 4), although we
also account for multiple bounces on the sensor sub-path and per-
form deterministic shadow connections with the light. We computed
1000 iterations, with 16 samples per pixel and 5M photon random
walks on each iteration. We compute the initial kernel radius us-
ing the 20 nearest photons. Note that without bidirectional methods
such as PM these scenes, where caustic light paths dominate, could
be very hard, or even impossible, to render. For the bunny scene
(Figures 5 and 6), we use a vector-based implementation of BPT,
given that there is less caustic transport, with 25K samples per pixel
for rendering the full temporal profile.

In terms of performance, adding vector-based effects such as po-
larization or fluorescence increases the cost with respect to scalar

Figure 6: Time-resolved render for the bunny scene: From left to right, light travels from the light source to the bunny, which reflects most
green light and absorbs red and blue light. Note that this reflection before reradiation would be the result if a scalar version of the algorithm
was used. Light continues propagating, illuminating the scene via multiple reflections, while the mirror starts reflecting the bunny. After
several diffuse reflections, light loses its directionality, becoming mainly diffuse lighting. Finally, after a few nano-seconds, absorbed light is
re-emitted by the fluorescent bunny red-shifted. We refer to the supplemental video for the full animation.

c© 2017 The Authors
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Table 1: Comparison of the average cost (in seconds) per iteration between
scalar and vector rendering for the render examples shown in the paper.
Note that Figure 2 was rendered in a lower end workstation.

Figure Support Technique Scalar Vector

2* Polarization Photon mapping 8 14
3 Polarization Photon mapping 0.72 0.83
4 Polarization Photon mapping 0.79 0.79
5 Transient fluorescence BDPT – 1.27

Figure 7: Convergence plots for our vector light transport (polar-
ization) compared against traditional scalar rendering, for Figure 3
(left) and Figure 4 (right).

rendering (Table 1), due to the vector-to-matrix and the matrix-
to-matrix products. However, we avoid these costly computations
unless they are strictly needed, although with multiple scattering,
these operations are common. The need of tracking the reference
frame in the case of polarization also introduces additional costs.
Note, however, that the vector and matrix operations are not opti-
mized; using vectorized code could reduce the costs significantly.
Additionally, while vector representation of light and scattering is
relatively compact (or sparse), the memory cost is much higher than
in traditional rendering: For example, for polarized photons, we need
to store four floats for a single wavelength, in contrast to the single
float per wavelength in scalar rendering, plus the need of storing the
full frame, not only the photon’s direction. Finally, in Figure 7, we
analyse the convergence with respect to the number of samples for
Figures 3 and 4 (polarized light transport), compared against scalar
rendering: Given the additional dimensions introduced by rendering
Stokes vectors, the error is slightly higher than scalar rendering.

6. Conclusions and Future Work

In this work, we have generalized the path integral formulation and
its transient counterpart, to support vector-based light transport. This
is needed to support effects such as polarization or fluorescence,
and imposes a set of constraints on the scattering operators and
their concatenation. Interestingly, these modifications do not reduce
generality, but extend its range of applicability to transport operators
breaking symmetry. Based on this theoretical framework, we have
described the required changes to well-known (scalar) bidirectional
rendering methods defined within Veach’s [Vea97], and the unified
path integral formulation [GKDS12, HPJ12]. In particular, we have
shown how to include vector light transport in both BPT and PM.

We have shown that this form of representing stochastic light
transport might be powerful for representing effects beyond tradi-
tional vector-based light (i.e. polarization or spectral rendering): In
particular, we have shown that transient light transport can also be
modelled in a vector–matrix representation. We believe that this is
an interesting approach for rendering the full plenoptic function.

There is, of course, several future works ahead. First of all, we
have proposed just a few areas of application to the new form of
vector light transport. Modelling other non-symmetric effects in
a vector-based representation might increase the range of effects
that are representable in current render engines. From a practical
perspective, developing sampling techniques aware of the particu-
larities of the effect is a promising avenue of future work. Here, we
have just used standard scalar-based techniques for both the ran-
dom walk sampling and deterministic connection of light and sen-
sor paths. Finally, proposing new stochastic shadow connections or
optimal combinations of sampling techniques, based on, e.g. polar-
ization state or the bi-spectral scattering kernel, would significantly
increase the efficiency when rendering such effects.
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