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Abstract
We present a novel approach to optimally retarget videos for varied displays with differing aspect ratios by preserving salient
scene content discovered via eye tracking. Our algorithm performs editing with cut, pan and zoom operations by optimizing the
path of a cropping window within the original video while seeking to (i) preserve salient regions, and (ii) adhere to the principles
of cinematography. Our approach is (a) content agnostic as the same methodology is employed to re-edit a wide-angle video
recording or a close-up movie sequence captured with a static or moving camera, and (b) independent of video length and can
in principle re-edit an entire movie in one shot.
Our algorithm consists of two steps. The first step employs gaze transition cues to detect time stamps where new cuts are to
be introduced in the original video via dynamic programming. A subsequent step optimizes the cropping window path (to
create pan and zoom effects), while accounting for the original and new cuts. The cropping window path is designed to include
maximum gaze information, and is composed of piecewise constant, linear and parabolic segments. It is obtained via L(1)
regularized convex optimization which ensures a smooth viewing experience. We test our approach on a wide variety of videos
and demonstrate significant improvement over the state-of-the-art, both in terms of computational complexity and qualitative
aspects. A study performed with 16 users confirms that our approach results in a superior viewing experience as compared to
gaze driven re-editing [JSSH15] and letterboxing methods, especially for wide-angle static camera recordings.

CCS Concepts
•Computing methodologies → Scene Understanding; Image-based rendering; •Theory of computation → Dynamic pro-
gramming; Convex optimization;

1. Introduction

The phenomenal increase in multimedia consumption has led to
the ubiquitous display devices of today such as LED TVs, smart-
phones, PDAs and in-flight entertainment screens. While viewing
experience on these varied display devices is strongly correlated
with the display size, resolution and aspect ratio, digital content is
usually created with a target display in mind, and needs to be man-
ually re-edited (using techniques like pan-and-scan) for effective
rendering on other devices. Therefore, automated algorithms which
can retarget the original content to effectively render on novel dis-
plays are of critical importance.

Retargeting algorithms can also enable content creation for non-
expert and resource-limited users. For instance, small/mid level the-
atre houses typically perform recordings with a wide-angle cam-
era covering the entire stage as costs incurred for professional
video recordings are prohibitive (requiring a multi-camera crew,
editors etc.). Smart retargeting and compositing [KGRG17] can
convert static camera recordings with low-resolution faces into

† Both authors contributed equally to the work

professional-looking videos with editing operations such as pan,
cut and zoom.

Commonly employed video retargeting methods are non-
uniform scaling (squeezing), cropping and letterboxing [SS09].
However, squeezing can lead to annoying distortions; letterboxing
results in large portions of the display being unused, while crop-
ping can lead to the loss of scene details. Several efforts have been
made to automate the retargeting process, the early work by Liu
and Gleicher [LG06] posed retargeting as an optimization problem
to select a cropping window inside the original recording. Other ad-
vanced methods like content-aware warping, seam carving then fol-
lowed [VTP∗10]. However, most of these methods rely on bottom-
up saliency derived from computational methods which do not con-
sider high-level scene semantics such as emotions, which humans
are sensitive to [KSK∗10,SSSM14]. Recently, Jain et al. [JSSH15]
proposed Gaze Driven Re-editing (GDR), which preserves human
preferences in scene content without distortion via user gaze cues
and re-edits the original video introducing novel cut, pan and zoom
operations. However, their method has limited applicability due
to a) extreme computational complexity and b) the hard assump-
tions made by the authors regarding the video content– e.g., the au-
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Figure 1: We present an algorithm to retarget a widescreen recording to smaller aspect ratios. The original recording with overlaid eye gaze
data from multiple users (each viewer is a unique color) and the results computed by our algorithm (white cropping window) are shown. Our
algorithm is content agnostic and can be used to edit a theatre recording from a static camera (top) or re-edit a movie scene (bottom).

thors assume that making more than one cut per shot is superfluous
for professionally edited videos, but this assumption breaks down
when the original video contains an elongated (or single) shot as
with the aforementioned wide-angle theatre recordings. Similarly,
their re-editing cannot work well when a video contains transient
cuts or fast motion.

To address these problems, we propose a novel retargeting
methodology via gaze based re-editing employing convex opti-
mization. Our work is inspired from GDR [JSSH15] and also esti-
mates a cropping window path traversing through the original video
introducing pan, cut and zoom operations in the process (Figure 1).
However, our advantages with respect to GDR are that: (1) Our
convex optimization framework guarantees a feasible solution with
minimal computational complexity; our method requires 40 sec-
onds to edit a 6-minute video, whereas GDR takes around 40 min-
utes to edit a 30 second video due to computation of non-uniform
B-spline blending; (2) Our optimization is L(1) regularized, i.e., it
ensures sparse editing motions mimicking professional camera cap-
turing and optimizing viewing experience, whereas spline blending
may result in small, unmotivated movements; (3) Our method is ag-
nostic to both video content and video length and it extends GDR to
long uncut videos like theatre or surveillance recordings captured
with static, large field-of-view cameras.

Once potentially important scene content is captured via gaze
data compiled from a few users, our algorithm performs re-editing
of the gaze-tracked video in two steps. The first step employs user
gaze transitions to identify time stamps in the original video where
novel cuts can be introduced via dynamic programming-based opti-
mization. It also estimates a cropping window path within the orig-
inal recording, such that the cropping window encompasses maxi-
mum gaze information. The next step employs an L(1) regularized
convex optimization to convert this path into a professional looking
one. The L(1) regularization models the virtual camera trajectory
via piecewise static, linear and parabolic segments, and ensures that
the virtual camera moves frugally and fluidly akin to a professional
camera, thereby resulting in a smooth viewing experience. This is

confirmed via a user study involving 16 users, where our approach
is perceived as enabling optimized viewing of scene emotions and
actions, as compared to gaze based re-editing [JSSH15] and letter-
boxing especially for static theatre recordings.

The next section overviews related work, in order to highlight
the salient aspects of our approach. The following sections provide
a detailed discussion of our retargeting approach, associated exper-
iments and the user study.

2. Related work

Several media retargeting solutions have been proposed, and they
can be broadly categorized into three different categories: dis-
crete, continuous and cropping-based approaches. Discrete ap-
proaches [AS07,RSA08,PKVP09] judiciously remove and/or shift
pixels to preserve salient media content. Examples include the rel-
ative shifting of pixels [PKVP09], or adding/removing connected
seams (paths of low importance) from the image [AS07]. Contin-
uous approaches [GSCO06] optimize a warping (mapping) from
the source to the target media, with constraints designed to pre-
serve salient media content resulting in a non-homogeneous trans-
formation, with less important regions squeezed more than impor-
tant ones. Some of these discrete and continuous approaches have
been extended to video retargeting [RSA08, WGCO07, KLHG09].
However, discrete or continuous removal of pixels often results in
visible artifacts such as squeezed shapes, broken lines or structures
and temporal glitches/incoherence.

A third retargeting approach selects a cropping window for each
frame inside the original video. This approach eliminates visual ar-
tifacts, but some visual information is nevertheless lost in the crop-
ping process. This is in spirit, the ‘pan and scan’ process, where
an expert manually selects a cropping window within a widescreen
image to adapt the same to smaller aspect ratios. The goal is to pre-
serve the important scene aspects, and the operator smoothly moves
the cropping window as action shifts to a new frame position or in-
troduces new cuts (for rapid transitions).
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(a) (b) (c)

Figure 2: The recorded eye gaze data from five users and the corresponding output (the optimal x position) of our algorithm. Results with
three different type of gaze have been presented i.e. (a) fixation: when the user maintains the eye gaze around a location, our algorithm
outputs a static segment; (b) pursuit: a gradual movement of eye gaze results in a pan; (c) saccade: an abrupt transition in gaze leads to cut.

Several efforts [LG06, DDN08, XK10] have been made to auto-
mate the ‘pan and scan’ or re-editing process. These approaches
primarily rely on computational saliency (primarily bottom-up
saliency based on spatial and motion cues) to discover important
content, and then estimate a smooth camera path that preserves
as much key content as possible. Liu and Gleicher [LG06] de-
fine the virtual camera path as a combination of piecewise linear
and parabolic segments. Grundmann et al. [GKE11] employ an
L(1) regularized optimization framework to produce stable cam-
era movements thereby removing undesirable motion. Gleicher and
colleagues [GM00, LG06, HWG07, GRG14] relate the idea of a
moving cropping window with virtual camera work, and show its
application for editing lecture videos, re-editing movie sequences
and multi-clip editing from a single sequence.

While human attention is influenced by bottom-up cues, it is
also impacted by top-down cues relating to scene semantics such as
faces, spoken dialogue, scene actions and emotions which are inte-
gral to the storyline [SSSM14, GSY∗15]. Leake et al. [LDTA17]
propose a computational video editing approach for dialogue-
driven scenes which utilizes the script and multiple video record-
ings of the scene to select the optimal recording that best satisfies
user preferences (such as emphasize a particular character, inten-
sify emotional dialogues, etc.). A more general effort was made by
Galvane et al. [GRLC15] for continuity editing in the 3D animated
sequences. However, the movie script and the high-level cues used
in these works may not always be available. A number of other
works have utilized eye tracking data, which is indicative of the se-
mantic and emotional scene aspects [KSK∗10, SSSM14], to infer
salient scene content.

Santella et al. [SAD∗06] employ eye tracking for photo cropping
so as to satisfy any target size or aspect ratio. More recently, Jain et
al. [JSSH15] perform video re-editing based on eye-tracking data,
where RANSAC (random sampling consensus) is used to compute
smooth B-splines that denote the cropping window path. Neverthe-
less, this approach is computationally very expensive as B-splines
need to be estimated for every RANSAC trial. Also, the method-
ology involves implicit assumptions relating to the video content,
and is susceptible to generating unmotivated camera motions due
to imprecise spline blending.

Contribution: We propose a novel, optimization-based frame-
work for video re-editing utilizing minimal user gaze data. To

this end, it can work with any type of video (professionally cre-
ated movies or wide-angle theatre recordings) of arbitrary length
to produce a re-edited video of any given size or aspect ratio.
Also, our optimization is L(1) regularized, which economizes and
smoothens virtual camera motion to mimic professional camera
capture behavior, and ensures a smooth viewing experience. Also,
since our methodology only requires approximate rather than ac-
curate information regarding salient scene regions, we utilize eye-
tracking data recorded with a low-end and affordable (≈ 100e) eye
tracker. We demonstrate that our method outperforms the state-of-
the-art [JSSH15] via experiments and a user study reflecting sub-
jective human expressions concerning the quality of the re-edited
video.

3. Problem Statement

The proposed algorithm takes as input (a) a sequence of frames
t = [1 : N], where N is the total number of frames; (b) the raw gaze
points over multiple users, gi

t, for each frame t and subject i and
(c) the desired output aspect ratio. The output of the algorithm is
the edited sequence to the desired aspect ratio, which is charac-
terized by a cropping window parametrized by the x-position (x∗t )
and zoom (zt) at each frame. The edited sequence introduces new
panning movements and cuts within the original sequence, aim-
ing to preserve the cinematic and contextual intent of the video.
Before delving into the technical details, we put forward a discus-
sion on desired characteristics of such an editing algorithm from
a cinematographic perspective. We also discuss how the literature
from cinematography [TB10,BT10,MJ08] inspires our algorithmic
choices.

Millerson and Owens [MJ08] stress on the aspect that the shot
composition is strongly coupled with what viewers will look at. If
viewers do not have any idea of what they are supposed to be look-
ing at, they will look at whatever draws their attention (random pic-
tures produce random thoughts). This motivates the choice of us-
ing gaze data in the re-editing process. Although, notable progress
has been made in computationally predicting human gaze from im-
ages [BJB∗], the cognitive gap still needs to be filled in [BRB∗16].
For this reason, we explicitly use the collected gaze data in the
proposed algorithm as the measure of saliency. The algorithm then
aims to align the cropping window with the collected gaze data.



K. Rachavarapu, M. Kumar, V. Gandhi & R. Subramanian / Watch to Edit 4

Importance of a steady camera has been highlighted in Thom-
son and Christopher’s ‘Grammar of the shot’ [TB10]. They suggest
that (a) camera should not move without a sufficient motivation (as
it may appear puzzling to the viewer) and brief erratic pans should
be avoided and (b) a good pan/tilt movement should comprise of
three components: a static period of the camera at the beginning, a
smooth camera movement which "leads" the attention of the subject
and a static period of the camera at the end. As discussed earlier,
ideally we would like to center the cropping window around the
most salient region (computed from gaze data), however we allow
some relaxation using rectified linear unit function to avoid brief
camera movements over small gaze variations. Furthermore, we use
a combination of first, second and third order L(1) norm regular-
ization to achieve professional looking smooth pan/zoom (leading
to piecewise static, linear and parabolic segments) [GKE11]. Fig-
ure 2 illustrates the behavior of our algorithm with (a) gaze centered
around a location where the algorithm outputs a perfectly static seg-
ment and (b) gradually varying gaze, where the algorithm outputs
a smooth pan.

The fast panning movements should be avoided, as it may lead
to breakup of the movement [MJ08]. We impose constraints on the
maximum panning speed in the optimization process, to make sure
that fast panning movements do not occur. Apart from panning, an-
other crucial parameter which needs to be controlled is amount of
zoom, which is often correlated with the localization and intensity
of the scenes [MJ08]. We use variance of gaze fixation data as the
indicator of amount of zoom-in. If the gaze data is concentrated
around a point for a long interval, it motivates zooming-in at that
location and the high variance gaze suggests that a lot is going on
in the scene and the camera should zoom out to include more con-
tent. Furthermore, to mimic human like behavior, we add a delay
in zoom/pan movements (a computational camera starts panning at
the instant an actor starts moving, while an actual cameraman takes
a moment to respond to the action).

Cuts are another form of transitions which are used when there
is a need for quick change in impact. There should always be a rea-
son to make the cut, the two shots before and after the cut should
not be too similar (avoiding jump cut) and the pace of the cut
should go along with the story (it should not be too fast and too
slow) [BT10]. We argue that frames with abrupt changes in gaze
positions are good candidate locations for adding cuts, as that indi-
cates the change in impact. To avoid jump cuts, we use a penalty
term in the optimization process, quantifying the overlap in the
compositions before and after the cut. Furthermore, we use a de-
caying exponential penalty to control the pace/rhythm of the cuts.
Figure 2(c) illustrates an example where abrupt change in gaze lo-
cation leads to a cut.

4. Method

Our algorithm consists of two steps.The first step uses dynamic pro-
gramming to detect a path (ε = {rt}t=1:N ) for the cropping window
which maximizes the amount of gaze and time stamps appropri-
ate to introduce new cuts which are cinematically plausible. The
second step optimizes over the path ({rt}) to mimic the professional
cameraman behavior, using a convex optimization framework (con-
verting the path into piecewise linear, static and parabolic segments,

while accounting for the original cuts in the sequence and the newly
introduced ones). We first explain the data collection process and
then describe the two stages of our algorithm.

4.1. Data collection

We selected a variety of clips from movies and live theatre. A to-
tal of 12 sequences are selected from four different feature films
and cover diverse scenarios like dyadic conversations, conversa-
tions in crowd, action scenes, etc. The clips include a variety of
shots such as close ups, distant wide angle shots, stationary and
moving camera etc. The native aspect ratio of all these sequences is
either 2.76:1 or 2.35:1. The pace of the movie sequences vary from
a cut every 1.6 seconds to no-cuts at all in a 3 minute sequence. The
live theatre sequence were recorded from dress rehearsals of Arthur
Miller’s play ‘Death of a salesman’ and Tennessee Williams’ play
‘Cat on a hot tin roof’. All the 4 selected theatre sequences were
recorded from a static wide angle camera covering the entire stage
and have an aspect ratio of 4:1. These are continuous recordings
without any cuts. The combined set of movie and live theatre se-
quences amount to a duration of about 52 minutes (minimum length
of about 45 seconds and maximum length of about 6 minutes).

Five naive participants with normal vision (with or without
lenses) were recruited from student community for collecting the
gaze data. The participants were asked to watch the sequences re-
sized to a frame size of 1366 × 768 on a 16 inch screen. The orig-
inal aspect ratio was preserved during the resizing operation using
letterboxing. The participants sat at approximately 60 cm from the
screen. Ergonomic settings were adjusted prior to the experiment
and system was calibrated. PsychToolbox [KBP∗07] extensions for
MATLAB were used to display the sequences. The sequences were
presented in a fixed order for all participants. The gaze data was
recorded using the 60 Hz Tobii Eyex, which is an easy to operate,
low cost eye-tracker.

4.2. Gaze as an indicator of importance

The basic idea of video retargeting is to preserve what is important
in video by removing what is not. We explicitly use gaze as the
measure of importance and propose a dynamic programming opti-
mization, which takes as input the gaze tracking data from multi-
ple users and outputs a cropping window path which encompasses
maximal gaze information. The algorithm also outputs the time
stamps to introduce new cuts (if required) for more efficient sto-
rytelling. Whenever there is an abrupt shift in the gaze location,
introducing a new cut in the cropping window path is a preferable
option over panning movement (as fast panning would appear jar-
ring to the viewer). However, the algorithm penalizes jump cuts
(ensuring that the cropping window locations, before and after the
cut are distinct enough) as well as many cuts in short succession
(it is important to give the user sufficient time to absorb the details
before making the next cut).

More formally, the algorithm takes as input the raw gaze data gi
t

of ith user for all frames t = [1 : N] and outputs a state ε = {rt} for
each frame. Where the state rt ∈ [1 : Wo] (where Wo is width of the
original video frames) selects one among all the possible cropping
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Figure 3: The x-coordinate of the recorded gaze data of 5 users for the sequence "Death of a Salesman" (top row). Gaussian filtered gaze
matrix over all users, used as an input for optimization algorithm (middle row). The output of optimization: The optimal state sequence
(black line) along with the detected cuts (black circles) for an output aspect ratio of 1:1(bottom row).

window positions. The optimization problem aims to minimize the
following cost function:

E(ε) =

N∑
t=1

Es(rt) +λ

N∑
t=2

Et(rt−1,rt,d) (1)

where the first term Es penalizes the deviation of rt from the gaze
data at each frame and Et is the transition cost, which computes the
cost of transition from one state of another (considering both the
options of camera movement and cut). Given the raw gaze data gi

t,
the unary term Es is defined as follows:.

Es(rt) = Ms(rt, t)

where Ms(x, t) =

 u∑
i=1

Mi(x, t)

∗N(0, σ2)

Mi(x, t) =

−1 if x = gi
t

0 otherwise

Here, Mi(x, t) is a Wo ×N matrix of ith user gaze data and Ms(x, t)
is the sum of gaussian filtered gaze data over all users. Figure 3
(middle row) shows an example of matrix Ms computed from the
corresponding gaze data (top). Essentially Es(rt) is low, if rt is close
to the gaze data and increases as rt deviates from the gaze points.
Using the combination of multiple user gaze data, makes the algo-

rithm robust to both the noise induced by the eye-tracker and the
momentary erratic eye movements of some users. We use a Gaus-
sian filter (with standard deviation σ) over the raw gaze data to
better capture the overlap between multi-user data, giving a lowest
unary cost to areas where most users look at.

The pair-wise cost Et considers a case wise penalty. The penalty
differs if there is a new cut introduced or not. If there is no cut intro-
duced, it is desired that the the new state be closer to the previous
state. If a new cut is introduced, it is desired to avoid a jump cut
and also leave sufficient time from the previous cut. The term Et is
defined as follows:

Et(rt−1,rt,d) =


(
1− e

−4|rt−rt−1 |
W

)
|rt − rt−1| ≤W(

1 + e
−|d|
D

)
|rt − rt−1| > W,

(2)

where d is the duration from the previous cut and D is a parame-
ter which controls the cutting rhythm and can be tuned for faster
or slower pace of the scene. We set the value of D to 200 frames,
which is roughly the average shot length used in movies between
the 1983 and 2013 [CC15]. The first case in Equation 2 is consid-
ered, when the difference in consecutive states is less than W, the
minimum width to avoid jump cut (we assume occurrence of jump
cut if overlap between consecutive cropping windows is more than
25%). The cost is 0 when rt = rt−1 and gradually saturates towards
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1, when |rt − rt−1| approaches W. A transition of more than W indi-
cates possibility of a cut, and then the pairwise cost is driven by the
duration from the previous cut. The cost gradually decreases with
increase in duration from the previous cut.

Finally, we solve Equation 1 using Dynamic Programming (DP).
The algorithm selects a state rt for each time t from the given pos-
sibilities (Wo in this case). We build a cost matrix C(rt, t) (where
rt ∈ [1 : Wo] and t ∈ [1 : N] ). Each cell in this table is called a node.
The recurrence relation used to construct the DP cost matrix is a
result of the above energy function and is as follows:

C(rt, t) =

Es(rt) t = 1
min
rt−1

[Es(rt) +λ∗Et(rt−1,rt,d) +C(rt−1, t−1)] t > 1

For each node (rt, t) we compute and store the minimum cost C(rt, t)
to reach it. A cut ct is introduced at frame t, if the accumulated cost
is lower for introducing a cut than keeping the position constant
or panning the window. Backtracking is then performed from the
minimum cost node in the last column to retrieve the desired path.
Finally, the output of the algoritm is the optimized cropping win-
dow path ε = {rt} and the set of newly introduced cuts {ct}. The time
complexity of the algorithm is O(Wo

2N) and the space complexity
is O(WoN), which are both linear with N. An example of the gen-
erated optimization result is illustrated in Figure 3 (bottom row).

4.3. Optimization for cropping window sequence

The output of the dynamic programming optimization gives a crop-
ping window path which maximizes the inclusion of gaze data in-
side the cropping window and the location of the cuts. However,
this cropping window path does not comply with cinematic princi-
ples (leading to small erratic and incoherent movements). We fur-
ther employ an L(1) regularized convex optimization framework,
which aims to convert the rough camera position estimates into
smooth professional looking camera trajectories, while accounting
for cuts (original and newly introduced ones) and other relevant
cinematographic aspects, as discussed in Section 3. This optimiza-
tion takes as input, the original gaze data; the initial path estimate
(ε = {rt}t=1:N ); the original cuts in the sequence, if any (computed
using [AM14]); the newly introduced cuts ct and outputs the opti-
mized virtual camera trajectory, ξ = {(x∗t ,zt)}t=1:N . The optimization
consists of several cost terms and constraints and we describe each
of them in detail:

4.3.1. Data term:

The data term penalizes deviation of the virtual camera path (crop-
ping window path) from the initial estimates (which eventually is
capturing the gaze behavior). The term is defined as follows:

D(ξ) =

N∑
t=1

(
max

[
|x∗t − rt | −τ,0

])2 (3)

The function penalizes if the optimized sequence x∗t deviates from
the initial estimate of the camera position rt. However, it is relaxed
with a rectifier linear unit function to avoid the penalty for small
gaze movements and in turn to avoid brief and erratic camera move-
ments. To summarize, the above cost function incurs a penalty only
if the optimal path x∗t varies from rt, with more than a threshold, τ.

4.3.2. Movement regularization

As discussed in Section 3, smooth and steady camera movement
is necessary for pleasant viewing experience [TB10]. Professional
cameramen avoid unmotivated movements and keep the camera as
static as possible. When the camera is moved, it should start with a
segment of constant acceleration followed by a segment of constant
velocity and should come to a static state with a segment of constant
deceleration. Early attempts modeled this behavior with heuris-
tics [GL08], however recent work by Grundmann et al. [GKE11]
showed that such motions could be computed as the minima of an
L(1) optimization. In the similar spirit, we introduce three different
penalty terms to obtain the desired camera behavior.

When L(1) norm term is added to the objective to be minimized,
or constrained, the solution typically has the argument of the L(1)
norm term sparse (i.e., with many exactly zero elements). The first
term, penalizes the L(1) norm over the first order derivative, induc-
ing static camera segments:

M1(ξ) =

N−1∑
t=1

(|x∗t+1 − x∗t |). (4)

The second term induces constant velocity segments by minimizing
accelerations:

M2(ξ) =

N−2∑
t=1

(|x∗t+2 −2x∗t+1 + x∗t |). (5)

The third term minimizes jerk, leading to segments of constant ac-
celeration:

M3(ξ) =

N−3∑
t=1

(|x∗t+3 −3x∗t+2 + 3x∗t+1 −3x∗t |). (6)

Combining these three penalties yields camera movements consist-
ing of distinct static, linear and parabolic segments.

4.3.3. Zoom

We perform zoom by varying the size of the cropping window (de-
creasing the size of the cropping window results in a zoom-in op-
eration, as it makes the scene look bigger). The amount of zoom
is decided based on the standard deviation of the gaze data, taking
inspiration from previous work on gaze driven editing [JSSH15].
However, we use gaze fixations instead of the raw gaze data for
computing the standard deviation. We observed that using fixation
gives added robustness over the outliers/momentary noise. We use
the EyeMMV toolbox [KFN14] for computing the fixation, with a
duration of 200 ms.

Let σt be the standard deviation of the gaze data at the fixation
points at each frame. The ratio

ρt = 1−0.3∗

1− σt

max
k

(σk)

 (7)

ρt ∈ [0.7,1] is used as an indicator for the amount of zoom at each
frame (ρt = 1 corresponds to the largest feasible cropping window
and zoom-in happens as value of ρt decreases). We add the follow-
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Figure 4: An example sequence where our method performs zoom-in and zooms-out action. The original sequence with overlaid gaze data
(Top). The output of our algorithm without zoom (Middle) and with zoom (Bottom).

ing penalty terms in the optimization:

Z(ξ) =

N∑
t=1

(zt −ρt)2 , (8)

which penalizes the deviation of zoom from the value σt at each
frame. We further add L(1) regularization terms (first order (Mz

1),
second order (Mz

2) and third order (Mz
3) ) over zt to the objective

function to avoid small erratic zoom-in zoom-out movements and
ensure that whenever zoom action takes place, it occurs in a smooth
manner.

4.3.4. Inclusion and panning constraints:

We introduce two sets of hard constraints. The first constraint en-
forces the cropping window to be always within the original frame
i.e. Wr

2 < x∗t < Wo −
Wr
2 , which ensures a feasible solution (where

Wr is the width of the retarget video). We add second constraint
as upper bound on the velocity of the panning movement, to avoid
fast panning movements. Cinematographic literature [MJ08] sug-
gests that a camera should pan in such a way that it takes an ob-
ject at least 5 seconds to travel from one edge of the screen to the
other. This comes out to roughly 6 pixels/frame for the video res-
olution used in our experiments and leads to following constraint:
|x∗t − x∗t−1| ≤ 6.

4.3.5. Accounting for cuts : original and newly introduced

Our algorithm is agnostic to the length and type of the video con-
tent; this means that the original video may include arbitrary num-
ber of cuts (original and newly introduced). This is in contrast to
previous approaches [JSSH15], which solve the problem on a shot-
by-shot basis. This generalization is achieved by relaxing the move-
ment regularization around cuts. The following two properties are
desired in the periphery of a cut: (a) The transition at the cut should
be sudden; and (b) The camera trajectory should be static just be-
fore and after the cut, as cutting with moving cameras can cause
the problem of motion mismatch [BT10];

To induce sudden transition, we make all penalty terms zero at
the point of cut. We also make the data term zero, p frames before
and after every cut to account for the delay a user takes to move
from a gaze location to another (although the change of focus in
the scene is instantaneous, in reality the viewer takes a few mil-
liseconds to shift his gaze to the new part of the screen). Similarly

to induce static segments before and after the cut, we make the sec-
ond and third order L(1) regularization zero in the same interval.
However, we keep the first order L(1) regularization term non zero
on the entire optimization space, except at the exact point to cut, to
allow for the transition. The parameter p is set to 5, because we use
third order L(1) term which uses 4 previous values.

4.3.6. Energy Minimization:

Finally, the problem of finding the optimal cropping window se-
quence can be simply stated as a problem of minimizing a convex
cost function with linear constraints. The overall optimization func-
tion is defined as follows:

minimize
x∗,z

D(ξ) +λ1M1(ξ) +λ2M2(ξ) +λ3M3(ξ)+

Z(ξ) +λ1Mz
1(ξ) +λ2Mz

2(ξ) +λ3Mz
3(ξ)

subject to
Wr

2
≤ x∗t ≤Wo −

Wr

2
|x∗t − x∗t−1| ≤ 6,

0.7 ≤ zt ≤ 1, t = 1, . . . ,N −1.

(9)

As discussed in Section 3, the optimal cropping window, x∗t usu-
ally starts panning, at the instant the actor starts moving, while the
actual cameraman takes a moment to respond for the action. To ac-
count for this, we delay the optimal cropping window path, x∗t , by
10 frames for each shot. The parameters, λ1, λ2, λ3 can be changed
to vary the motion model. Currently, we keep λ1 higher, preferring
static segments.

5. Results

The results are computed on all the 12 clips (8 movie sequences &
4 theatre sequences) mentioned in Section 4.1. All the sequences
were retargeted from their native aspect ratio to 4:3 and 1:1 using
our algorithm. We also compute results using Gaze Driven Editing
(GDR) [JSSH15] algorithm by Jain et al. for the case of 4:3 aspect
ratio, over all the sequences. The results with GDR were computed
by first detecting original cuts in the sequences and then applying
the algorithm shot by shot. Some of the example results and com-
parisons are shown in Figure 4, Figure 5 and Figure 6. An explicit
comparison on output with and without zoom is shown in Figure 4.
All the original and retargeted sequences are provided in the sup-
plementary material.
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We used CVX [GB14] toolbox with MOSEK [ApS15] for con-
vex optimization. The parameters used for the algorithm are given
in Table 1. Same set of parameters are used for all theatre and movie
sequences.

Parameter λ σ D W λ1 λ2 λ3 τ

Values 2 15 200 0.75Wr 5000 500 3000 0.1Wr

Table 1: Parameters for path optimization algorithm and cut de-
tection algorithm.

Type Our Method GDR
All 89.63%(σ = 4.96) 76.26%(σ = 9.71)

Movies 90.28%(σ = 4.63) 77.76%(σ = 10.3)
Theatre 85.95%(σ = 4.43) 74.02%(σ = 6.27)

Table 2: Comparing our method with GDR based on the mean
percentage of gaze data included within the retargeted video at 4:3
aspect ratio.

5.1. Runtime

The proposed algorithm optimizes the cropped window for any
length of video sequence with arbitrary number of cuts. Hence, it is
independent of the video resolution and number of shots/cuts. The
proposed algorithm takes around 40 sec for a 6 min video sequence
(processing around 220 frames per second) on a laptop with i3 pro-
cessor and 4GB RAM whereas [JSSH15] takes around 40 min for
30 sec sequence. We empirically observed that the complexity of
our algorithm increases linearly with number of frames and takes
about 10 minutes for retargeting a 90 minute movie.

5.2. Included gaze data

One measure for evaluating retargeting performance is to compute
the percentage of gaze data included inside the cropped window, as
suggested in [CLM08] and [JSSH15]. Table 2 shows the average
percentage of gaze data included over all the retargeted videos at
4:3 aspect ratio with our method and GDR. The global perspective
and flexibility of our method allows it to capture considerably more
gaze data than GDR. On average, our method is able to include
about 13% more gaze data and the numbers reflect for both movie
and theatre sequences. Smaller deviation (σ = 4.96 for our method,
compared to σ = 9.71 for GDR) across sequences also confirms
content agnosticism of our algorithm. The proportion of included
gaze reduces to about 81.8% when the retargeted videos are ren-
dered at 1:1 aspect ratio. In other words, when retargeting a video
from 2.76:1 to 1:1, our algorithm preserves around 81% of gaze
data while losing around 63% of the screen space.

5.3. Qualitative evaluation

We compare our results with GDR in Figures 5 and 6. The hard
assumptions of at most two pans and a single cut in a shot lim-
its the applicability of GDR on longer sequences, as seen in Fig-
ure 5. The cropping window becomes constant after frame 3 and
misses the action taking place in the scene. In contrast, our method
consistently follows the action by using smooth pans (with smooth
interpolation between static segments) and introducing new cuts.

GDR can also lead to sudden unmotivated camera movements as
it is applied on individual shots. An example is shown in Figure 6,
where gaze is primarily fixated on the main character and the GDR
algorithm produces an unnecessary pan. Conversely, our method
produces a perfectly static camera behavior via retargeting consid-
ering the entire video. Results over all sequences achieved using
GDR and our method are provided in the supplementary material
for further qualitative comparisons.

6. User study evaluation

The primary motivation behind employing an L(1) regularized opti-
mization framework is to produce a smooth viewing experience. In
order to examine whether our gaze-based retargeting approach pos-
itively impacted viewing experience, we performed a study with 16
users who viewed 20 original and re-edited snippets from the 12
videos used in our study. The re-edited snippets were generated via
(a) letterboxing, (b) the gaze driven re-editing (GDR) of Jain et
al. [JSSH15] and (c) our approach. Details of the user study are
presented below. The output aspect ratio was 4:3 in both the cases
of GDR and ours, without considering the zoom in both cases.

6.1. Materials and methods

16 viewers (22–29 years of age) viewed 20 snippets of around
40 seconds length initially in their original form, followed by re-
edited versions produced with letterboxing, GDR and our method
shown in random order. Similar to the eye-tracking study, viewers
watched the videos on a 16 inch screen at 1366 × 768 pixel resolu-
tion from around 60 cm distance. We followed a randomized 4×4
Latin square design so that each viewer saw a total of five snip-
pets (and each of them in four different forms), and such that all 20
snippets were cumulatively viewed by the 16 viewers.

We slightly modified the evaluation protocol of Jain et
al. [JSSH15], who simply asked viewers regarding their preferred
version of the original clip at a reduced aspect ratio. We instead
asked viewers to provide us with real-valued ratings on a scale of
0–10 in response to the following questions:

Q1. Rate the edited video for how effectively it conveyed the scene
content with respect to the original (scene content effectiveness
or SCE).

Q2. Rate the edited video for how well it enabled viewing of actors’
facial expressions (FE).

Q3. Rate the edited video for how well it enabled viewing of scene
actions (SA).

Q4. Rate the edited video for viewing experience (VE).

These four questions were designed to examine how faithfully the
examined video re-editing methods achieve the objective of the
‘pan and scan’ approach. Q1 relates to how well the re-editing pro-
cess preserves the scene happenings and semantics. Q2 and Q3 re-
late to the cropping window movements, and how well they capture
the main scene actors and their interactions (e.g., when feasible, it
would be preferable to watch both boxers in a boxing match rather
than only the one who is attacking or defending). Q4 was added
to especially compare the smoothness of the cropping window tra-
jectory in the GDR and our approaches, and with the larger ob-
jective that re-editing approaches should not only capture salient
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©Celestin, Theatre de Lyon

Figure 5: The figure shows original frames and overlaid outputs from our method and GDR (coloured, within white rectangles) on a long
sequence. Plot shows the x-position of the center of the cropping windows for our method (black curve) and GDR (red curve) over time. Gaze
data of 5 users for the sequence are overlaid on the plot. Unlike GDR, our method does not involve hard assumptions and is able to better
include gaze data (best viewed under zoom).

scene content but should also be pleasing to the viewer’s eyes by
enforcing (virtual) camera pan and zoom only sparingly and when
absolutely necessary.

Of the 20 snippets, 14 were extracted from movie scenes,
and the remaining from theatre recordings. Since the content of
these scenes varied significantly (professionally edited vs wide an-

©Eros International

Figure 6: Frames from the original sequence cropped by the out-
put of our algorithm and GDR (white rectangles). Corresponding
gaze data (below) reveals that gaze is broadly cluttered around the
shown character. Our algorithm produces a perfectly static virtual
camera segment (black curve), while GDR results in unmotivated
camera movement (red curve).

gle static camera recorded), we hypothesized that the re-editing
schemes should work differently, and have different effects on the
two video types. Overall, the study employed a 3×2 within-subject
design involving the re-editing technique (letterboxing, GDR or
our) and the content type (movie or theatre video) as factors.

6.2. User data analysis

Figure 7 presents the distribution of user scores in response to ques-
tions Q1−Q4 for all, theatre and movie clips. In order to examine
the impact of the snippet content and re-editing techniques, we per-
formed a 2-way unbalanced ANOVA (given the different number of
movie and theatre snippets) on scores obtained for each question.

For Q1, Figure 7 (left) shows that letterboxing scores are highest
followed by our method and GDR respectively. This is to be ex-
pected as letterboxing preserves all the scene content with only a
loss of detail, while re-editing techniques are constrained to render
only a portion of the scene that is important. ANOVA revealed the
main effect of both editing technique and content type. A post-hoc
Tukey test further showed that the SCE scores were significantly
different for Letterboxing (mean SCE score = 8.7) and GDR (mean
SCE score = 7) at p<0.0001, as well as our method (mean SCE
score = 8.1) and GDR at p<0.001, while the scores for our method
and letterboxing did not differ significantly. These results suggest
that our retargeting method preserves scene content better than
GDR, but only slightly worse than letterboxing.

Scores for Q2 in Figure 7 (left) show that our method per-
forms better than the two competitors. ANOVA revealed the signif-
icant effects of the content type (p<0.05) and re-editing technique
(p<0.0001) in this case. A Tukey test showed that the FE scores
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Figure 7: Bar plots showing scores provided by users in response to the four questions (Q1-Q4) posed for (left) all clips, (middle) theatre
clips and (right) movie clips. Error bars denote unit standard deviation.

Type Our Letterboxing GDR
All 43.6 39.3 17.1

Movies 35.9 46.6 17.5
Theatre 65.2 18.8 16

Table 3: User preferences (denoted in %) based on averaged and
z-score normalized user responses for questions Q1-Q4.

for our method (mean FE score = 8.3) were significantly different
from either GDR (mean FE score = 7.5) or letterboxing (mean FE
score = 7). These result reveal that our retargeting reveals actors’
expressions most effectively, while letterboxing performs worst in
this respect due to loss of scene detail. For scene actions how-
ever, letterboxing again scored the highest while GDR scored the
lowest. Tukey test for SA showed that both letterboxing (mean SA
score = 8.2) and our approach (mean SA score = 8) performed sig-
nificantly better than GDR (mean SA score = 7.2), while the dif-
ference between letterboxing and our approach was insignificant.
So, our retargeting performs only slightly worse than letterbox-
ing with respect to preserving scene actions. Finally, our method
and letterboxing achieve very comparable scores for viewing ex-
perience, with both receiving significantly higher scores (mean VE
score ≈ 8) than GDR (mean VE score = 6.9).

Figures 7 (middle) and (right) show the user score bar plots cor-
responding to theatre and movie snippets. Quite evidently, our FE,
SA and VE scores are the highest for theatre clips, and are found to
be significantly higher than either GDR or letterboxing via Tukey
tests. Nevertheless, the superiority of our method diminishes for
movie clips, with letterboxing and our approach performing very
comparably in this case. Except for FE with theatre videos, GDR
scores the least for all other conditions. These results again show
that our method is able to capture theatre scenes best, and the main
difference between theatre and movie scenes is that action is typi-
cally localized to one part of the stage in theatre scenes, while di-
rectors tend to effectively utilize the entire scene space in their nar-
rative for movie scenes. Since our method is inherently designed to
lose some scene information due to the use of a cropping window, it
generates an output comparable to letterboxing in most cases. How-
ever, GDR performs the worst among the three considered methods
primarily due to unmotivated camera movements and heuristic mo-
tion modeling which fails on longer shots. Table 3 tabulates the
percentage of viewers that preferred our method over letterboxing
and GDR upon z-score normalizing and averaging responses for

Q1−Q4. The numbers again reveal that our method is most pre-
ferred for theatre, but loses out to letterboxing for movie clips. Cu-
mulatively, subjective viewing preferences substantially favor our
method as compared to gaze based re-editing.

7. Discussion

We present an algorithm to retarget video sequences to smaller as-
pect ratios based on the gaze tracking data collected over multiple
users. The algorithm uses a two stage optimization procedure to
preserve the gaze data as much a possible while adhering to cin-
ematic principles concerning pans, zooms and cuts. In contrast to
previous approaches [JSSH15], we employ a heuristic-free motion
modeling and our algorithm does not make any assumptions on
the input sequences (both in terms of type and length). This makes
our algorithm applicable for re-editing existing movie sequences as
well as edit a raw sequence.

The applicability to edit a raw sequence adds another dimension
to research in video retargeting. For instance, a user can simply
record the scene from a static/moving camera covering the entire
scene and can later use a retargeting algorithm to edit the recording
based on gaze data. We motivate this application based on examples
recorded from content rich theatre recordings and the user study
confirms that the retargeted version better conveys the important
details and significantly improves the overall viewing experience.

The robustness of our algorithm to noise (i.e., spurious gaze
data) allows us to employ gaze recordings obtained from a low
cost Tobii Eyex (e100) eye tracker for generating the retargeted
video. Such eye trackers can be easily connected to any com-
puter and in fact may come integrated with laptops in future
(https://imotions.com/blog/smi-apple-eye-tracking/), which gener-
ates the possibility of (a) creating personalized edits and (b) crowd
sourcing gaze data for more efficient video editing. The current
computational time of out algorithm is about 10 minutes to retar-
get a 90 minute video, which makes it suitable for directly editing
full-length movies.

The performed user study further confirms that our approach en-
ables users to obtain a better view of scene emotions and actions,
and in particular enhances viewing experience for static theatre
recordings. Alternatively, our algorithm can also be effective for
safety and security applications as it would enable a detailed view
of events that capture the attention of a surveillance operator.
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One limitation of our approach is that it only optimizes over the
x-position and zoom. The y-position is not altered and that lim-
its the algorithm from (a) retargeting to arbitrary aspect ratios and
(b) to freely manipulate the compositions (for instance, retarget-
ing from a long shot to a medium shot, etc.). The current version
of our algorithm may result in videos where faces or body are cut
by the frame boundary. However, it avoids cutting objects that are
attended upon, and this problem can be partially handled via addi-
tional constraints based on human/object detection.
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