
Approximate Program Smoothing Using Mean-Variance Statistics, with
Application to Procedural Shader Bandlimiting

YUTING YANG, University of Virginia
CONNELLY BARNES, University of Virginia

(a) Ground Truth (b) No Antialiasing (c) Our Result (d) Dorn et al. 2015 (e) MSAA

2115 ms, L2 error: 0.117 4041 ms (2x), L2 error: 0.021 1892 ms (1x), L2 error: 0.095 3659 ms (2x), L2 error: 0.072

Fig. 1. Our paper gives a novel compiler framework for smoothing out programs in an approximate manner. Here we show how our smoothing framework can
be applied to bandlimiting (antialiasing) procedural shader programs. In (a) is the ground truth result for a brick shader, estimated by using 1000 samples; (b) is
the aliased result due to naively evaluating the original shader program; (c) is our result; (d) is the result of previous work; and (e) is multi-sample antialiasing
(MSAA), chosen to use comparable run-time as our result. The L2 errors are reported in sRGB color space, with the inset heatmap depicting per-pixel L2 error.
Our result has significantly less error, noise, and aliasing than other approaches.

This paper introduces a general method to approximate the convolution of
an arbitrary program with a Gaussian kernel. This process has the effect of
smoothing out a program. Our compiler framework models intermediate
values in the program as random variables, by using mean and variance
statistics. Our approach breaks the input program into parts and relates the
statistics of the different parts, under the smoothing process. We give several
approximations that can be used for the different parts of the program. These
include the approximation of Dorn et al. [2015], a novel adaptive Gaussian
approximation, Monte Carlo sampling, and compactly supported kernels.
Our adaptive Gaussian approximation is accurate up to the second order in
the standard deviation of the smoothing kernel, and mathematically smooth.
We show how to construct a compiler that applies chosen approximations
to given parts of the input program. Because each expression can have
multiple approximation choices, we use a genetic search to automatically
select the best approximations. We apply this framework to the problem of
automatically bandlimiting procedural shader programs. We evaluate our
method on a variety of complex shaders, including shaders with parallax
mapping, animation, and spatially varying statistics. The resulting smoothed
shader programs outperform previous approaches both numerically, and
aesthetically, due to the smoothing properties of our approximations.

CCS Concepts: • Software and its engineering → Compilers; • Com-
puting methodologies → Rendering;

Additional Key Words and Phrases: Compilers, rendering, shaders

ACM Reference format:
Yuting Yang and Connelly Barnes. 2017. Approximate Program Smooth-
ing Using Mean-Variance Statistics, with Application to Procedural Shader
Bandlimiting. ACM Trans. Graph. 9, 4, Article 39 (March 2017), 13 pages.
https://doi.org/0000001.0000001_2

1 INTRODUCTION
In many contexts, functions that have aliasing or noise could be
viewed as undesirable. In this paper, we develop a general compiler-
driven machinery to approximately smooth out arbitrary programs,

2017. 0730-0301/2017/3-ART39 $15.00
https://doi.org/0000001.0000001_2

and thereby suppress aliasing or noise. We then apply this machin-
ery to bandlimit procedural shader programs. In order to motivate
our approach concretely by an application, we first discuss how
procedural shaders may be bandlimited, and then return to our
smoothing compiler.

Procedural shaders are important in rendering systems, because
they can be used to flexibly specify material appearance in virtual
scenes [Akenine-Möller et al. 2008]. One visual error that can appear
in procedural shaders is aliasing. Aliasing artifacts occur when the
sampling rate is below the Nyquist limit [Crow 1977]. There are
two more conventional approaches used to reduce such aliasing:
supersampling and prefiltering. We discuss these before discussing
our smoothing compiler.

Supersampling increases the spatial sampling rate, so that the out-
put value for each pixel is based on multiple samples. The sampling
rate can be uniform across the image. The sampling rate can also
be chosen adaptively based on measurements such as local contrast
[Dippé and Wold 1985; Hachisuka et al. 2008; Mitchell 1987, 1991].
This approach in the limit recovers the ground truth image, but can
be time-consuming due to requiring multiple samples per pixel.
Prefiltering typically stores precomputed integrals in mipmaps

[Williams 1983] or summed area tables [Crow 1984]. This approach
offers the benefit of exact solutions with a constant number of oper-
ations, provided that the shading function can be tiled or otherwise
represented on a compact domain. However, in practice many in-
teresting shaders do not tile, so this limits the applicability of this
method. Further, prefiltering increases storage requirements and
may replace inexpensive computations with more expensive mem-
ory accesses. This approach is not practical for functions of more
than two or three variables because memory costs scale exponen-
tially.

An alternative strategy is to construct a bandlimited variant of the
shading function by symbolic integration. This can be expressed by
convolving the shading function with a low-pass filter [Norton et al.

ar
X

iv
:1

70
6.

01
20

8v
1

 [
cs

.G
R

]
 5

 J
un

 2
01

7

https://doi.org/0000001.0000001_2
https://doi.org/0000001.0000001_2

39:2 • Yuting Yang and Connelly Barnes

1982]. Exact analytic band-limited formulas are known for some
specialized functions such as noise functions [Lagae et al. 2009]. In
most cases, however, the shader developer must manually calculate
the convolution integral. But frequently the integrals cannot be
solved in closed form, which limits this strategy.
Our framework takes a different approach from most previous

work. Our goal is to smooth out an arbitrary input function repre-
sented as a program, by approximately convolving it with a Gaussian
filter. We take the program as input, break it into different parts,
and relate the statistics of the different parts, under the desired
smoothing process. Specifically, we treat each intermediate value
in the computation as a random variable with a certain probability
distribution. We use mean and variance statistics to model these
random variables. In this manner, we can smooth out arbitrary pro-
grams that operate over floating-point numbers. Our approach can
be applied to bandlimit shader programs, because we take as input
an original shader that may have aliasing, and produce as output
bandlimited approximations that have been convolved with the
Gaussian kernel.
In our framework, we explore a number of approximation rules.

We first improve the approximations of Dorn et al. [2015] (Sec-
tion 4.3) and relate them to the mean and variance statistics in our
framework. We then develop a novel adaptive Gaussian approxima-
tion (Section 4.4). For a class of programs that are real analytic, this
approximation if used at all nodes in the computation results in a
smoothed program that is accurate to the second power of the stan-
dard deviation. We next relate Monte Carlo sampling (Section 4.5) to
our framework. This can give good approximations for non-analytic
functions, because it converges for large numbers of samples to the
ground truth. Finally, we discuss how compactly supported kernels
(Section 4.6) can be used for parts of the computation that would
otherwise be undefined or interact with infinite values.
Because each computation node can choose from a variety of

approximation methods, the search space for the optimal approxi-
mations is combinatoric. We use genetic search to find the Pareto
frontier of approximation choices that optimally trade off the run-
ning time and error of the program. A programmer can then simply
select a program variant from the Pareto frontier according to the
desired running time or error level.
To evaluate our framework, we developed a variety of complex

shaders, including shaders with parallax mapping, animation, and
spatially varying statistics, and compare the performance with
Dorn et al. [2015] and commonly used multisample antialiasing
(MSAA). Our framework gives a wider selection of band-limited
programs with less error than Dorn et al. [2015]. Our shaders are
frequently an order of magnitude faster than MSAA for comparable
errors.

2 RELATED WORK
Mathematics and smoothing. Smoothing a function is beneficial
in domains such as optimizing non-convex, or non-differentiable
problems [Chen and Chen 1999; Chen and Xiu 1999; Nesterov 2005].
For our purposes, smoothing can be understood as convolving a
function with smooth kernels. When used in numerical optimiza-
tion, this approach is sometimes known as the continuation method
or mollification [Ermoliev and Norkin 1997; Ermoliev et al. 1995;

Wu 1996]. The amount of smoothing can be controlled simply by
changing the width of the kernel. In our framework, we model the
input program by relating the statistics of each variable in the pro-
gram, and apply a variety of approximations to smooth the program.
Our idea of associating a range with each intermediate value of a
program is conceptually similar to interval analysis [Moore 1979].
Chaudhuri and Solar-Lezama [2011] developed a smoothing inter-
preter that uses intervals to reason about smoothed semantics of
programs. The homogeneous heat equation with initial conditions
given by a nonsmoothed function results in a smoothing process,
via convolution with the Gaussian that is the Green’s function of
the heat equation. Thus, connections can be made between convo-
lution with a Gaussian and results for the heat equation, such as
Łysik [2012].

Procedural shader antialiasing. The use of antialiasing to re-
move sampling artifacts is important and well studied in computer
graphics. The most general and common approach is to numerically
approach the band-limited signal using supersampling [Apodaca
et al. 2000]. Stochastic sampling [Crow 1977; Dippé and Wold 1985]
is one effective way to achieve this. The sampling rate can be effec-
tively lowered if it is adaptively chosen according to the contrast
of the pixel [Dippé and Wold 1985; Hachisuka et al. 2008; Mitchell
1987, 1991]. In video rendering, samples from previous frames can
also be reused for computation efficiency [Yang et al. 2009]. An
alternative to sample-based antialiasing is to create a band-limited
version of a procedural shader. This can be a difficult task because
analytically integrating the function is often infeasible. There are
several practical approaches [Ebert 2003] that approximate the band-
limited shader functions by sampling. This includes clamping the
high-frequency components in the frequency domain [Norton et al.
1982], and producing lookup tables for static textures using mipmap-
ping [Williams 1983] and summed area tables [Crow 1984]. Like our
work, and unlike most other work in this area, Dorn et al. [2015]
uses a compiler-driven technique to apply closed-form integral ap-
proximations to compute nodes of an arbitrary program. Unlike
Dorn et al. [2015], our framework flexibly incorporates both mean
and variance statistics, and we use several approximations that have
higher accuracy. Our approach is general and can apply to arbitrary
programs: we simply explore shaders as an example application.

Genetic algorithms. Genetic algorithms and genetic program-
ming (GP) are general machine learning strategies that use an evo-
lutionary methodology to search for a set of programs that optimize
some fitness criterion [Koza 1992]. In computer graphics, recent
work by Sitthi-Amorn et al. [2011] describes a GP approach to the
problem of automatic procedural shader simplification. Brady and
colleagues [Brady et al. 2014] showed how to use GP to discover new
analytic reflectance functions. We use a similar approach as [Sitthi-
Amorn et al. 2011] to automatically generate the Pareto frontier of
approximated smoothed functions.

3 OVERVIEW
This section gives an overview of our system. We first discuss the
goal of our smoothing process. Next, we give an overview of the
key assumptions and components in our framework.

The goal for our framework is to take an arbitrary program and
produce a smoothed output program which closely approximates

Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting • 39:3

the convolution of the input program with a Gaussian kernel. This
convolution could be multidimensional: for shader programs, the
dimension is typically 2D for spatial coordinates. When producing
such approximations, we would also like to keep high computation
efficiency.

In our compiler-based framework, we assume the input program
has a compute graph, where each node represents a floating-point
computation, and the graph is a directed acyclic graph (DAG). We
label each node in the DAG as a random variable and compute its
mean and variance statistics. Note we use these random variables
as a helpful conceptual device to determine statistics, but in most
cases, we never actually sample from these random variables.1 We
assume the input variables have specified mean and variance, and
for simplicity assume they are independent. For example, in a shader,
the input variables might be the (x ,y) pixel coordinate of the shader,
and the output might be the color. We carry mean and variance
computations forward through the compute graph, and collect the
output by taking the mean value of the output variable.
We now give an brief conceptual example of how random vari-

ables can be used to collect statistics associated with values in a
program. Suppose that a part of an input program contains a func-
tion application y = f (x), where both x and y are intermediate
values, and f is a built-in mathematical function (e.g. cosine). In our
framework, we model this computation as Y = f (X). Here, X and
Y are random variables with mean and variance statistics. In our
framework, we simplify the problem of smoothing out the overall
function by breaking the program into sub-parts, which can each
be separately smoothed. In this paper, we use lower-case letters
such as x and y to represent real values (scalars) in the original
non-smoothed input function. These can be either input, output,
or intermediate values. We use corresponding capital letters such
as X and Y to represent random variables for the corresponding
smoothed computation node.
As we just mentioned, the random variables in our framework

have two key values associated with each individual: mean and
variance. We denote these as µX and σ 2

X respectively.
An overview of the components of this framework is shown

in Figure 2. Our framework has three main parts: approximation
rules, quality improvements, and genetic search. Under the random
variable assumption, the compiler first approximates the smoothed
function by determining the mean and variances of each compute
node (discussed in Section 4 - 4.6). Next, additional quality improve-
ments can be optionally made. These include heuristically adjusting
the variance of each node using simplex search, and denoising (dis-
cussed in Section 4.7). Finally, we use genetic search to select the
best-performing program variants based on the criterion of fast
run-time and low error (discussed in Section 5).

As shown in Figure 3, we implemented several different approxi-
mation methods to calculate the mean and variance of each random
variable. These approximations are:

• Dorn et al. [2015] (Section 4.3): we improve the approx-
imations described in [Dorn et al. 2015] and relate them
to the mean and variance of our framework. The variance
calculation here is naive yet fast.

1Except for Monte Carlo sampling (Section 4.5), which of course is sampled.

Quality improvements (§4.7)

Approximation rules (§4-4.6)

• Approximation of Dorn et al. 2015 (§4.3)
• Adaptive Gaussian approximation (§4.4)
• Monte Carlo sampling (§4.5)
• Compactly supported kernels (§4.6)

• Adjust variance
• Denoise

Genetic search (§5)

Fig. 2. An overview of our system showing its components. The key compo-
nents are: approximation rules, quality improvements, and genetic search.
In approximation rules (Section 4 - 4.6), a variety of approximation methods
are implemented to smooth the input function. We can optionally improve
the quality of the output program by using the simplex method to adjust
variances and denoising the output (Section 4.7). All smoothed program
variants are selected through a genetic search (Section 5), which finds a
Pareto frontier that optimally trades off program running time and error.

• Adaptive Gaussian approximations (Section 4.4): these use
convolution to estimate both the mean and variance for a
given compute stage assuming Gaussian distributed inputs
and outputs. When applied to a whole program that is in
a certain real analytic class, this approximation rule gives
accuracy that is accurate to the second power of σ , the
standard deviation of the input variables.

• Monte Carlo sampling: we integrate this widely usedmethod
into our framework. The mean and variance are given by
sampled estimators. For large number of samples, this con-
verges to the ground truth.

• Compactly supported kernels: for a sub-part of the com-
putation that contains undefined or infinite values, (e.g.
y = f (x) = 1/x for x = 0), the corresponding integrals
with the Gaussian for mean and variance may not exist.
However, the full program may have a well-defined re-
sult, so smoothing should still be possible through such a
sub-part. To handle this case, we use compactly supported
kernels such as box or tent. The kernel size is limited based
on the distance to the nearest undefined point.

In Figure 3(b-e), we show an example of using these different
approximations to smooth the function y = sin(x2). The approxi-
mations are shown as orange curves and the ground truth as blue
dashed curves. Specifically, we have considered this function as the
composition of two primitive functions sin() and x2, which have
each been atomically smoothed. The adaptive Gaussian rule in Fig-
ure 3(c) gives a close approximation to the ground truth for small σ .
For demonstration purposes, in Figure 3(e) we also use y = sin(x2)
to show the approximation for compactly supported kernels. But
in our implementation, only functions with undefined regions, or
those that do not have a closed form Gaussian convolution will be
approximated using this method.

39:4 • Yuting Yang and Connelly Barnes

(a) Input function (b) [Dorn et al. 2015], (c) Adaptive Gaussian, (d) Monte Carlo sampling (e) Compactly supported kernels
(Section 4.3) (Section 4.4) (Section 4.5) (Section 4.6)

Fig. 3. An overview of different approximation techniques. (a) The input function y = f (x) = sin(x 2). This function is evaluated in our framework as the
composition of two “atomic" functions that we do know how to smooth: sin() and x 2. The “ground truth" correctly smoothed function f̂ (x) is shown in
blue dashed curves in subfigures (b-e). This is determined by sampling at a very high sample rate. The orange lines in subfigures (b-e) are the mean of the
output random variable calculated by different approximations. The dark red subplots in (b-e) give an abstract illustration of the kernels that were actually
used to evaluate these. (b) The approximation by Dorn et al. [2015] (Section 4.3); (c) Our adaptive Gaussian approximation (Section 4.4); (d) Monte Carlo
sampling approximation with 8 samples (Section 4.5); (e) Compactly supported kernels approximation: here we use a box kernel (Section 4.6). We use a
standard deviation of σ = 0.25 for all input distributions.
4 APPROXIMATION RULES
Suppose that the programmer writes down a given input program
that we wish to smooth. In our framework, we carry out smooth-
ing by conceptually replacing each intermediate float value in the
computation with a random variable having a known probability
density function. We thus represent each compute node by having
instead of a specific value, having specified mean and standard de-
viation statistics. For each node X in the computation, we use µX to
denote its mean, and σX for its standard deviation. The output of
the program is then the mean value for the output variable.

As a concrete example, for shader bandlimiting, each input pixel
coordinate (x ,y) could be regarded as two independent random
variables, X and Y . The means of these random variables could
represent pixel positions, µX = x , and µY = y. Because we wish
to evaluate an antialiased variant of the shader, we can model the
standard deviations of the inputs as σX = σY = 0.5, i.e. half a pixel,
to suppress aliasing beyond the Nyquist rate. Then the mean of the
output variables in the computation is simply used as the rendered
color.

In this section, we will first use an example to illustrate how we
use this approach to smooth functions. Then, we will describe how
our composition rules can be used to combine different smoothed
sub-parts of a program. After that, we will talk about different
approximation rules to estimate the mean and standard deviation
statistics.

4.1 Motivating example
Assume we are smoothing a function y = f (x). The smoothed
function can be denoted as f̂ , and the output value can be computed
as y = f̂ (x ,σ 2). Here, σ controls the smoothness. Higher σ means
f̂ is more smooth. We will use theˆoperator throughout this paper
to denote that a function is being smoothed. We use convolution to
define f̂ (x ,σ 2) as follows.

f̂ (x ,σ 2) = f (x) ∗G(x ,σ 2)

=

∫ ∞

−∞
f (x − u) ·G(u,σ 2)du

(4.1)

In equation (4.1), G(x ,σ 2) is the smoothing kernel that is used to
smooth out the original function f (x). To more explicitly identify
the kernel as being G, we can also use the notation f̂ G (x ,σ 2). The
convolution kernel G(x ,σ 2) can be any non-negative kernel that
has an integral over x from −∞ to∞ of 1. This allows us to interpret
the kernel also as a probability density function. For example, we
might use the Gaussian kernel:

G(x ,σ 2) = 1
√
2πσ

exp
(
− x2

2σ 2

)
(4.2)

If f (x) happens to be a shader program, then as is discussed in
[Dorn et al. 2015], f̂ (x ,σ 2) is simply a band-limited version of the
same procedural shader function.
We now show how the convolution from equation (4.1) fits into

our framework. We assume that in the input program, an intermedi-
ate value Y is computed by applying a function to a previous value
X , i.e., Y = f (X). But in our framework, both X and Y are random
variables. If the probability density function of X is fX , then µY can
be computed from µX and σX as:

µY = E[f (X)] =
∫ ∞

−∞
f (u) · fX (u)du (4.3)

As an example, if we assume X is normally distributed, X ∼
N(µX , σ 2

X), then equation (4.3) can be rewritten as:

µY =

∫ ∞

−∞
f (u) · 1

√
2πσX

exp
(
−(u − µX)2

2σ 2
X

)
du

= f (µX) ∗G(µX ,σ 2
X)

= f̂ (µX ,σ 2
X)

(4.4)

In equation (4.4), ∗ indicates convolution. If X has a different
probability density function, thenG(x ,σ 2) will be a different kernel.
Thus, µY is the smoothed value for f (X). This gives some intuition
for how our model is used for smoothing functions. Our framework
provides different methods to estimate µ and σ . We will describe
them in the following subsections.

Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting • 39:5

4.2 Composition rules
In principle equation (4.1) can be used to determine the correct
smoothed function f̂ from any input function f . However, in prac-
tice, the associated integrals often do not have a closed-form solution.
Therefore, a key observation used in our paper is that we can break
up the computation into different sub-parts, and compute approxi-
mate mean and standard deviation statistics for each sub-part. We
do this by simply substituting the smoothed mean and standard
deviation that are output from one compute node as the inputs for
any subsequent compute nodes.
As an example, suppose we have the computation of Figure 3.

From the input x0, we compute x1 = x20 , and then the output x2 =
sin(x1), with associated random variables X0,X1,X2, respectively.
We are given µX0 ,σX0 , the mean and standard deviation of the
input. Using the approximation rule chosen for the node X1, we
compute µX1 ,σX1 from µX0 ,σX0 . Then from µX1 ,σX1 , using the
approximation rule for the node X2, we compute µX2 ,σX2 : µX2 is
the smoothed output of the program (σX2 can be discarded).

4.3 Approximation of Dorn et al. 2015
We integrate the approximation methods described in Dorn et al.
[2015] as one of our approximation options. Dorn’s method involves
computing the mean for a smoothed function by convolving with a
Gaussian kernel. Suppose an intermediate variable y is computed
from another variable x , and the associated random variables are Y
and X , respectively, where Y = f (X). Then µY is:

µY = f̂ (µX ,σ 2
X) (4.5)

This is the same as the result we derived in equation (4.4). Here
f̂ (x ,σ 2

X) is computed from equation (4.1). In Table 3, we show com-
monly used functions f and their corresponding smoothed func-
tions f̂ . In Dorn’s method, σY is determined based on the following
simplifying assumption: output σ is a linear combination of the
axis-aligned input σ s in each dimension. Simple rules are used, such
as σ for addition and subtraction are the sum of input σ s, and σ for
multiplication or division are the product or quotient, respectively,
of the input σ s. In all other cases, including function calls, the output
σ is the average of the non-zero σs of all the inputs.

We make two improvements to Dorn et al. [2015], and use the
improved variant of this method for all comparisons in our paper.
The first improvement gives better standard deviation estimates,
and the second collects a Pareto frontier. For the standard deviations
(known as “sample spacing" in Dorn et al. [2015]), we detect the case
of multiplication or division by a constant and adjust the standard
deviation accordingly (i.e. σaX = aσX). This improvement helps
give more accurate estimates of the standard deviations and thus
reduces the problem seen in Dorn et al.’s Figure 5(c-d), where the
initial program found by the genetic search is quite different from
the final program after the variances have been adjusted by a simplex
search. The adjustment process is described later in more detail in
Section 4.7.
Our second improvement is to collect not just a single program

variant with least error, but instead a Pareto frontier of program
variants that optimally trade off running time and error. This process
is described later in Section 5.

4.4 Adaptive Gaussian Approximations
In this novel approximation, we model the input variables to a
compute node as being Gaussian distributed, and then fit a Gaussian
to the produced output by collecting its mean and standard deviation.
Thus, this rule more accurately and adaptively calculates standard
deviations.
We first consider the case that we have a function of one vari-

able. In the same manner as Section 4.3, if a random variable Y is
computed from another random variable X as Y = f (X), then µY
can be determined from equation (4.4), equation (4.1) and Table 3.
However, the standard deviation σY is determined differently based
on the definition of variance of Y :

σ 2
Y = E[Y 2] − E[Y]2

= f̂ 2(µX ,σ 2
X) − f̂ 2(µX ,σ 2

X)
(4.6)

The approximation of f̂ can also be extended to multiple di-
mensions. Suppose f (x) is a function applied to an n-dimensional
vector. Then f̂ can be computed by the convolution of f (x) and an
n-dimensional multivariate Gaussian with zero mean and covari-
ance matrix Σ. Suppose for simplicity that the input variables have
zero correlation (ρ = 0) and equal standard deviation, so Σ = Iσ 2,
where I is the identity matrix. By using Green’s function on this con-
volution [Baker and Sutlief 2003], we can find a Taylor expansion
for the function f̂ (x,σ 2) in terms of f (x):

f̂ (x,σ 2) = f (x)+12σ
2∇2 f (x)+ 1

(2!)22
σ 4∇4 f (x)+ 1

(3!)23
σ 6∇6 f (x)+. . .

(4.7)
The derivation of equation (4.7) assumes that f is real analytic

on Rn , and can be extended to a holomorphic function on Cn , so
that all the derivatives exist, and the Taylor series has an infinite
radius of convergence [Wikipedia 2017c]. This class of functions
includes polynomials, sines, cosines, and compositions of these. It
is also necessary to assume that the function is bounded by expo-
nentials: the precise conditions are discussed by Łysik [2012]. These
properties could hold for some shader programs, but even if they do
not hold for an entire program, they could often hold for sub-parts
of a program. We show in Appendix D that a single function com-
position gives a result accurate to second order in σ for this rule.
Similarly, this property can be proved via induction for multiple
function compositions.

There are also other second order accurate approximations, such
as simply truncating the Taylor expansion in equation (4.7) to use
only the first and second term. Why would we bother to propose
an adaptive Gaussian approximation?
To illustrate why adaptive Gaussian gives a more accurate ap-

proximation, we show an example in Figure 4. Here, we use the
function f (x) = sin(x2)+ 1

100x
2. We show the approximation using

adaptive Gaussian and simply truncating the Taylor expansion in
equation (4.7). In Figure 4, the blue lines represent the ground truth,
and the orange lines represent different approximations. From Fig-
ure 4(c), we can see that simply truncating the Taylor expansion
results in large extrapolation errors and actually amplifies high fre-
quencies, instead of smoothing them out. In Figure 4(b), we show
that the function is smoothed more accurately using the adaptive
Gaussian approximation.

39:6 • Yuting Yang and Connelly Barnes

−5 5x

−1

1

f
(x

)

−5 5x

−1

1

f̂
(x

)

−5 5x

−1

1

f̂
(x

)

(a) Input function (b) Adaptive Gaussian (c) Truncated Taylor
approximation (§4.4) expansion (equation (4.7))

σ = 0.5 σ = 0.5

Fig. 4. A comparison of different approximation techniques. (a) The input
function f (x) = sin(x 2) + 1

100x
2. The ground truth correctly band-limited

functions f̂ (x) are shown in blue in subfigures (b-c). These were determined
by sampling at a high sample rate. (b) Our adaptive Gaussian approximation
(Section 4.4) is shown in orange and compared against the ground truth in
blue. The approximation is good. (c) A truncated Taylor expansion with 10
terms does not result in smoothing.

For binary functions, we can still show that adaptive Gaussian is
accurate to second order if a correlation term is carefully chosen.
But for brevity, we are only going to show the rules to compute the
mean and standard deviation for binary functions we used in our
compiler.
In general, the inputs of a binary function f (a,b) can be consid-

ered as two random variables A and B (corresponding to a and b).
We make the assumption that A and B are distributed according to
a bivariate Gaussian:

A,B ∼ N
([
µA
µB

]
,

[
σ 2
A ρσAσB

ρσAσB σ 2
B

])
(4.8)

Here, σA and σB are standard deviations of A and B. These can
be determined directly from the approximation of previous compu-
tation. Here ρ is the correlation term between A and B. We will talk
about how we choose ρ later in this section. The mean and standard
deviation for binary function plus (+), minus (−) and multiplication
(·) can be derived from these assumptions based on properties of
the Gaussian distribution [Petersen et al. 2008]:

µplus =µA + µB

σ 2
plus =σ

2
A + σ

2
B + 2ρσAσB

µminus =µA − µB

σ 2
minus =σ

2
A + σ

2
B − 2ρσAσB

µmul =µAµB + ρσAσB

σ 2
mul =µ

2
AσB + σAµ

2
B+

2ρµAµBσAσB + σ 2
Aσ

2
B (1 + ρ

2)

(4.9)

For the binary function divide fdiv(a,b) = a
b , we reduce this to

multiplication by using (·) as fdiv(a,b) = fmul(a,b−1). The mean and
standard deviation for division can be calculated via the composition
rules. Here, д(b) = b−1 is an univariate function with singularity
at b = 0. Technically, the mean and variance therefore do not exist
if the Gaussian kernel is used. We work around this singularity by
approximating using a compact kernel with finite support. This

will be described in detail in Section 4.6. The modulo function,
fmod(a,b) = a%b, can be rewritten as fmod(a,b) = b · fract(ab).
Here, fract(x) is the fractional part of x . We make the simplifying
assumption that the second argument b of mod is an ordinary (non-
random) variable (so σB = 0), to obtain:

µ2mod =µB · f̂ract(µA
µB
,
σ 2
A

µ2B
)

σmod =µ
2
B · �fract2(µA

µB
,
σ 2
A

µ2B
) − µ2mod

(4.10)

Comparison functions (>, ≥, <, ≤) are approximated by convert-
ing them to univariate functions including the Heaviside step func-
tion H (x). As an example, the function greater than (>) can be
rewritten as f>(a,b) = H (a − b). This can be approximated using
rules described previously.
One other important multi-variate function we approximated is

the select function. We approximated this in the same manner as
Dorn et al. [2015] as a linear interpolation: select(a,b, c) = a · b +
(1 − a) · c . But in our case we apply the above univariate and binary
function approximations to this formula.
As we discussed before, for binary functions, we approximate

the input random variables A and B as bivariate Gaussian with
correlation coefficient ρ (equation (4.8)). In general, it is difficult to
determine ρ, because determining ρ exactly involves an integral
over the entire subtrees of the computation. In our framework,
we provide three options to approximate ρ: (1) Assume ρ is zero;
(2) Assume ρ is a constant for each node. The constant value is
estimated at training stage by sampling; (3) Estimate ρ to accuracy
that is second order in σ , based on a simplified assumption that the
given nodes are affine functions of the inputs. For case (3) we simply
take the gradients with respect to the input of the terms a and b,
normalize these gradients, and take the dot product, which recovers
ρ. This can be done using reverse mode automatic differentiation.
We explored these different rules in our genetic search. In prac-

tice, we find that for shader programs, using only rule (1), ρ = 0
typically gives good results. If the other rules (2, 3) are also included,
minor quality improvements are gained, but these rules are used
relatively rarely by our genetic search process of Section 5. We
include in Appendix B the details for the these other choices for cor-
relation coefficients, because they may be more beneficial for other
applications, and the second order accuracy property is interesting.

4.5 Monte Carlo Sampling
We relate the Monte Carlo stochastic sampling [Cook 1986; Dippé
and Wold 1985] to our framework. Here n is the number of sam-
ples. The computation for a node computing f is modeled as Y =
f (X1, ...,Xm), where the output mean and standard deviation are
given by sampled estimators as follows:

µY =
1
n

n∑
i=1

f (X1 +Ni,1σX1 , ...,Xm +Ni,mσXm)

σ 2
Y =

1
n

n∑
i=1

f 2(X1 +Ni,1σX1 , ...,Xm +Ni,mσXm) − µ2Y

(4.11)

Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting • 39:7

Here, each Ni j are random numbers independently drawn from
normal distribution N(0, 1). We experimented with applying the
Bessel’s correction [Wikipedia 2017a] to correct the bias variance
that occurs for small sample counts n. In practice, we found it does
not have a significant improvement on the result for our system.
This is mainly because the variance can also be adjusted in the
“quality improvement" phase (discussed in Section 4.7).

We choose sample numbers from (2, 4, 6, 8, 16, 32). The approx-
imation converges to the ground truth for large sample numbers,
and the output program simplifies to MSAA [Cook 1986] when the
entire input program is approximated under Monte Carlo sampling.

The error of the Monte Carlo sampling σM is estimated as follows
[Feiguin 2011].

σM ≈ σ
√
n

(4.12)

Here, σ is the standard deviation computed from equation (4.11)
and n is sample number. This error estimate becomes more accurate
in the limit of large sample numbers.

4.6 Compactly Supported Kernels Approximation
Because the Gaussian kernel has infinite support, it cannot be used
on functionswith undefined regions. For example,

√
x is only defined

on non-negative x , and its convolution with Gaussian using equa-
tion (4.1) does not exist. Monte Carlo sampling may also encounter
such problem. However, even if an input program contains such
functions as sub-parts, the full program may have a well-defined
result, so smoothing should still be possible for such programs. To
handle this case, we use compactly supported kernels.

Results for certain compactly supported kernels can be obtained
by using repeated convolution [Heckbert 1986] of boxcar functions.
This is because such kernels approximate the Gaussian by the central
limit theorem [Wells 1986]. In our framework, we use box and tent
kernels to approximately smooth functions with undefined values.
Because the convolution with a box kernel is easier to compute, this
approximation can also be usedwhen the Gaussian convolution does
not have a closed-form solution. In Table 3, we list the smoothed
result using the box kernel for commonly used functions.

When integrating against a function that has an undefined region,
it is important to make sure that the integral is not applied at any
undefined regions. Our solution to this is to make the kernel size
adapt to the location at which the integral is evaluated at. Thus,
the integral is no longer technically a convolution, because it is
not shift-invariant. We first measure the distance r from value x
that we are determining the integral at to the function’s nearest
undefined point. If the kernel half-width was h before re-scaling,
then we rescale the half-width to be min(h, λr). Here λ is a constant
less than one, and in practice we use λ = 1

2 .
We can also use this truncation mechanism to better model func-

tions such as fract(x) (the fractional part of x), which have disconti-
nuities. We observe that fract() is discontinuous at integer x . If we in-
put a distribution that spans a discontinuity, such as X ∼ N(0, 0.12),
into fract(), then we find that the output Y = fract(X) may be bi-
modal, with some values close to zero (due to x being a positive
value), and other values close to one (due to x being negative with
small absolute value). If we fit a Gaussian to this resulting bimodal
distribution, as our adaptive Gaussian rule proposes, then the mean

would be 1
2 , even though most of the values of Y are either near 0 or

1. This may result in a poor approximation, which can show up in
tiled pattern shaders (which use fract) as an improper bias towards
the center of the tile’s texture. One fix would be to randomly se-
lect either mode, based on the probability contained in each mode.
However, this introduces sampling noise in the result, which we
wish to avoid. Therefore, our solution in practice is to first identify
whether the output distribution is bimodal: for fract() we can do
this by simply checking if input distribution when represented as
a uniform (box) distribution contains exactly one discontinuity, i.e.
one integer. If so, we simply truncate the filter at the location of the
discontinuity.

4.7 Quality Improvements
At this point, we assume we have now applied the approximation
rules described in Sections 4.3 through 4.6 to an input program. We
can optionally improve the approximation quality in two ways: a)
adjust the standard deviation made in the approximations, and b)
apply denoising to program variants that use Monte Carlo sampling.

Because our approximations are not exact, the standard deviation
of some nodes may be too high or too low. Following [Dorn et al.
2015], we learn coefficients to refine the standard deviation estimates.
By comparing with the ground truth image for the shader rendering,
we use the Nelder-Mead simplex search [Nelder and Mead 1965] to
learn multiplicative factors for standard deviations.

When Monte Carlo sampling is used as part of the approximation,
noise is introduced because of the relatively small sample count. A
variety of techniques have been developed to filter such noise [Bako
et al. 2017; Kalantari et al. 2015; Rousselle et al. 2012]. We implement
the non-local means denoising method [Buades et al. 2005, 2011]
with Laplacian pyramid [Liu et al. 2008]. We find that aesthetically
appealing denoising results can be using a three level Laplacian
pyramid, with a patch size of 5, search radius of 10, and denoising
parameter h is 10 for the lower resolutions, and searched over or set
by the user for the finest resolution. In the genetic search process
(Section 5), we experimented with allowing the algorithm to search
from a variety of denoising parameters for the best result. However,
because our denoising algorithm incurs some time overhead, it ends
up being only rarely chosen. Thus, in our current setup, denoising
is typically specified by the user manually choosing that he or she
wants to denoise a result.

5 GENETIC SEARCH
In this section, we describe the genetic search algorithm. This auto-
matically assigns approximation rules to each computation node.
The algorithm finds the Pareto frontier of approximation choices
that optimally trade off the running time and error of the program.
We developed this genetic search because it gives users the op-

portunity to explore the trade-off between efficiency and accuracy
of the smoothed program. Although developers can manually as-
sign approximation rules to each node, we found this to be a time-
consuming process that can easily overlook beneficial approxima-
tion combinations. This is because each individual computation
node may choose from several approximation rules, and the search
space for this is combinatoric.

39:8 • Yuting Yang and Connelly Barnes

Our genetic search closely follows the method of Sitthi-Amron et
al. [2011]. We adopt their fitness function and tournament selection
rules, and we use the same method to compute the Pareto frontier
of program variants that optimally trade-off running time and error
with ground truth.

We start with “decent initial guesses”. For each approximation
method, we create a program where the rule is applied to all the
expression nodes. For such initial guesses, we also apply cross-over
with a probability of 0.5. Then we employ standard mutation and
cross-over operations to explore the search space. The mutation
step chooses a new approximation rule, and with equal probability,
assigns this new rule to 1, 2, or 4 adjacent expression nodes in
depth-first order. As an alternative, with equal probability, the new
approximation rule can also be assigned to the whole subtree of
an arbitrary node. In the genetic search algorithm, we choose our
probability of crossover as 0.4, the probability of retaining elite
individuals to be 0.25, and the mutation probability to be 0.35. Also,
we use a tournament size of 4, and population size of 40, with 20
generations. Finally, we run 3 random restarts for the algorithm.
For the Monte Carlo sampling approximation, during initializa-

tion and mutate, we select sample counts with equal probability
from the set {2, 4, 8, 16, 32}. For the determination of correlation
coefficients described in Section 4.4, we pick with equal probability
one of the three options.

6 EVALUATION
The previous work of Dorn et al. [2015] was evaluated primarily
on relatively simple shaders. To provide a more challenging and
realistic benchmark, we authored 21 shaders. Unlike the simple
shaders of Dorn et al., these include shaders that have a Phong
lighting model, animation, spatially varying statistics, and which
include parallax mapping [Szirmay-Kalos and Umenhoffer 2008].
Our 21 shaders were produced by combining 7 base shaders with 3
choices for parallax mapping: none, bumps, and ripples. In Table 1,
we describe our base shaders, the choices for parallax mapping, and
the associated code complexity.

Results for 7 of our shaders are presented in Figure 1 and Figure 5,
including one result for each base shader. The result for our method
was selected by a human choosing for each shader a program variant
that has sufficiently low error. Dorn et al. [2015] typically cannot
reach sufficiently low errors to remove the aliasing, so we simply
selected the program variant fromDorn et al. that reaches the lowest
error. The MSAA result was selected based on evaluating MSAA
program variants that use 2, 4, 8, 16, 32 samples, and selecting the
one that has most similar time as ours. Please see our supplemental
video for results with a rotating camera for all 21 shaders.

We also show in Figure 6 time versus error plots for the Pareto
frontiers associated with these 7 shaders. Note that Dorn et al. typi-
cally has significantly higher error, which manifests in noticeable
aliasing. Also note that the MSAA method frequently takes an or-
der of magnitude more time for equal error. Plots for all 21 of our
shaders are included in the supplemental document.
Statistics for the approximations used are presented in Table 2.

Note that a rich variety of approximation strategies are used: all
five choices for approximation are selected for different programs.
For the correlation term discussed in Section 4.4, when aggregated

Table 1. A table of our 21 shaders. At the top we list our 7 base shaders,
which are each combined with 3 different choices for parallax mapping,
listed at the bottom. We also report the number of non-comment lines used
to construct the shader program, and the number of scalar expressions in
the program’s compute graph.

Shader Lines Exprs Description
Base shaders
Bricks 38 192 Bricks with noise pattern
Checkerboard 20 103 Greyscale checkerboard
Circles 16 53 Tiled greyscale circles
Color circles 26 164 Aperiodic colored circles
Fire 49 589 Animating faux fire
Quadratic sine 26 166 Animating sinewave

of quadratic (non-stationary)
Zigzag 24 224 Colorful zigzag pattern

Parallax mappings
None 0 0 No parallax mapping
Bumps 21 203 Spherical bumps
Ripples 23 178 Animating ripples

across all 21 shaders, nearly all approximations for programs on the
Pareto frontier prefer the simple choice of ρ = 0. We weight each
shader’s contribution equally, and find 87% of program variants
prefer ρ = 0, whereas only 4% use ρ a constant, and 6% use ρ
estimated to second order accuracy. We conclude that for shader
programs, the simple choice of ρ = 0 in most cases suffices.
Note that our brick shader gives poor results for the method of

Dorn et al. [2015], while in that paper, a brick shader with similar
appearance shows good results. This is because the brick shader in
Dorn et al. [2015] was implemented using floor() functions which
can each be bandlimited independently, and then a good result is
obtained by linearity of the integral. In our paper, we implemented a
number of shaders using the fract() function to perform tilings that
are exactly or appropriately periodic, including the brick shader.
The fract() function ends up being more challenging to bandlimit
for the framework of Dorn et al. [2015], but our method can handle
such shaders.
We performed our evaluation on an Intel Core i7 6950X 3 GHz

(Broadwell), with 10 physical cores (20 hyperthreaded), and 64 GB
DDR4-2400 RAM. All shaders were evaluated on the CPU using par-
allelization. The tuning of each shader took between 1 and 3 hours
of wall clock time. However, we note that good program variants
are available after just a few minutes, and most of the remaining
tuning time is spent making slight improvements to the best indi-
viduals. Also, our tuner is intentionally a research prototype that is
not particularly optimized: it could be significantly faster if it was
parallelized more effectively, cached more redundant computations,
or targeted the GPU.

7 DISCUSSION AND CONCLUSION
In this paper, we presented a novel compiler framework that smoothes
an arbitrary program over the floats by convolving it with a Gaussian
kernel. We explained several different approximations and discussed

Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting • 39:9

Ground Truth No Antialiasing Our Result Dorn et al. 2015 MSAA

Ch
ec
ke
rb
oa
rd

w
ith

Ri
pp

le
s

30 ms, L2 error: 0.194 54 ms (2x), L2 error: 0.071 50 ms (2x), L2 error: 0.102 47 ms (2x), L2 error: 0.233

Ci
rc
le
s

w
ith

N
on

e

20 ms, L2 error: 0.148 71 ms (4x), L2 error: 0.035 39 ms (2x), L2 error: 0.063 67 ms (3x), L2 error: 0.087

Co
lo
rC

irc
le
s

w
ith

Bu
m
ps

37 ms, L2 error: 0.098 149 ms (4x), L2 error: 0.039 56 ms (2x), L2 error: 0.079 112 ms (3x), L2 error: 0.061

Fi
re

w
ith

Bu
m
ps

39 ms, L2 error: 0.170 698 ms (18x), L2 error: 0.037 67 ms (2x), L2 error: 0.136 705 ms (18x), L2 error: 0.037

Q
ua
dr
at
ic
Si
ne

w
ith

Ri
pp

le
s

38 ms, L2 error: 0.184 81 ms (2x), L2 error: 0.045 59 ms (2x), L2 error: 0.094 99 ms (3x), L2 error: 0.158

Zi
gz
ag

w
ith

Ri
pp

le
s

57 ms, L2 error: 0.139 77 ms (1x), L2 error: 0.045 59 ms (1x), L2 error: 0.072 83 ms (1x), L2 error: 0.122

Fig. 5. Selected result images for 6 shaders. Please see the supplemental video for a comprehensive comparison of all shaders. Reported below each shader are
the time to render a frame, time relative to no antialiasing, and L2 error. Please zoom in to see aliasing and noise patterns in the different methods. Program
variants with comparable time were selected: see Section 6 for more details. Note that the amount of aliasing and error for our result is significantly less than
Dorn et al. [2015]. Note that we typically have significantly less error and noise than the comparable MSAA results.

the accuracy of each. We then demonstrated that our framework al-
lows shader programs to be automatically bandlimited. This shader
bandlimiting application achieves state-of-the-art results: it often
has substantially better error than Dorn et al. [2015] even after our
improvements, and is frequently an order of magnitude faster than
multi-sample antialiasing (MSAA). Our framework is quite general,
and we believe it could be useful for other problems in graphics and

across the sciences. In order to facilitate reproducible research, we
intend to release our source code under an open source license.

ACKNOWLEDGEMENTS
We thank Zack Verham for authoring some shaders, Ning Yu for
helping produce the supplementary video, and Francesco Di Plinio
for providing references about the heat equation and its Taylor

39:10 • Yuting Yang and Connelly Barnes

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

Ours
Dorn et al. 2015
MSAA
No Antialiasing

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

0.00 0.05 0.10 0.15 0.20
L2 Error

0

10

20

30

Re
la

tiv
e

Ti
m

e

Bricks Checkerboard Circles Color Circles Fire Quadratic Sine Zigzag
with None with Ripples with None with Bumps with Bumps with Ripples with Ripples

Fig. 6. Time versus error plots for the 7 shaders in Figure 1 and Figure 5. Here we show the Pareto frontier of program variants that optimally trade off running
time and L2 error. We show results for our method, Dorn et al [2015], MSAA with varying numbers of samples, and the input shader without antialiasing. Note
that our approach typically has significantly less error than Dorn et al [2015] and is frequently an order of magnitude faster than MSAA for comparable error.

Table 2. Statistics of which approximations were chosen for different
shaders. We show statistics for the 7 program variants for the shaders
presented in Figure 1 and Figure 5. We also show aggregate statistics over
all 21 shaders, with each shader’s contribution weighted equally. For the
aggregate statistics we report statistics from the entire Pareto frontier, as
well as for each shader choosing only the slowest, fastest, or median speed
program variant. Our results show that a rich variety of our different ap-
proximation rules are needed for the best performance.

Shader Dorn et al. Adaptive Monte Carlo None
[2015] Gaussian Sampling

Bricks w/ None 28% 0% 30% 29%
Checkerboard w/ Ripples 66% 34% 0% 1%

Circles w/ None 4% 21% 71% 4%
Color Circles w/ Bumps 8% 47% 44% 0%

Fire w/ Bumps 1% 7% 33% 60%
Quadratic sine w/ Ripples 13% 80% 0% 8%

Zigzag w/ Ripples 0% 91% 1% 8%
All shaders (Pareto frontier) 29% 15% 25% 30%
All shaders (fastest time) 13% 10% 0% 77%
All shaders (median time) 20% 19% 49% 13%
All shaders (slowest time) 10% 27% 49% 14%

expansion. This project was partially funded by NSF grants HCC
1011444 and SHF 1619123.

A TABLE OF SMOOTHED FORMULAS
In Table 3, we show a table of functions and their corresponding
convolutions with box and Gaussian kernels. These are needed for
the approximations we developed in Section 4. This table can be
viewed as an extension of the table presented in Dorn et al. [2015].
Note that in particular, for each function f (x), we report not only the
result of smoothing f (x) but also smoothing f 2(x) (e.g. if we report
cos(x) then we also report cos2(x)). This is needed to determine
the standard deviations output by a given compute stage for the
adaptive Gaussian approximation rule of Section 4.4.

In Table 3, we give that bandlimiting xn by a Gaussian is a gener-
alized Hermite polynomial He[α]n (x). This can be derived trivially
from a property of generalized Hermite polynomials: the nth non-
central moment of a Gaussian distribution X with expected value
µ and variance σ is a generalized Hermite polynomial [Wikipedia

2017d]. The ordinary Hermite polynomial is defined as:

Hen (x) =
⌊ n2 ⌋∑
k=0

n!
(n − 2k)!k! (−2)

−kxn−2k (A.1)

Then He
[α]
n (x) is the generalized Hermite polynomial with pa-

rameter α , defined by:

He
[α]
n (x) = α

n
2 Hen

(
x
√
α

)
=

⌊ n2 ⌋∑
k=0

n!
(n − 2k)!k! (−2)

−kxn−2kαk
(A.2)

B CORRELATION COEFFICIENTS FOR MULTIVARIATE
FUNCTIONS

In this appendix, we describe rules to compute the correlation coeffi-
cient ρ, which is briefly discussed in Section 4.4. Specifically, we are
given a binary function f (a,b), which receives two inputs a and b,
with associated random variables A and B, respectively. We discuss
the following two rules: a) assume ρ is constant and estimate by
sampling and b) compute ρ under the assumption that computations
are affine.

Estimate ρ by sampling. In a training stage, we use n samples
to approximate ρ of two random variables A and B. The samples
drawn from these two distributions are represented as ai and bi
with corresponding sample mean a and b. Thus, ρ can be estimated
by equation (B.1) [Wikipedia 2017b].

ρ =

∑n
i=1(ai − a)(bi − b)√∑n

i=1(ai − a)2
√∑n

i=1(bi − b)2
(B.1)

Estimate ρ by an affine assumption. When we calculate ρ
under this rule, we assume the variables a and b input to f are affine
transformations of the variables x1, ..., xn which are input to the
program. Here, xi s are inputs to the function that is being smoothed,
which for a shader program could be the (x ,y) spatial coordinate.
Under this assumption, a and b can be expressed as follows.

Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting • 39:11

Table 3. A table of univariate functions, and their corresponding bandlimited result, using a box kernel B and a Gaussian G . The box kernel is the PDF of the
uniform random variable U [−

√
3σ ,

√
3σ]. The Gaussian kernel is the PDF of the random variable N(0, σ 2). Each random variable has standard deviation σ .

We define sinc(x) = sin(x)/x , and the Heaviside step function H (x) is 0 for x ≤ 0 and 1 for x positive. Note that functions with undefined regions, such as
xp for negative or fractional p have σ limited as described in Section 4.6.

Function f (x) Bandlimited with box kernel: f̂ B (x) Bandlimited with Gaussian kernel: f̂ G (x)
xp ,p , −1 1√

12σ (p+1)

[
(x +

√
3σ)p+1 − (x −

√
3σ)p+1

]
He

[−σ 2]
p (x)

x−2 (x2 − 3σ 2)−1

x−1 1√
12σ

log
��� x+√3σ
x−

√
3σ

���
x x x
x2 x2 + σ 2 x2 + σ 2

x3 x3 + 3xσ 2 x3 + 3xσ 2

x4 x4 + 6x2σ 2 + 9
5σ

4 x4 + 6x2σ 2 + 3σ 4

x5 x5 + 10x3σ 2 + 9xσ 4 x5 + 10x3σ 2 + 15xσ 4

x6 x6 + 15x4σ 2 + 27x2σ 4 + 27
7 σ

6 x6 + 15x4σ 2 + 45x2σ 4 + 15σ 6

x7 x7 + 21x5σ 2 + 63x3σ 4 + 27xσ 6 x7 + 21x5σ 2 + 105x3σ 4 + 105xσ 6

x8 x8 + 28x6σ 2 + 126x4σ 4 + 108x2σ 6 + 9σ 8 x8 + 28x6σ 2 + 210x4σ 4 + 420x2σ 6 + 105σ 8

sin(x) sin(x) sinc(
√
3σ) sin(x)e−

σ 2
2

cos(x) cos(x) sinc(
√
3σ) cos(x)e−

σ 2
2

tan(x) −1√
12σ

log
���� cos(x+√3σ)cos(x−

√
3σ)

����
sinh(x) 1√

12σ
(cosh(x +

√
3σ) − cosh(x −

√
3σ)) 1

2 (e
x+ 1

2σ
2 − e−x+

1
2σ

2)

cosh(x) 1√
12σ

(sinh(x +
√
3σ) − sinh(x −

√
3σ)) 1

2 (e
x+ 1

2σ
2
+ e−x+

1
2σ

2)
tanh(x) 1√

12σ
(log(cosh(x +

√
3σ)) − log(cosh(x −

√
3σ)))

sinh2(x) 1
8
√
3σ

(−4
√
3σ + sinh(2

√
3σ − 2x) + sinh(2

√
3σ + 2x))

cosh2(x) 1
8
√
3σ

(4
√
3σ + sinh(2

√
3σ − 2x) + sinh(2

√
3σ + 2x))

tanh2(x) 1
2
√
3σ

(2
√
3σ − tanh(

√
3σ − x) − tanh(

√
3σ + x))

ex 1√
12σ

(
ex+

√
3σ − ex−

√
3σ

)
ex+

1
2σ

2

sin2(x) 1
2 − 1

2 cos(2x) sinc(
√
12σ) 1

2 − 1
2 cos(2x)e−2σ

2

cos2(x) 1
2 +

1
2 cos(2x) sinc(

√
12σ) 1

2 +
1
2 cos(2x)e−2σ

2

tan2(x) 1√
12σ

(
tan(x +

√
3σ) − tan(x −

√
3σ)

)
− 1

H (x)


0 x ≤ −

√
3σ

x
2
√
3σ
+ 1

2 −
√
3σ ≤ x ≤

√
3σ

1 x ≥
√
3σ

1
2 (1 + erf

x√
2σ

)

fract(x) 1√
48σ

(fract2(x +
√
3σ) +

⌊
x +

√
3σ

⌋
−

fract2(x −
√
3σ) −

⌊
x −

√
3σ

⌋
)

fract2(x) 1√
108σ

(fract3(x +
√
3σ) +

⌊
x +

√
3σ

⌋
−

fract3(x −
√
3σ) −

⌊
x −

√
3σ

⌋
)

⌊x⌋ x − f̂ract(x)
⌊x⌋2 x̂2 + �fract2(x) − F (x +

√
3σ) + F (x −

√
3σ)

where F (x) = 2(⌊x ⌋3 +
⌊x ⌋(⌊x ⌋−1)

4 +
⌊x ⌋ f̂ract

2
(x)

2 +
f̂ract

3
(x)

3)
⌈x⌉ x + f̂ract(−x)
⌈x⌉2 �⌊−x⌋2

a = ac +
n∑
i=1

aixi

b = bc +
n∑
i=1

bixi

(B.2)

In equation (B.2), ai and bi are coefficients of the affine transfor-
mation, and ac and bc end up not mattering for the ρ computation,

39:12 • Yuting Yang and Connelly Barnes

so we ignore these constants. In our implementation, we find ai and
bi by taking the gradient, via the automatic differentiation of the
expression nodes a and b with respect to the inputs xi . Here ρ is
computed as:

ρ =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(B.3)

C SMOOTHING RESULT FOR PERIODIC FUNCTIONS
In this section, we derive a convenient formula that gives the ban-
dlimited result for any periodic function if its integral within a
single period is known. We extend the analysis of fract() made
by Dorn et al. [2015] to any periodic function. We use Heckbert’s
technique of repeated integration [Heckbert 1986] to derive the
convolution of a periodic function with a box kernel.
Specifically, we assume the periodic function f (x) has period T

and its first and second integrals within one period are also known.
These are denoted as Fp (x) and Fp2(x), respectively.

Fp (x) =
∫ x

0
f (u)du

Fp2(x) =
∫ x

0
Fp (u)du

x ∈ [0,T)

(C.1)

Using equation (C.1), we derive the first and second integral of
f (x) as follows.

F (x) =
∫ x

0
f (u)du

=
(⌊ x
T

⌋
+ 1

)
· Fp (T) −

∫ T

x−T ·⌊ xT ⌋
f (u)du

=
(⌊ x
T

⌋
+ 1

)
· Fp (T) − Fp (T) + Fp

(
x −T ·

⌊ x
T

⌋)
=

⌊ x
T

⌋
· Fp (T) + Fp

(
x −T ·

⌊ x
T

⌋)
(C.2)

F2(x) =
∫ x

0
F (u)du

=

∫ x

0

⌊u
T

⌋
· Fp (T)du +

∫ x

0
Fp (u −T ·

⌊u
T

⌋
)du

=Fp (T) ·T
⌊ xT ⌋−1∑
i=0

i +
(
x −T

⌊ x
T

⌋)
·
⌊ x
T

⌋
· Fp (T)+⌊ x

T

⌋
· Fp2(T) + Fp2

(
x −T ·

⌊ x
T

⌋)
=Fp (T) ·

(
T · (q − 1) · q

2 + (x −T · q) · q
)
+

Fp2(T) · q + Fp2(x −T · q)

Here, q =
⌊ x
T

⌋
.

(C.3)

Using Heckbert’s result, the convolution of the periodic function
f (x)with a box kernel that has support [−

√
3σ ,

√
3σ] (corresponding

to a uniform kernel with standard deviation σ) can be expressed as
follows.

f̂ (x ,σ) = F (x +
√
3σ) − F (x +

√
3σ)

2
√
3σ

(C.4)

And the convolution of the periodic function f (x) with a tent
kernel that has support [−

√
6σ ,

√
6σ] (corresponding to a uniform

kernel with standard deviation σ) can be expressed as follows.

f̂ (x ,σ) = F2(x +
√
6σ) − 2 · F2(x) + F2(x −

√
6σ)

6σ 2 (C.5)

D PROOF OF SECOND ORDER APPROXIMATION FOR A
SINGLE COMPOSITION

Here we show for a univariate function, applying function compo-
sition using our adaptive Gaussian approximation from Section 4.4
is accurate up to the second order in standard deviation σ . Sup-
pose we wish to approximate the composition of two functions:
f (x) = f2(f1(x)), where f1, f2 : R→ R. Assume the input random
variable is X0 ∼ N(x ,σ 2): the Gaussian kernel centered at x . The
output from f1 is an intermediate value in the computation: we
can represent this with another random variable X1 = f1(X0). Sim-
ilarly, the output random variable X2 = f2(X1). We conclude that
f (X0) = f2(f1(X0)) = f2(X1) = X2.
We apply equation (4.7) and equation (4.6) to f1, and obtain the

following mean and standard deviation.

µX1 = f̂1(x ,σ 2) = f1(x) +
1
2σ

2 f
′′
1 (x) + O(σ 4)

f̂ 21 (x ,σ
2) = f 21 (x) +

1
2σ

2 ∂
2

∂x2
(f 21 (x)) + O(σ 4)

= f 21 (x) +
1
2σ

2(2f1 f
′′
1 + 2(f

′
1)

2)(x) + O(σ 4)

σ 2
X1
= f̂ 21 (x ,σ

2) − f̂1(x ,σ 2)2

= σ 2(f ′
1)

2(x) + O(σ 4)

(D.1)

Using our composition rule, X1 is approximated as a normal
distribution using the mean and standard deviation calculated from
equation (D.1). That is, we approximate X1 as being distributed as
N(µX1 ,σ

2
X1
). Similarly, µX2 , which is the output we care about, can

be computed based on equation (4.7), equation (D.1), and repeated
Taylor expansion in σ around σ = 0.

µX2 = f̂2(f̂1(x ,σ
2),σ 2

X1
)

=f2(f1(x) +
1
2σ

2 f
′′
1 (x) + O(σ 4))+

1
2σ

2
X1

f
′′
2 (f̂1(x ,σ

2)) + O(σ 4
X1
)

=f (x) + 1
2σ

2 f
′
2 (f1(x))f

′′
1 (x)+

1
2σ

2 f
′′
2 (f1(x))(f

′
1)

2(x) + O(σ 4)

=f (x) + 1
2σ

2 f
′′(x) + O(σ 4)

(D.2)

Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting • 39:13

Comparing equation (D.2) with equation (4.7), the function com-
position in our framework agrees up to the second order term in
the Taylor expansion.

We conclude that our approximation is accurate up to the second
order in standard deviation for a single composition of univari-
ate functions. The same property for additional compositions of
univariate functions can be shown by induction.

REFERENCES
Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. 2008. Real-time rendering. CRC

Press.
Anthony A Apodaca, Larry Gritz, and Ronen Barzel. 2000. Advanced RenderMan:

Creating CGI for motion pictures. Morgan Kaufmann.
M Baker and S Sutlief. 2003. GreenâĂŹs Functions in Physics Version 1. (2003).
Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-Predicting Convo-
lutional Networks for Denoising Monte Carlo Renderings. ACM Transactions on
Graphics (TOG) (Proceedings of SIGGRAPH 2017) 36, 4 (July 2017).

Adam Brady, Jason Lawrence, Pieter Peers, and Westley Weimer. 2014. genBRDF:
Discovering new analytic BRDFs with genetic programming. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 114.

Antoni Buades, Bartomeu Coll, and J-M Morel. 2005. A non-local algorithm for im-
age denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, Vol. 2. IEEE, 60–65.

Antoni Buades, BartomeuColl, and Jean-MichelMorel. 2011. Non-localmeans denoising.
Image Processing On Line 1 (2011), 208–212.

Swarat Chaudhuri and Armando Solar-Lezama. 2011. Smoothing a program soundly
and robustly. In International Conference on Computer Aided Verification. Springer,
277–292.

Bintong Chen and Xiaojun Chen. 1999. A global and local superlinear continuation-
smoothing method for P 0 and R 0 NCP or monotone NCP. SIAM Journal on
Optimization 9, 3 (1999), 624–645.

Bintong Chen and Naihua Xiu. 1999. A Global Linear and Local Quadratic Noninterior
Continuation Method for Nonlinear Complementarity Problems Based on Chen–
Mangasarian Smoothing Functions. SIAM Journal on Optimization 9, 3 (1999),
605–623.

Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph.
5, 1 (Jan. 1986), 51–72. DOI:http://dx.doi.org/10.1145/7529.8927

Franklin C Crow. 1977. The aliasing problem in computer-generated shaded images.
Commun. ACM 20, 11 (1977), 799–805.

Franklin C Crow. 1984. Summed-area tables for texture mapping. ACM SIGGRAPH
computer graphics 18, 3 (1984), 207–212.

Mark AZ Dippé and Erling HenryWold. 1985. Antialiasing through stochastic sampling.
ACM Siggraph Computer Graphics 19, 3 (1985), 69–78.

Jonathan Dorn, Connelly Barnes, Jason Lawrence, and Westley Weimer. 2015. Towards
Automatic Band-Limited Procedural Shaders. In Computer Graphics Forum, Vol. 34.
Wiley Online Library.

David S Ebert. 2003. Texturing & modeling: a procedural approach. Morgan Kaufmann.
Yuri M Ermoliev and Vladimir I Norkin. 1997. On nonsmooth and discontinuous

problems of stochastic systems optimization. European Journal of Operational
Research 101, 2 (1997), 230–244.

Yuri M Ermoliev, Vladimir I Norkin, and Roger JB Wets. 1995. The minimization of
semicontinuous functions: mollifier subgradients. SIAM Journal on Control and
Optimization 33, 1 (1995), 149–167.

AE Feiguin. 2011. Monte Carlo error analysis. (2011). https://www.northeastern.edu/
afeiguin/phys5870/phys5870/node71.html [Online; accessed 22-May-2017].

Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg
Humphreys, Matthias Zwicker, and Henrik Wann Jensen. 2008. Multidimensional
adaptive sampling and reconstruction for ray tracing. In ACM Transactions on
Graphics (TOG), Vol. 27. ACM, 33.

Paul S Heckbert. 1986. Filtering by repeated integration. In ACM SIGGRAPH Computer
Graphics, Vol. 20. ACM, 315–321.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (2015), 122.

John R Koza. 1992. Genetic programming: on the programming of computers by means of
natural selection. Vol. 1. MIT press.

Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. 2009. Procedural
noise using sparse Gabor convolution. In ACM Transactions on Graphics (TOG),
Vol. 28. ACM, 54.

Yan-Li Liu, Jin Wang, Xi Chen, Yan-Wen Guo, and Qun-Sheng Peng. 2008. A robust and
fast non-local means algorithm for image denoising. Journal of computer science
and technology 23, 2 (2008), 270–279.

Grzegorz Łysik. 2012. Mean-value properties of real analytic functions. Archiv der
Mathematik 98, 1 (2012), 61–70.

Don P Mitchell. 1987. Generating antialiased images at low sampling densities. In ACM
SIGGRAPH Computer Graphics, Vol. 21. ACM, 65–72.

Don P Mitchell. 1991. Spectrally optimal sampling for distribution ray tracing. In ACM
SIGGRAPH Computer Graphics, Vol. 25. ACM, 157–164.

Ramon E Moore. 1979. Methods and applications of interval analysis. SIAM.
John A Nelder and Roger Mead. 1965. A simplex method for function minimization.

The computer journal 7, 4 (1965), 308–313.
Yu Nesterov. 2005. Smooth minimization of non-smooth functions. Mathematical

programming 103, 1 (2005), 127–152.
Alan Norton, Alyn P Rockwood, and Philip T Skolmoski. 1982. Clamping: A method

of antialiasing textured surfaces by bandwidth limiting in object space. In ACM
SIGGRAPH Computer Graphics, Vol. 16. ACM, 1–8.

Kaare Brandt Petersen, Michael Syskind Pedersen, and others. 2008. The matrix cook-
book. Technical University of Denmark 7 (2008), 15.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive rendering with
non-local means filtering. ACM Transactions on Graphics (TOG) 31, 6 (2012), 195.

Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. 2011.
Genetic programming for shader simplification. ACM Transactions on Graphics
(TOG) 30, 6 (2011), 152.

László Szirmay-Kalos and Tamás Umenhoffer. 2008. Displacement Mapping on the
GPUâĂŤState of the Art. In Computer Graphics Forum, Vol. 27. Wiley Online Library,
1567–1592.

William M Wells. 1986. Efficient synthesis of Gaussian filters by cascaded uniform
filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1986),
234–239.

Wikipedia. 2017a. Bessel’s correction —Wikipedia, The Free Encyclopedia. (2017). https:
//en.wikipedia.org/w/index.php?title=Bessel%27s_correction&oldid=764629526 [On-
line; accessed 23-May-2017].

Wikipedia. 2017b. Correlation and dependence — Wikipedia, The Free Encyclopedia.
(2017). https://en.wikipedia.org/w/index.php?title=Correlation_and_dependence&
oldid=778221524 [Online; accessed 23-May-2017].

Wikipedia. 2017c. Entire function — Wikipedia, The Free Encyclopedia. (2017). https:
//en.wikipedia.org/w/index.php?title=Entire_function&oldid=778079847 [Online;
accessed 20-May-2017].

Wikipedia. 2017d. Hermite polynomials — Wikipedia, The Free Encyclopedia.
(2017). https://en.wikipedia.org/w/index.php?title=Hermite_polynomials&oldid=
778044979 [Online; accessed 20-May-2017].

Lance Williams. 1983. Pyramidal parametrics. In Acm siggraph computer graphics,
Vol. 17. ACM, 1–11.

Zhijun Wu. 1996. The effective energy transformation scheme as a special continuation
approach to global optimization with application to molecular conformation. SIAM
Journal on Optimization 6, 3 (1996), 748–768.

Lei Yang, Diego Nehab, Pedro V Sander, Pitchaya Sitthi-amorn, Jason Lawrence, and
Hugues Hoppe. 2009. Amortized supersampling. In ACM Transactions on Graphics
(TOG), Vol. 28. ACM, 135.

http://dx.doi.org/10.1145/7529.8927
https://www.northeastern.edu/afeiguin/phys5870/phys5870/node71.html
https://www.northeastern.edu/afeiguin/phys5870/phys5870/node71.html
https://en.wikipedia.org/w/index.php?title=Bessel%27s_correction&oldid=764629526
https://en.wikipedia.org/w/index.php?title=Bessel%27s_correction&oldid=764629526
https://en.wikipedia.org/w/index.php?title=Correlation_and_dependence&oldid=778221524
https://en.wikipedia.org/w/index.php?title=Correlation_and_dependence&oldid=778221524
https://en.wikipedia.org/w/index.php?title=Entire_function&oldid=778079847
https://en.wikipedia.org/w/index.php?title=Entire_function&oldid=778079847
https://en.wikipedia.org/w/index.php?title=Hermite_polynomials&oldid=778044979
https://en.wikipedia.org/w/index.php?title=Hermite_polynomials&oldid=778044979

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Approximation Rules
	4.1 Motivating example
	4.2 Composition rules
	4.3 Approximation of Dorn et al. 2015
	4.4 Adaptive Gaussian Approximations
	4.5 Monte Carlo Sampling
	4.6 Compactly Supported Kernels Approximation
	4.7 Quality Improvements

	5 Genetic Search
	6 Evaluation
	7 Discussion and Conclusion
	A Table of Smoothed Formulas
	B Correlation Coefficients for Multivariate Functions
	C Smoothing Result for Periodic Functions
	D Proof of Second Order Approximation for a Single Composition
	References

