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Abstract
The visualization community has developed to date many intuitions and understandings of how to judge the quality of views in
visualizing data. The computation of a visualization’s quality and usefulness ranges from measuring clutter and overlap, up
to the existence and perception of specific (visual) patterns. This survey attempts to report, categorize and unify the diverse
understandings and aims to establish a common vocabulary that will enable a wide audience to understand their differences and
subtleties. For this purpose, we present a commonly applicable quality metric formalization that should detail and relate all
constituting parts of a quality metric. We organize our corpus of reviewed research papers along the data types established in the
information visualization community: multi- and high-dimensional, relational, sequential, geospatial and text data. For each
data type, we select the visualization subdomains in which quality metrics are an active research field and report their findings,
reason on the underlying concepts, describe goals and outline the constraints and requirements. One central goal of this survey
is to provide guidance on future research opportunities for the field and outline how different visualization communities could
benefit from each other by applying or transferring knowledge to their respective subdomain. Additionally, we aim to motivate
the visualization community to compare computed measures to the perception of humans.

1. Introduction
The idea of measuring the quality of a visualization is as old as

the information visualization community itself. Early work in the

field can be traced back to the work of Bertin [Ber81], although

the notion and importance of quality were developed far earlier

in cartography. Undoubtedly, Tufte was the first research pioneer

formalizing the quality metric idea to a simple, thus understandable

quality metric: the data-to-ink ratio [TGM83]; a metric to convey

the core principles of an effective and efficient, crisp design.

Generally, effective and efficient visualizations follow a simple

mantra: They show the most information in the simplest possible

form. However, the current data to be visualized puts more and

more challenges on visualization designers: high-dimensional s-

paces, complex relationships, or the sheer amount of data to be

visualized demand a careful choice of the visual variables for a

faithful representation of the underlying dataset.

Following the accepted information visualization pipeline of Card

et al. [CMS99] –as one possible example– a visualization designer

will inevitably be confronted with the dilemma of choosing from a

multitude of data processing possibilities and an even greater choice

of potential visualization options. To give a practical example: If

a user wishes to visualize a 20-dimensional dataset, not only data-

specific questions, such as normalization and outlier removal, play a

critical role, but also which data characteristic should be highlighted

first. In case that a visualization designer decides for a Scatter Plot,

which fixes most of the choices of the visual variables, n×(n−1)/2

potentially meaningful dimension combinations can be depicted.

Each of these 190 views needs to be evaluated independently for

its usefulness by analyzing its effectiveness concerning other visual

encodings, such as color mapping, visual marks, and axis ranges.

In the general case, the number of visual mappings for an arbitrary

data type grows exponentially with the number of mapping options,

thus making information visualization design to a trial-and-error
process. More importantly, however, is that only those visualizations

can be considered effective that support the building of mental

models for the underlying dataset [Nor06]. Hence, the essence of

effectiveness resides in the identification of interpretable visual
patterns that contribute to the overarching analysis goal.
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Figure 1: Quality Metrics-driven Visual Analytics pipeline. The pipeline adds an additional layer named Quality Metrics-driven Automation
on top of the traditional information visualization pipeline [CMS99]. The layer could obtain information about the several stages of the
pipeline (the boxes) and influences the processes of the pipeline through the quality metrics it calculates. The user is always in control. Image
and text adapted from [BTK11].

The research field of Quality Metrics (QMs) has devoted its

efforts to develop quantitative measures for detecting visualizations

that contain one or multiple interpretable visual patterns. Applied

to exploration and navigation contexts, quality metrics can help

to guide the user to views of interest or can help to mitigate the

cognitive overload by filtering cluttered or uninteresting views. In

general, quality metrics stand as an umbrella term for quantifying

the (visual) quality and such the effectiveness and interestingness

of a visualization. These approaches find broad applications in the

visualization of high-dimensional, relational, or geospatial data.

Over the last 30 years, a myriad of approaches, techniques, and

concepts have been developed to help the user find a suitable data

transformation and visual mapping by iterating and evaluating every

possible visualization design combination.

Our motivation for this report is two-fold. First, we recognize that

by now the most recent quality metrics surveys date back several

years [BTK11,ED07]. In the meantime, the field was undergoing an

important development from quality metrics that heuristically quan-

tify the amount of clutter toward a pattern- and analysis task-driven

exploration. Therefore, we aim to provide an update by adding

more recent publications to the body of work presented in these

earlier surveys. Second, we noticed that, although a wide range of

approaches was presented under the headline of quality metrics,

only little effort has been devoted to describing the methodologi-

cal and conceptual background of these approaches. Consequently,

this work aims to bring depth into the discussion, by consistently

enumerating, describing, and relating the underlying concepts with

the same vocabulary. As the third motivation point, we claim that

most approaches have not yet been evaluated for their perceptual

relationships. However, novel and innovative evaluation approaches,

such as crowdsourcing and hardware developments (eye trackers in

a sub 100$ range) are opening new potentials for this research field.

In summary, the contribution of this paper is to give a comprehen-

sive overview of existing quality metrics for different information

visualizations techniques, particularly Scatter Plots (6.1) and Scatter

Plot Matrices (6.2), Parallel Coordinates (6.3), Pixel-based Tech-

niques (6.4), Radial Visualizations (6.5), Glyphs (6.6), Node-Link

Diagrams (7.1), Matrix Representations (7.2), TreeMaps (7.3), Line

Charts (9.1) and Stacked Graphs (9.2), Typographic Visualizations

(10.1) and Tag Clouds (10.2), and Geo-Spatial Data Visualizations

(8). Our selection is targeted towards fields in which QMs are in

focus of the research, but we also outline a potential usefulness of

QMs for other visualization techniques. As a guiding theme, we

not only concentrate on a pure enumeration of quality metrics tech-

niques but focus more on a detailed description of the underlying

concepts and models and their variety of different implementation

possibilities. Furthermore, we survey how QMs are evaluated and

whether results are compared to the human perceptiveness.

2. Background and Conceptualization
This section introduces definitions and concepts that we rely upon to

describe quality metrics approaches. We discuss common concepts

and methodologies across different visualization domains. As one of

the core motivations of this survey, we plan to unify the vocabulary

and understanding of quality metrics. To achieve this bold goal we

gradually increase the level of formalism in the following section.

To ease the readability we decided to begin with a purely informal

description of our quality metric vision. Then we present our attempt

to formalize the problem and describe thoroughly constituents and

facets influencing the understanding of quality metrics.

2.1. Quality Metric Vision
The grand and sketchy vision behind the visual quality metrics re-

search is the following: Imagine a visual analysis would be based

on a black-box that that is fed with your current analysis task(s),

user preferences, and the dataset at hand. This black-box would

“auto-magically” derive a recommendation of the best possible visu-

alization type and visualization instantiation; would derive the most

effective visual variable settings (e.g., color map, shape, texture)

and all necessary data preprocessing steps depending on multitude
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of soft and hard influencing factors; and would finally present the

most interesting view on the data that reveals most information.

However, while this vision sounds overarchingly promising, parts

of the questions can already be tackled with current technologies:

More or less sophisticated “Show Me” buttons (e.g., [MHS07]) de-

cide for the user which visualization is appropriate based on data

types. Other approaches even add considerations about the underly-

ing data distribution into their recommendations of a visualization

type and visual mapping [WMA∗16, WQM∗17].

Other approaches start from the constraint that the visualization

type is fixed, e.g., Scatter Plots for projections of high-dimensional

data and tackle the question which views can be discarded due

to the high overlap or visual clutter [BS04, TBB∗10]. Again other

approaches, such as the so-called *-gnostics [WAG05,SSK06,DK10,

LKZ∗15,BBH∗17], focus on the quantification of visual patterns for

their specific visualization type, following the core idea of promoting

only views containing interpretable visual patterns and thus helping

build mental models about the dataset and task relationships.

But, while we are seeing more and more advanced research for

supporting the user in the exploration process, the current research

is struggling with the definition, categorization, and labeling of the

current exploration task in place. Partially this problem arises be-

cause exploration tasks are not necessarily separable in terms of

their temporal characteristics and oftentimes even nested in nature.

To make matters worse, most users do not follow a structured explo-

ration path but conduct several exploration tasks in parallel with a

more or less prominent specificity. While basic research has been

presented in this field, such as various task taxonomies with different

levels-of-details [BM13,KAF∗08,LPP∗06,Shn96], only a few work-

s focused on automatically quantifying the current exploration task

at hand. Sacha et al. [SSZ∗17] list a range of works following this

research stream. Additionally, quality measures should approximate

the users’ perception and cognition. Yet, only a few approaches have

been evaluated with user studies and only a few evaluations compare

the usefulness of multiple different metrics.

The aforementioned consideration sketches outline a far-reaching

and extensive research field with multi-faceted foci and research

potential for at least the next decade. Consequently, we will not be

able to report on all developments. Rather, we decided to put em-

phasis on what we denote as Mid-level Perceptual Quality Metrics.

This emerging field focuses on perceptually-inspired quality metrics

that try to mimic parts of the human perception/cognition in order to

ease the exploration process. These approaches not only reduce the

cognitive overload by separating the “wheat from the chaff”, i.e., by

removing noise, but also facilitate building task-related mental mod-

els by mimicking the humans’ ability to recognize and differentiate

between visual patterns.

Exemplified Mid-level Perceptual Quality Metric-Driven
Exploration Workflow
In an exemplified usage scenario for a Mid-level Perceptual Quality
Metrics-driven exploration, a user would have to analyze a large set

of matrix plot images for the visual patterns they contain. These sce-

narios occur regularly, e.g., in the medical data domain, where brain

activity maps are generated in millisecond time intervals and —for

example— deviations from the baseline brain activity maps are to be

retrieved. Another application scenario is the performance analysis

of massively parallel computing systems. One application run on

a High-Performance Computing Cluster can produce many time-

dependent performance measures in (sub-)millisecond intervals for

many clusters, containing many computing nodes. Understanding

these large multiplicative exploration spaces becomes extremely

time-consuming, if not impossible. In a quality metric-driven ex-

ploration, the user would try to reduce the cognitive overload by

computationally assessing the interestingness/effectiveness of each

view. This can be facilitated in two ways: clutter reduction approach-

es will discard all matrix views with a low signal-to-noise ratio,

while pattern-driven exploration approaches would show the user

the distribution of visual (anti-)patterns in the view space. If the

user’s task is explicit and well-specified, such as finding evidence

of a data partitioning/grouping, pattern-driven navigation concepts

can outperform clutter-reduction approaches, because in our case

the user would just have to search for block-diagonal matrix plots.

2.2. Definitions
In the remainder of this paper, we use the following definitions.

Formally, measuring the quality of a visualization V consists in

computing one visualization definition φ ∈ Φ from a universe Φ
of potential instantiations that maximizes or minimizes a specified

quality criterion q(D,U,T ), such that:

Figure 2: Quality Metrics (QM) formalization. QMs are composed
of an algorithmic part and a quality criterion. A potential multi-
objective optimization algorithm tries to find efficiently a valid vi-
sualization configuration (φ) that optimizes the designed quality
criterion q(φ |D,U,T ). The quality criterion tries to heuristically
capture how an effective visualization instance might look like. This
intuition is bound and influenced by the task T at hand (defines the
to-be-expected visual appearance), the dataset characteristics D
(defines if a visual pattern is producible), and the user preferences
U. Consequently, a QM arg min/max q(φ |D,U,T ) determines a
perceptually preferable visualization configuration φ for a given
quality criterion q(. . . ) given the influencing factors D,U,T .

where D denotes the dataset, U the user and his/her current capabili-

ties and T the user’s current analysis task at hand.

To illustrate our formalism let us imagine the following scenari-

o: We describe our user U as a statistically knowledgeable person

with average attention potential whose task T is to understand da-

ta/dimension (dis-)similarities in a high-dimensional dataset D. Our
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Figure 3: A wide range of quality metric understandings exist in the literature. The left side shows a broad categorization of the field sorted
according to the cognitive complexity these approaches try to reflect. The right side shows that the task focus of Mid-level Perceptual Quality

Metrics comprises different granularity levels: (1) Overview: distinguish between noise/clutter and any kind of pattern, (2) quantify the quality
of a visualization based on a specific pattern (depends on the analysis task).

Quality Metric-driven recommendation system could decide that a

Scatter Plot display is a suitable choice to show (dis-)similarities for

this kind of user. The quality criterion q(. . .) could then compute the

sum of pairwise distances over all displayed points in D with respect

to a chosen distance function while taking the data specifics into

consideration (i.e., needs outlier cleaning). The Equation in Figure 2

would find for a specific task t1 ∈ T , a φ1 ∈ Φ that minimizes this

sum relating to a locally dense Scatter Plot or could find φ2 ∈ Φ that

maximizes the sum to find globally cluttered plots for another task

t2 ∈ T .

Mid-Level Perceptual Quality Metrics
The area of Mid-level Perceptual Quality Metrics leaves out all

considerations about the user U ; assessing his/her skill set or cog-

nitive/physiological capabilities and does not (yet) deal with an

explicit formulation of tasks T during the exploration process. The

field of Mid-level Perceptual Quality Metrics is rather concerned

with presenting heuristics and algorithms to statistically quantify the

extent of an anti-pattern –e.g., how a cluttered view looks like– or

which specific visual pattern is apparent –e.g., locally dense Scatter

Plots can be used to reason about data similarity.

In the following, we will outline the components contributing the

definition of a Mid-level Perceptual Quality Metric.

(i) A Quality Metric (QM) combines an optimization algorithm

and quality criterion with the overarching goal to mimic parts

of the human perception. QMs are developed with a specific

goal in mind, such as finding clutter-free visualizations or

visualizations with a specific interpretable visual pattern.

(ii) Visualization Definition φ is an instantiation of the param-

eter space Φ defining the appearance of a specific visualiza-

tion type. Following the information visualization of Card et

al. [CMS99], as depicted in Figure 1, we will have to distin-

guish between data-dependent and visualization-dependent

parameters. For a Scatter Plot, φ would define the necessary

data transformations, such as which outliers will distract the

view “too much” and the view-space parameters describing

the visual appearance of data item (e.g., shape, color, texture,

position) and the corresponding axis definition and appearance

(e.g., offset, normalization type, aspect ratio).

(iii) Quality Criterion q(. . .) is an (heuristic) algorithm or func-

tion for quantifying the effectiveness of one visualization in-

stantiation/view. In other words, a quality criterion evaluates

heuristically whether or not a view follows established percep-

tual guidelines. In the most cases, the goal is to quantify the

visual appearance of (anti-)patterns. We consider visual pat-

terns as the target elements of the exploration process, while

visual anti-patterns, such as noise, will distract the user with-

out adding to his/her understanding about the dataset and task

at hand.

(iv) Optimization Algorithm makes use of a quality criterion and

-concept to derive, e.g., a ranked or filtered list of visualization

instantiations (or views). To achieve this goal an optimizer

takes a quality criterion and improves the measure over the

visualization method parameters φ. Most prominently, filtering

concepts are applied to discard cluttered views, while pattern-

exploration systems categorize views in terms of the visual

patterns they contain.

Note that metric has a precise meaning in mathematics, but is used

more loosely in the present context. The characteristics of a met-

ric, i.e., non-negativity, identity of indiscernibles, symmetry, and

the triangle inequality, need not necessarily hold in all cases. As

an example, many QM approaches are based on non-deterministic

computations to retrieve (good) local optima in the visualization

parameter space. Hence, the term quality metric should be rather

understood as an artifact that developed over time from a mathemat-

ical understanding toward a more vague and indistinguishable field

of more or less mathematically backed up research approaches.

2.3. Common Calculation Approaches
In our literature review, we identified three different concepts to

compute quality metrics: a primarily image space dependent com-

putation, a purely data space dependent computation, and hybrid
approaches that efficiently combine both concepts. Moreover, we

found that QMs are either used implicitly during the construction of
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visualizations or as a separate evaluation component complementing

the construction and use of visualizations.

Image Space QMs assess the quality of a visualization solely based

on the rendered image. Often, sophisticated feature descriptors are

extracted from the image and used to measure clutter or perceivable

patterns. For example, Tatu et al. [TAE∗09] encode the visual quality

of Parallel Coordinate Plots by means of a Hough Space feature

descriptor. With this approach, it is possible to distinguish visually

noisy and strongly clustered axis combinations. In a quality metric

driven analysis, we aim to mimic the perception of a human to

identify patterns. The main advantage of an image-based quality

assessment is therefore that we use the same visual information (i.e.,

image) that is also assessed by humans in an evaluation setting.

Data Space QMs measure the quality of a visualization before the

rendering process starts. The approaches are based either on raw or

transformed input data, or estimate how visual structures will most

probably look like. As an example, Johansson and Johansson [JJ09]

propose an interactive approach to weight multiple data spaces

based quality metrics to reorder Parallel Coordinate Plots. Their

metrics comprise a user-defined weighting of correlation dimensions

(by a Pearson correlation coefficient), outlier analysis (by a grid

and density based approach), and cluster detection (by applying a

subspace clustering algorithm). The main advantage of data-based

QMs is that many measures (such as cluster algorithms) exist and

can be computed usually quite efficiently.

Hybrid QMs combine the advantages of image and data space

approaches. For example, Bertini and Santucci [BS04] determine

a good sampling rate in Scatter Plots by comparing the visible

data density in image space with the relative data density in data

space. The number of visible points at one specific location in the

visualization is either 0 or 1 in the image space, while the data space

can also count more than one points at one location. Combining

these measures support most useful sampling strategies.

Implicit / Explicit QMs Many approaches make use of implicit

quality criteria as part of an optimization problem. Typically, these

approaches do not explicitly externalize numeric scores for the

quality of a visualization, but decide during the view construction

which representations is more useful.

To bring a practical example, the ordering of rows and columns

in a matrix visualization lets visual and interpretable patterns ei-

ther emerge or disappear. Thus, matrix reordering incorporates an

implicit notion or understanding of the expected patterns. Another

classical example in the context of dimension reduction is presented

by Wang et al. in [WFC∗18]. For labeled datasets, typically depict-

ed by color-coded Scatter Plots, they start with a (pseudo-)random

placement of items in 2D. This placement is incrementally improved

wrt. one or multiple visual class separation QMs by choosing the

one perturbation of the current solution that improves the QMs. Inte-

grated into a simulated annealing optimization, this approach helps

to traverse the exploration space and find a locally optimal solution

for the chosen class separation QMs.

An explicit quality criterion for matrix patterns would quantify

to which extent specific visual patterns are present in the current

matrix view described by its reordering algorithm. But, explicit

QMs can also be used to choose between various visualization

types and configurations. For example, in “Line Graph or Scatter

Figure 4: Example of a task-specific quality metric for Scatter Plots.
Task: finding data groupings or clusters.

Plot? Automatic Selection of Methods for Visualizing Trends in

Time Series” [WHZ∗18] the authors quantify the visual consistency

between the data set’s trend curve and the trend described by a

scatter plot or a line graph. Based on the numeric comparison of

both QM scores, the better visual approximation is chosen.

2.4. Analysis Scenarios Supported by Quality Metrics

We can distinguish between QMs designed for clutter reduction and

pattern-driven analysis, as depicted in Figure 3. Clutter reduction

techniques reveal the contained set of visual structures by “only”

filtering out noisy views. Therefore, they are most useful to obtain an

overview of large and unknown datasets, as they keep all views with

potentially interesting visual patterns. Hence, these QMs mitigate the

cognitive overload problem. However, users typically have specific

exploration or analysis foci in mind to understand the data structure

and topology. Searching for visual patterns with particular properties

is significantly more challenging and requires a quantification and

distinguishing of visual structures. But, perceptually-inspired QMs

have the benefit to support the user directly by contributing to their

mental model and understanding of the data.

Overview of Analysis Tasks. Quality metrics identifying a partic-

ular pattern are typically related to one or more analysis tasks. We

refer to these metrics as task-specific quality metrics. For all QM

that we report in this paper, we try to elaborate on the (potentially)

underlying task(s). We do not stick to any of the established task tax-

onomies, since they are too specific compared to the analysis tasks

supported by QMs. In contrast, we present a high-level overview of

exploration tasks supported by the majority of metrics:

(i) Clutter reduction. Users are interested in filtering out noisy

views without a specific visual pattern in mind. This task is a

typical used to get an overview of unknown datasets.

(ii) Preservation task. QMs for preservation tasks identify views

that preserve the original data properties in the mapping pro-

cess. The preserved aspects can be, e.g., individual data points,

topological structures, or distance in map distortions.

(iii) Search for data groups and partitions (clusters). QMs aim

to identify views in which a (useful) partition and/or dense

groups of data records are visible.

(iv) Search for outliers. The goal is to identify views that high-

light data points differing from the majority of other points.

Hereby, the notion of “difference” depends on the application.

(v) Search for dimension relations. Views supporting this task

depict combinations of dimensions showing relationships be-

tween the data points (e.g., correlations).
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Figure 5: Different dimension orderings in RadViz preserve and
emphasize, respectively mask, given groupings in high-dimensional
data. Groupings become increasingly visible from left to right. Fig-
ure adapted from [AEL∗10].

(vi) Data and visualization specific tasks. For one data type, d-

ifferent visualization techniques exist; each with (dis-) ad-

vantages to reveal essential aspects. Some analysis tasks are

specific to data or visualization types (e.g., readability of typo-

graphic visualizations) and cannot be generalized.

One example of a task-specific QM is shown in Figure 4. Imagine an

analysis task in which users need to find data groupings (clusters) in

Scatter Plots: While the first Scatter Plot contains only noise, the last

plot reveals several clusters, detected by a quality metric. Although

the second plot also shows an interpretable pattern (correlation

of the data), it is not relevant to the current task. A task-specific

quality metric needs to classify the plot as non-interesting due to

the non-relevant visible pattern. One existing quality metric that

can distinguish between a variety of patterns in Scatter Plots is

Scagnostics [WAG05]. It captures the presence of the following nine

visual features: outlying, skewed, clumpy, convex, skinny, striated,

stringy, straight, and monotonic. In the example we would search

for Scatter Plots with low monotonic and high clumpy features.

In another example, an analyst wants to measure how much infor-

mation is preserved by projecting a high-dimensional dataset with

class labels into a 2D representation. The analyst decides to use the

RadViz technique and represent color with the class information.

As shown by Figure 5, a task-dependent quality metric can help to

optimize the ordering of dimensions such that the provided classes

are well separated. A quality metric that facilitates this concept is

presented by Albuquerque et al. [AEL∗10]. Their approach is to

measure the density of all classes in every 2D representation.

In a third example, a quality metric can support the selection of

an appropriate colormap and/or normalization strategy to identify

data groupings and outliers in pixel-oriented techniques. Figure 6

visualizes the counties of the US. Color shows the average income

per person. In the left map, a linear mapping between the average

income and color is applied, while a logarithmic mapping is used for

the right map. Although the logarithmic mapping distorts the real

income values, it helps to identify patterns (e.g., high income in the

areas of the east and west coast, a rather low income on a horizontal

axis in the middle of the US). Eisemann et al. [EAM11] presents a

data driven method to decide for an appropriate color mapping to

reveal patterns as required above.

During our literature review, we recognized that a some tasks

are well-supported by QMs, while others are not. We discuss well-

adopted tasks in their respective visualization section and point to

open research gaps in these section’s open research discussion.

Figure 6: Average income of persons in the US represented on a
Map. A linear mapping between income and color (left) and loga-
rithmic mapping (right) is used to emphasize data characteristics.
Figure adapted from [SSK06].

3. Related Concepts
As mentioned earlier this work surveys the recent advances and

state-of-the-art for mid-level perceptual QMs. However, this sub-

field is embedded into an overall quality metric landscape, depicted

in Figure 3. For the sake of completeness and delineation, we will

enumerate the main concepts and relationships in this section.

The topic of quality metrics is not described in technical terms,

but rather incorporates a wide range of understandings. Since one

of the core contributions of this paper is to establish a common

vocabulary, we are categorizing QM related concepts along the axis

of cognitive complexity.

3.1. Low-Level Perceptual Quality Metrics
Low-level perceptual quality metrics leverage the low-level process-

ing of visual stimuli in human perception system such as preattentive

processing [War13, HE12]. They are concerned with how basic vi-

sual encoding variables, such as position, length, area, shape, and

color, and the interaction of the variables (e.g., integrable or separa-

ble) influence the efficiency of low-level perceptual tasks such as

visual search, change detection, and magnitude estimation.

A great deal of prior visualization research has been devoted

to understanding the effectiveness of different visual variables for

encoding quantitative and qualitative data. For example, Cleveland

and McGill [CM84] ran a series of graphical perception experiments

to measure accuracy in comparing values and to derive the rankings

of encoding variables. Similar experimental methods have been

frequently employed to compare different chart types as well. The

results of such experiments have also played a vital role in the

automatic construction of visualizations [Mac86, MHS07].

3.2. High-Level Perceptual Quality Metrics
High-level perceptual quality metrics refer to cognitive measures

such as memorability, aesthetics, and engagement [SES16]. While

they are often considered as subjective dimensions of visualiza-

tion design, recent studies attempt to quantify these measures

based on experiments with human subjects. For example, Borkin

et al. [BBK∗16] showed that visualization memorability is consis-

tent across people, suggesting that some visualizations are more

memorable than others independent of subjects’ context and biases.

Various factors can contribute to high-level perceptual quality

metrics such as visual density and human recognizable objects for

memorability [BBK∗16], colorfulness and visual complexity for

aesthetics [HRC15], and amount of interactions for engagement [S-

ES16]. While mid-level and low-level perceptual quality metrics
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tend to focus on optimizing performance measures for data explo-

ration and analysis tasks, high-level perceptual quality metrics put

more emphasis on enhancing the communication aspect of visual-

ization (e.g. whether a visualization can attract the attention of an

audience and get the message across).

3.3. Design Recommendations
We consistently recognize two “end products” for quality metric

design in all quality metric subfields:

(i) In some visualization subfields, QM results are communicated

via Design Recommendations; textual guidelines and argu-

ments summarizing the findings about visualization design

mostly derived from user-studies. Design recommendations

have the great advantage that they represent reproducible eval-

uations of how a human perceives a view. They can summarize

complex perceptual circumstances. Their biggest disadvantage

is that these textual guidelines are often derived from simpli-

fied task- and context settings that often cannot be generalized

to real-world environments and problem settings.

(ii) In other visualization subfields, purely Heuristic Approaches
prevail. These algorithms model some form of understand-

ing of how a visualization should look like in order to be

effective/useful. The biggest advantage of heuristics is their

reproducibility, thus allowing user- and context-independent,

quantitative visualization comparisons. Their biggest negative

point is that visualizations are often judged for their perceptual

quality with quantitative scores that have never been proven to

correspond to the humans’ judgment.

We claim that both approaches are valid but should eventually be

backed up with the other approach. Heuristics should be evaluated

for their perceptual aspects and proven to be perceptual; design

recommendations should be developed into quantifiable heuristics

to allow for fair and quantitative evaluation schemes.

4. Related Work
Quality Metrics have been developed for different information visu-

alization techniques. From a historical perspective, we are inspired

by a range of survey works with a more or less specific notion of

quality metrics. For example, Brath [Bra97] described several image

space quality metrics, such as occlusion percentage or percentage of

identifiable points, to assess the quality of business visualizations.

Miller et al. [MHNW97] expressed the need for new metrics to

compare visualizations. Similarly, Diaz et al. [DPS02] advocated

the use of implicit and explicit quality metrics for assessing the

quality of vertex ordering approaches. In this context, the term of

aesthetics is used as same as it is traditionally used in the graph

drawing community and refers to a set of measures to reduce the

cognitive load for graph exploration tasks [DBETT94, WPCM02].

A first survey focusing primarily on quality metrics for Scat-

ter Plots and Parallel Coordinates was presented by Bertini et

al. [BTK11]. Similar to our approach, their survey presents a sys-

tematic analysis focusing on the guiding questions: (1) What was

measured? (2) Where was it measured (data/image space)? (3) What

is the purpose of the QM? And, (4) does the QM allow to be interac-

tively adapted? In total, 20 papers are surveyed in this work.

The evaluation of quality metrics has gained increasing impor-

tance in the recent years. For example, Lehmann et al. [LHT15] and

Pandey et al. [PKF∗16] study independently the questions about

the connection of human perception and (heuristic) quality metrics

and present both crowdsourcing studies to prove evidence that this

connection exists. Sedlmair and Aupetit [SA15] even present a data-

driven framework for quality measure evaluation. Their approach

tries to mitigate the impact of (relative) human judgments by relying

entirely on ground-truth data. However, this in turn also indirectly

implies some sort of user involvement.

An information theoretic approach for assessing the effective-

ness of information visualization has been mainly pursued by Chen

et al [CJ10]. They built on the initial work by Yang-Peláez et

al [YPF00] and proposed a number of entropy-based measures,

including visual-mapping ratio, information loss ratio, and display

space utilization; these measures are akin to the data-ink ratio [TG-

M83]. Chen et al also discussed visual multiplexing [CWB∗14] in

relation to the information theoretic measures. They describe vari-

ous mechanisms for overlaying multivariate data and discuss how

to overcome perceptual difficulties such as occlusion and cluttering

that arise from the interference among spatially overlapping visual

channels. We consider that these measures concern low-level quality

metrics and thus are not discussed in this paper.

Saliency-based measures for evaluating the visualization quality

have gained recent interest. They assess how well visually salient

regions in a visualization can help users accomplish their goals and

tasks. For instance, Chen and Jänicke [JC10] proposed a method

for computing a saliency-based metric to measure the mismatch-

es between visual salience and data characteristics (e.g., features

detected by algorithms). Matzel at el [MHD∗18] recently devel-

oped a saliency model to predict where people would look for a

given visualization. Unlike models designed for images of natural

scenes, their model attempts to incorporate top-down visual fea-

tures (e.g., texts) that are crucial for visualization tasks. Tailoring

the models for different visual analysis tasks is largely unexplored,

however [PWV∗18]. We believe that saliency-based measures touch

on both low-level and high-level quality dimensions and thus not

addressed in this paper.

Although the field of quality metrics for color mapping can be

safely categorized into low-level perceptual quality metrics research

and is thus not in the focus of this survey, we decided to stress some

shared argumentation paths by selectively summarizing some more

recent works. Quality metrics for color mapping have been investi-

gated amongst others in the work of Bernard et al. [BSM∗15], Mit-

telstädt et al. [MJSK15, MK15], or recently by Gramazio [GLS17].

Szafir and Gleicher [SG16] argue for choosing colors based on a

given context rather than in isolation. They identified three cate-

gories of design constraints and make design recommendations for

effective color choices based on aesthetic constraints, perceptual

constraints, and functional constraints. Eisemann et al. [EAM11]

present an orthogonal approach. Based on a range of data analy-

sis and transformation steps, a user-independent, data-driven color

mapping approach is postulated.

While many approaches are targeted toward clutter re-

moval [ED07], only very few are targeted toward describing the

perceived appearance with respect to visual patterns. Our survey

aims at describing quality metric approaches in a unified manner to

better understand their differences and subtleties.
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Figure 7: Based on a comparative summarization approach, inspired by the grounded theory [SC94] and the structured content analysis
theory [May00], we iteratively collected 134 presenting QM approaches from 14 distinct visualization fields acknowledging the need for QM.
We condensed and aggregated our work in each QM subfield to derive higher-level findings reported in Background and Conceptualization.

5. Methodology and Structure

Our surveying methodology is based on an iterative and comparative

summarization approach, inspired by the grounded theory analysis

of Strauss and Corbin [SC94] and the structured content analysis

theory of Mayring [May00].

While a broad variance of options to structure the quality met-

rics field exist –we outline for example the historical perspective

of this survey online http://visualquality.dbvis.de/
history– we decided on a data-type driven approach.

Consistently, numerous books in the information visualization

community agree that the primary data types to be visualized are

a pure or mixed form of multi- or high-dimensional-, relational-,

(geo-) spatial, temporal, or textual data [KAF∗08, WGK10, Mun14].

Our survey borrows from this structuring of the field and summarizes

for each data type the most prominent visualization types, such

as Node-Link Diagrams or Matrix Representations for relational

data, Parallel Coordinates, or Pixel-based Techniques for multi-

dimensional data, or Scatter Plots and Scatter Plot Matrices for high-

dimensional data. This enumeration is not exhaustive and explicitly

targeted towards visualization subdomains that acknowledged a

specific need for applying QMs.

We gathered an initial set of papers from an informal user s-

tudy with domain experts (doctoral researchers and postdoctoral

researchers with between 2–7 years of experience in respective visu-

alization subdomains). Our paper selection was used to condense a

set of high-level questions and evaluation criteria that guided in the

following the expansion of the reference list by searching through

the relevant visualization venues. Consequently, our survey should

be seen as an educated selection of the concepts of quality metrics

and does not claim comprehensiveness.

For each data type and visualization technique we base our anal-

ysis and the organization of each content section on a structured

questionnaire, which incorporates the following aspects,

(i) Visualization Description outlines the basic concept of a spe-

cific visualization type, its primary purpose, its inherent con-

straints and requirements.

(ii) Why do we need QMs? motivates the use of QMs in this

context, describing the perceptual/analytical benefits, sketches

(computational) challenges, and refers back to the visualization

definition part influenced most by the QMs.

(iii) Typical Analysis Tasks outlines analysis scenarios for the

respective visualization and mentions how QMs can improve

efficiency and effectiveness.

(iv) Summary of Approaches presents an overview of the influ-

ential QM work in the literature.

(v) Evaluations Methods shines a light on the evaluation ap-

proaches for QM-enhanced visualizations.

(vi) Open Research Questions summarize the future challenges

with respect to the visualization design and states how QMs

could be applied to overcome these problems.

In order to come up with a structured and valid abstraction

of the field, we reported all of our findings in a table format

(encoding phase), which can also be found online at http://
visualquality.dbvis.de/summary. We iterated on the ta-

ble results for consistency and developed iteratively a more and

more refined view of the landscape. The core findings of these itera-

tions are reflected and abstracted in the background sections, while

specifics are highlighted in the respective subsections.

In total, we collected for this survey 134 papers from the various

information visualization subfields. While our coverage is not ex-

haustive and biased toward impactful publications illustrating the

fundamental concepts of this field, our goal is to provide a central

document where concepts for multiple visualization types are de-

fined and related, algorithms grouped into broader categories and

discussed in contrast to each other, and, finally, we give an overview,

of how quality metrics are systematically evaluated.

632



Albuquerque et al. [AEL∗09], Aupetit et al. [AS16], Bertini et al. [BS04, BS05, BTK11], Ellis and Dix [ED07], Fink et al. [FHSW13], Friedman and Tukey

[FT74], Matute et al. [MTL18], Micallef et al. [MPOW17], Lehmann et al. [LAE∗12], Pandey et al. [PKF∗16], Sarikaya et al. [SG18], Sedlmair et al.

[STMT12], Shao et al. [SSB∗16], Sher et al. [SBLC17], Sips et al. [SNLH09], Tatu et al. [TAE∗11, TAE∗09, TBB∗10], Wilkinson et al. [WAG05],

Ankerst et al. [ABK98], Claessen and Van Wijk [CVW11], Cui et al. [CWRY06], Dasgupta and Kosara [DK10], Ellis and Dix [ED07, ED06a, ED06b], Fer-
dosi et al. [FR11], Forsell and Johansson [FJ07], Heinrich et al. [HLKW12, HW13], Holten and Van Wijk [HVW10], Hurley and Oldford [HO12], Johansson
et al. [JC08, JFLC08, JJ09, JFC14, JF16], Lind et al. [LJC09], Lu et al. [LHZ16], Netzel et al. [NVE∗17], Palmas et al. [PBO∗14], Peltonen and Lin [PL17],
Peng et al. [PWR04], Rosenbaum et al. [RZH12], Tatu et al. [TAE∗09], Walker et al. [WLP∗13], Yang et al. [YPWR03]

Keim [Kei00], Schneidewind et al. [SSK06], Albuquerque et al. [AEL∗10]

Albuquerque et al. [AEL∗10], Di Caro et al. [DCFMFM10]

Borg and Staufenbiel [BS92], Fuchs et al. [FFM∗13, FIB∗14], Klippel et al. [KHLW09, KHW09], Peng et al. [PWR04], Yang et al. [YPWR03]

Adamec and Nešetřil [AN02], Battista G et al. [BGETT99], Dunne et al. [DRSM15], Huang et al. [HEH09], Nguyen et al. [NHEM17], Purchase [Pur97],
Ware et al. [WPCM02], Wang et al. [WWS∗18]

Behrisch et al. [BBH∗17, BBR∗16], Caraux and Pinloche [CP05], Chen [Che02], Ghoniem et al. [GFC04], Hahsler et al. [HHB08], Koren and Harel
[KH02], Lee et al. [LPP∗06], McCormick et al. [MDMS69, MSW72], Mueller et al. [Mue04, MML07b, MML07a], Niermann [Nie05], Petit [Pet03], Robin-
son [Rob51], Wilkinson [Wil05], Wilkinson and Friendly [WF09]

Balzer and Deussen [BD05], Ghoniem et al. [GCB∗15], Bederson et al. [BSW02], Bethge et al. [BHD17], Görtler et al. [GSWD18], Hahn et al. [HT-
MD14], Kong et al. [KHA10], Shneiderman [Shn92], Sondag et al. [SSV18], Tak and Cockburn [TC13], Tu and Shen [TS07], Ghoniem et al. [GCB∗15]

Alam et al. [AKV15], Bertini et al. [BGS07], Brewer et al. [BMPH97], Correll and Heer [CH17], Keim et al. [KPSN04, KPSN03], Monmonier [Mon14],
Nusrat and Kobourov [NK16], Rosenholtz et al. [RLMJ05], Sips et al. [SKNP04], Snyder [Sny82], Tobler [Tob04], Ward et al. [WGK10], Wongsuphasawat
[Won16], Agrawala [Agr02], Andrienko et al. [AAB∗13]

Aigner et al. [AMM∗07], Byron and Wattenberg [BW08], Cleveland [Cle94, Cle93a, Cle93b], Guha and Cleveland [GC11], Han et al. [HWZ∗16], Havre et
al. [HHWN02], Heer and Agrawala [HA06], MacEachren [Mac95], Palmer [Pal99], Talbot et al. [TGH11], Wang et al. [WWZ∗17]

Byron and Wattenberg [BW08], Cui et al. [CLT∗11], Cui et al. [CLWW14], Liu et al. [LZP∗09]

Alexander et al. [ACS∗17], Beier [Bei09], Beier and Larson [BL13], Brath and Banissi [BB14a, BB14b, BB15, BB16], Strobelt et al. [SOK∗16]

Bateman et al. [BGN08], Buchin et al. [BCL∗16], Cui et al. [CWL∗10], Halvey and Keane [HK07], Hearst and Rosner [HR08], Jänicke and Chen [JC10],
Lohmann et al. [LZT09], Paulovich et al. [PTT∗12], Rivadeneira et al. [RGMM07], Schrammel et al. [SLT09], Seifert et al. [SKK∗08], Sinclair and
Cardew-Hall [SCH08], Smith et al. [SLPS∗17], Strobelt et al. [SSS∗12], Wang et al. [WCB∗18], Witkin [Wit97], Wu et al. [WPW∗11]

Figure 8: The taxonomy of the reviewed approaches. For each quality metric approach, the taxonomy reports first author, the year, and the
corresponding bibliographic reference.

6. Multi- and High-dimensional Data
Multi- and high-dimensional data is typically provided in a table-

like format in which rows correspond to data records/objects, and

columns to their dimensions, attributes, features, or descriptors. For

example, consider a collection of cars (data objects) that are de-

scribed by, e.g., their color, brand, and horsepower (dimensions).

Often, these datasets comprise combinations of numerical, categori-

cal, and complex types such as geo-locations, images, and texts. In

the following, we restrict ourselves to quality measures for (combi-

nations of) numerical and categorical dimensions. Quality metrics

for more complex types are described in Sections 7, 8, 9, and 10.

Visualizations for multi- and high-dimensional data face two ma-

jor challenges that also influence the computation of quality metrics:

(1) datasets with a mix of numerical and categorical dimensions

make it difficult to compute relations between objects (e.g., similari-

ty) which is one of the fundamental concepts in many metrics. (2)

The outstanding characteristic of datasets with a large number of

dimensions is the curse of dimensionality [Bel61]. A huge number
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of dimensions increase the possible visual mappings and the ar-

rangement of dimensions. Non-relevant, redundant, and conflicting

dimensions may hide interesting patterns in a sea of noise. And,

the number of dimensions highly influence the interpretability of

similarity measures [BGRS99, HAK00].

In the remainder of this Section, we will use synonymously the

term high-dimensional for multi-dimensional, and multivariate data.

We will describe and categorize quality metrics for Scatter Plots

(6.1) and Scatter Plot Matrices (6.2), Parallel Coordinates (6.3),

Pixel-based Techniques (6.4), Radial Visualizations (6.5), and G-

lyphs (6.6). For each of the techniques, we describe the challenges

and necessity of quality metrics, what they intend to measure, and

outline the analysis tasks for the respective visualization. Afterward,

we summarize the approaches and show their typical evaluation

procedure, and outline open research questions.

6.1. Scatter Plots
One possibility to visualize high-dimensional data is to use Scatter

Plots and Scatter Plot Matrices respectively. A Scatter Plot presents

the data distribution of typically two variables as x and y axis in

a Cartesian coordinate view. The main advantage of this visual

representation is that the readability of single data instances as well

as data patterns are straightforward and easy to understand. Figure 4

illustrates three examples of data distributions by means of Scatter

Plots. One can clearly see if two variables correlate, reveal clusters,

or patterns. In order to represent datasets with multiple dimensions, a

Scatter Plot Matrix arranges all pairwise combination of dimensions

into a tabular form, ordered by dimensions (see: Section 6.2).

Figure 9: Scatter Plots – Optimization Goals, Analysis Tasks &
Visual Patterns

Why Do We Need Quality Metrics for Scatter Plots?
Often, the input variables of a Scatter Plot can be displayed by d-

ifferent units, and the change of axis scalings may cause different

patterns in the plot. To visualize clusters, patterns, and trends prop-

erly, the scaling of the two variables needs to be chosen carefully.

Another well-known problem of Scatter Plot visualizations is to vi-

sualize large numbers of items, which often results in visual clutter.

Visual clutter may obscure patterns in the data and makes it difficult

for the user to find relationships among the dimensions. A challenge

is to reduce the number of displayed elements but maintain the

overall information at the same time. In recent years, several clutter

reduction techniques have been developed to reduce the number of

elements in a plot, which include sampling, filtering, clustering, and

distortion techniques. However, each technique has its own require-

ments and objectives. Quality metrics and taxonomies may help find

the best technique and settings for a given dataset or analysis task.

Typical Analysis Tasks for Scatter Plots
A Scatter Plot is used to investigate the relation between two d-

ifferent variables. It is useful to get a quick overview and helps

indicate problems, unique properties, or anything interesting about

the data. Interesting insights are, for instance, correlating variables,

outliers, or meaningful patterns (e.g., regression models, trends,

well-separated clusters). Sarikaya and Gleicher [SG18] presented a

taxonomy of twelve low-level analysis tasks that support the analysis

in Scatter Plot views. The defined analysis tasks are: identify objects,

locate objects, verify objects, search for known motifs, browse data,

identify outliers, characterize distribution, identify a correlation,

explore neighborhood, numerosity comparison, object comparison,

and understand distances.

In more advanced analysis scenarios, dimension reduction tech-

niques are often used to map high-dimensional features into 2D pro-

jection views [WFC∗18]. For instance, principal component analysis

is a projection technique that uses traditional Scatter Plots to map

high-dimensional data into a lower-dimensional space [WEG87].

Summary of Approaches.
Our ability to perceive patterns and trends in Scatter Plots is high-

ly influenced by the aspect ratio. Cleveland [Cle93a] invented the

principle called banking to 45◦, which uses a midangle of 45◦to en-

hance slope judgment for bivariate graphs (c.f. Section 9.1). Applied

to Scatter Plots, an improved aspect ratio selection, such as with

the banking to 45◦quality criterion, can be applied to emphasize

trends in the dataset [Cle93a]. This relationship between task (trend

detection) and quality criterion (aspect ratio) was also examined

and validated by Fink et al. in [FHSW13]. In addition, Fink et

al. [FHSW13] uses Delaunay triangulation to generate Scatter Plot

projections and measure the quality by calculating a small total edge

length or large minimum angle of the triangles.

By assuming that the aspect ratio is chosen well, there still re-

mains the question if the visual representation is appropriate for

the data or not. A taxonomy of different visual factors to separate

clusters in Scatter Plot well was given by Sedlmair et al. [STMT12].

The presented taxonomy is based on classified data and considers

within-class and between-class factors to guide design and evalua-

tions of cluster separation measures. Furthermore, clutter must be

considered to present point distributions clearly. An overview of

different clutter reduction techniques including benefits and losses

for Scatter Plot visualizations is given by Ellis and Dix [ED07].

Regarding quality metrics for clutter reduction, Bertini and San-

tucci [BS04, BS05] proposed a feature preservation approach to

improving visual perception of 2D Scatter Plots. Their metric in-

cludes an automatic sampling strategy based on a perceptual user

study to find an appropriate sampling ratio.

Evaluation Methods for Scatter Plot Quality Metrics.
To assess improvements in visual perception, user studies were often

conducted [LHT15,PKF∗16]. Micallef et al. [MPOW17] implement-

ed several models and metrics of human perception in a cost function

to improve the visual low-level perception of a Scatter Plot. Based

on input data and task, an optimizer automatically enhances design

parameters such as marker size and opacity, aspect ratio. Various

Scatter Plot design choices were investigated in [SG18] based on

data characteristics and analysis tasks.

Open Research Questions.
The traditional Scatter Plot is a well-known visualization technique
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and has been further developed over the last decades. Today, various

kinds of visual optimizations and data preprocessing techniques exist

to improve the final representation. For instance, there are density

based modifications or combined representations to increase the

information content on the visualization. However, what is missing

in the literature are state-of-the-art reports about Scatter Plot related

techniques and optimizations.

6.2. Scatter Plot Matrices
A Scatter Plot only visualizes the relationship between two dimen-

sions (bivariate data). To investigate the whole data space of a high-

dimensional data set a Scatter Plot Matrix (SPLOM) can be used,

which shows all pairwise Scatter Plots of the different variables n
in a matrix. A SPLOM consists of n2 cells, where each column and

row reflects one data dimension. Thus, data analysts can inspect the

changes of independent variables according to a dependent variable

by scanning the rows, respectively columns, of the matrix. Figure 10

shows a basic SPLOM and typical interesting patterns for analysis.

Hence, we obtain a SPLOM including n2 −n single Scatter Plots.

Figure 10: Scatter Plot Matrix – Optimization Goals, Analysis Tasks
& Visual Patterns

Why Do We Need Quality Metrics for Scatter Plot Matrices?
Exploratory data analysis in large Scatter Plot Matrices is a challeng-

ing task, since the number of projection views grows quadratically

with the number of dimensions. Furthermore, the goal of exploration

is based on a given analysis task or user, and typically not all Scatter

Plot views are potentially relevant. Thus, often a manual exploration

for finding interesting patterns, trends or clusters becomes exhaust-

ing and ineffective. To improve the exploration, quality metrics can

be used that apply computational measures based on data and/or

image space to identify the most interesting views according to the

analysis tasks.

Typical Analysis Tasks for Scatter Plot Matrices
A SPLOM is often used to get an overview of all bivariate corre-

lations (via Scatter Plots) in a higher dimensional data space. This

is particularly helpful to identify specific variables that might have

similar patterns across various dimensions, e.g., correlation, classifi-

cation, clusters, or trends.

Due to the orthogonal pairwise projections of dimensions in a

SPLOM, a horizontal or vertical exploration enables the investi-

gation of data transformations by exchanging one dimension. For

example, a column-wise exploration allows the user to discover

transformations by exchanging the independent variable and a row-

wise exploration by exchanging the dependent variable. Shao et

al. [SSB∗16] used color coding in combination with a motif-based

dictionary to highlight column-wise and row-wise coherence of seg-

mented patterns in s SPLOM. This work also encourages to take the

investigation of local patterns into the analysis process and focus on

interest measures derived from local motifs in the data.

Furthermore, SPLOM-like representations are suitable for sub-

space analysis tasks, such as finding clusters or interesting subspaces.

Yuan et al. [YRWG13] used a dimension projection matrix in which

rows and columns represent multiple dimensions and the Scatter

Plots are based on dimension projection.

Basically, all low-level perception task for single Scatter Plots

(mentioned in Section 6.1) can be applied to a larger projection space.

For the analysis in SPLOMs, these tasks are usually extended to a

comparison task among multiple Scatter Plots (mid-level perception

task). Sarikaya and Gleicher [SG18] derived twelve basic analysis

tasks that are supported in Scatter Plot and SPLOMs respectively

(c.f., Typical Analysis Tasks for Scatter Plots in Section 6.1).

Summary of Approaches.
In data analysis, methods for mapping multivariate data into lower di-

mensional space have been used for many decades [KW78,WEG87].

However, one of the major problems of these mappings is that the

resulting outcome is often difficult to interpret. One influential ap-

proach by Friedman and Tukey [FT74] that tackles this issue is

called Projection Pursuit. Projection Pursuit is a linear mapping al-

gorithm that uses interpoint distances and the variance of point swar-

m to pursue optimum projections. Later, Tukey and Tukey [TT85]

invented an exploratory visualization method for SPLOMs (Scagnos-

tics). Wilkinson et al. [WAG05] followed up on their research and

introduced graph-theoretic measures for computing scagnostic for

large datasets. The method is based on proximity graphs and extracts

nine characteristics that describe the point distributions of the Scatter

Plot space. It has been shown that Scagnostics can serve for many

applications and help to detect anomalies in time series, find specific

patterns or sort large SPLOMs [WW08, DAW13, DW14a, DW14b].

Another common approach to index the interestingness of Scatter

Plots is to consider the class consistency information of labeled

points. For instance, Sips et al. [SNLH09] propose two quantita-

tive measure of class consistency, one based on the distance to the

class’s center of gravity (distance consistency), and another based

on the entropies of the spatial distributions of classes (distribution
consistency). Tatu et al. [TAE∗09] used similar ranking measures

based on the image space of the Scatter Plot visualization to iden-

tify potentially relevant structures. For unclassified data, they used

a rotating variance measure (RVM) to find linear and non-linear

correlations in the data. For classified data, they measure the over-

lap between the different classes and rank Scatter Plots that show

well-separated classes the best (class density measure). Later, Tatu

et al. [TAE∗11] extended their class density measure and introduced

class separating measure to control the balance between the proper-

ty of separation and dense clustering. A recent work of Matute et

al. [MTL18] showed that a skeleton-based metric including shape

and orientation information outperforms RVM and Scagnostics in

perceptually-based similarity.

Albuquerque et al. [AEL∗09] utilized the aforementioned quality

measures for a quality-aware sorting of SPLOMs, the so-called class-

based Scatter Plot matrix (C-SPLOM). Lehmann et al. [LAE∗12]

introduced another visualization scheme including detail-on-demand
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interactions that produces an abstract and interpretable SPLOM (A-

SPLOM) by using known quality measures.

A current approach by Shao et al. [SSB∗16] measures the inter-

estingness by taking frequency properties of similar local patterns

into account. The approach applies a Bag-of-Visual-Words concept

that considers local motifs as visual word and ranks the interesting-

ness based on the number of interesting motifs in a plot. Moreover,

an extensive survey of quality metrics for Scatter Plot and other

visualization techniques were carried out by Bertini et al. [BTK11]

Evaluation Methods for Scatter Plot Matrix Quality Metrics.
The evaluation of quality metrics has gained increasing importance

in the recent years. These works either focus on evaluating the

connection between human perception and quality metrics (effec-

tiveness) or demonstrating the usefulness of quality metrics base on

various use case scenarios (efficiency).

For example, Projection Pursuit is demonstrated by various ex-

periments on artificial and research data. Wilkinson et al. [WAG05,

WW08, DAW13, DW14a, DW14b] evaluated the performance and

usefulness of their Scagnostics tools by showing use cases and ex-

perimental results on different datasets. Actually, most approaches

are evaluated by use cases and demonstrate the benefits by various

scenarios [TAE∗09, AEL∗09, TAE∗11, SSB∗16]. For instance, the

class consistency measures by Sips et al. [SNLH09] were applied

to synthetic data and various well-known data sets from the UCI

repository [DKT17]. Classified data are ranked according to how

consistently the high-dimensional classes are embedded in the 2D

projection space. For unclassified data, a clustering algorithm is

applied to generate high-dimensional class structures.

More recent work by Lehmann et al. [LHT15] and Pandey et

al. [PKF∗16] have investigated the human perception on Scatter

Plot patterns and present both crowdsourcing studies to prove evi-

dence that this connection exists. Sedlmair and Aupetit [SA15] even

present a data-driven framework for quality measure evaluation.

Their approach tries to mitigate the impact of (relative) human judg-

ments by relying entirely on ground-truth data. However, this in turn

also indirectly implies some sort of user involvement. By using this

framework, Aupetit and Sedlmair [AS16] evaluated a large number

of visual separation measures for pre-classified data. They system-

atically generated 2002 visual separation measures by combining

neighborhood graphs and class purity function with different param-

eterizations. As a result, they identified measures that outperforms

the distance consistency measure. Sher et al. [SBLC17] conducted a

study about the human perception of correlations in Scatter Plots.

Their study reveals that humans perceive correlations differently

compared to the statistical measure of Pearson’s product-moment

correlation coefficient.

Bertini et al. [BTK11] pointed out that all quality metrics that

work in the image space try to simulate the human pattern recogni-

tion machinery and therefore, it is needed to validate and tune the

metrics in a way that the parameters take models of human percep-

tion into account. Together with other colleagues [TBB∗10], they

presented a user study about human perception and quality metrics,

where they compared the outcome of quality metrics with human

rankings. The usefulness of Lehmann’s A-SPLOM [LAE∗12] was

evaluated by a controlled experiment including 12 participants. The

task of the study was to select relevant plots from different SPLOM

configurations (A-SPLOM, unsorted A-SPLOM, sorted SPLOM,

unsorted SPLOM). Finally, they compared mean and variance values

of the number of selected plots to the values of the quality measures.

Open Research Questions.
Even though a lot has been done in the field of quality metrics for

Scatter Plot visualization, there are still some directions that can

be further investigated. One possible direction could be the integra-

tion of human sensing technologies, e.g., eye tracking or motion

tracking, to investigate the behavior of users during an analysis task.

For instance, prior research of Shao et al. [SSES17] has shown that

eye tracking devices can be used to track already explored patterns,

and thus support the exploration of varying patterns in large Scat-

ter Plot spaces. Furthermore, eye tracking has also been used the

evaluation of Scatter Plots and Parallel Coordinates. By using an

area-of-interest (AOI) approach, Netzel et al. [NVE∗17] showed

how participants act during analysis tasks and identified different

reading strategies. Consequently, these sensing measurements could

be integrated into the quality metrics-driven visual analytics pipeline

and enrich the quality criterion inputs (user U, task T).

6.3. Parallel Coordinates
Parallel Coordinates [Ins09] are one of the most popular visual-

izations for multi- and high-dimensional data. Introduced to the

information visualization community by Inselberg [Ins85], the tech-

nique gained popularity by enabling analysts to explore patterns

across a large set of dimensions. Equally-spaced vertical axis repre-

sent the dimensions of the dataset; the top of the axis corresponds

to the highest, the bottom to the lowest value in each dimension.

Data points are mapped to polylines across the axis, such that the

intersection between an axis and a polyline marks the data value.

This visual mapping allows analysts to spot high-level patterns, as

well as single data points of interest.

Figure 11: Parallel Coordinate Plots – Optimization Goals, Analy-
sis Tasks & Visual Patterns

Why Do We Need Quality Metrics for Parallel Coordinates?
Parallel Coordinates face three major challenges: (1) With an in-

creasing number of data records, the patterns start to disappear due

to overplotted lines [ED07]. (2) A perceived pattern in Parallel

Coordinates depends primarily on the ordering of the dimension ax-

is [JJ09]. A proper ordering (for a specific task) can reveal unknown

patterns while a non-useful ordering may hide them. Consider the

example in Figure 12. Two different ordering strategies are applied

to reveal clusters and correlations. (3) A large number of dimen-

sions decreases the available screen space between two axes and

results in cluttered plots; in particular when many data records are

shown [DK10]. (4) The perception of positive and negative cor-

relation is not symmetric: negative correlations are visible more

clearly [HLKW12, LMVW10].
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Figure 12: Two partially different subsets of dimensions with axis
ordering strategies optimized for cluster analysis (left) and correla-
tion analysis (right). Figure adapted from [JJ09].

Quality metrics need to tackle these challenges by measuring the

quality of a perceived pattern and the amount of clutter/overplotting

in order to be able to guide ordering and sampling strategies. How-

ever, there are n! possible dimension permutations (based on the

assumption that we plot every dimension exactly once). Having a

quality criterion that measures the quality of one particular permuta-

tion, Ankerst et al. [ABK98] prove that finding the optimal ordering

can be reduced to the traveling salesman problem and is therefore

NP-complete. As a consequence, not only quality criteria but also

efficient optimization algorithms are necessary.

Typical Analysis Tasks for Parallel Coordinates
Countless applications from various (research) domains have been

tackled with Parallel Coordinates. In a recent state-of-the-art re-

port by Heinrich and Weiskopf [HW13], the tasks of these applica-

tions are categorized according to the established KDD taxonomy

by Fayyad et al. [FPSS96]: classification, regression, clustering,

summarization, dependency-modeling, and change and deviation
detection. In analogy, we show in Figure 11 four of the main visual

patterns for that help to accomplish these tasks: grouping, correla-
tion, outlier, and trend. Quality metrics should be able to re-order

and de-clutter Parallel Coordinates such that these patterns are visi-

ble to the analyst (based on the current analysis task).

Summary of Approaches.
A multitude of quality metrics has been presented for Parallel Coor-

dinate Plots. The approaches can be separated into quality criteria
measuring the quality of one visualization definition and optimiza-
tion algorithms that optimize the adjustable parameters. In the fol-

lowing, we will first describe and discuss the variety of quality

criteria, followed by the applied optimization algorithms.

The first criterion described in the literature has been developed

by Ankerst et al. [ABK98] with the argumentation that a similarity-

based ordering will reduce visual clutter. In their data space ap-

proach, the authors propose finding a perceptually “good” ordering

by measuring the Euclidean distance between two dimensions on

a global level, or by partial similarity based on a defined thresh-

old. The quality criterion measures the sum of distances between

all neighboring dimensions, which needs to be minimized by the

optimization algorithm. Yang et al. [YPWR03] extend the idea by

applying a clustering on the dimensions first. Due to the result-

ing hierarchy, the search space of permutations can be reduced by

considering only dimensions within one cluster.

Another similarity-based method is proposed by Peng et al. [P-

WR04]. The authors claim that the source of clutter can be caused

by distortions of the data distribution, e.g. due to outliers. Peng et al.

define an outlier based on the nearest neighbor algorithm and pro-

pose a quality criterion based on the proportion of outliers between

two neighboring dimensions. Similar to the previous approaches,

clutter is only measured between two neighboring dimensions in the

visualization.

A quality criterion for supporting nearest neighbor searches is

proposed by Peltonen and Lin [PL17]. In their approach, the similar-

ity between axes is computed using the Kullback-Leibler divergence

of probabilistic neighborhood distributions.

Ellis and Dix [ED06a, ED06b] propose three methods to esti-

mate the occlusion of lines in Parallel Coordinates: (1) overplot-

ted% (percentage of pixels with more than one plotted point), (2)

overcrowded% (percentage of pixels with more than one existing
point), and (3) hidden% (percentage of plotted points hidden due to

overplotting). Ellis and Dix propose several data space algorithms

to count the number of pixels or points respectively. All criteria

can be applied globally or in areas of interest, e.g., by a sampling

lens [EBD05].

Several methods quantify the difference in the data distribution

between the original space and a subset of data records or dimen-

sions. Cui et al. [CWRY06] measure the difference of data density

for all dimensions using a histogram approach. The quality criterion

retrieves the difference between the histogram of the data sample

and the histogram of the original data. In the same paper, the authors

extend the idea by quantifying the similarity of each record in the

original space with its nearest neighbor in the sample. An image

space method by Johansson and Cooper [JC08] transforms the visu-

alization into a so-called distance map [RP66] in which each pixel

describes the distance to its closest object. The quality criterion

measures the similarity between the distance maps of the original

and the sampled data.

Several approaches argue that the first dimension attracts the

most attention of the user. Therefore, it should be considered in

the ordering. Lu et al. [LHZ16] use Singular Value Decomposition

to measure the contribution of each dimension to the data space.

Highly contributing dimensions are sorted up front. Yang et al. [YP-

WR03] consider the importance of a dimension (e.g., by variance)

in their similarity-based ordering. A different method is proposed by

Ferdosi and Roerdink [FR11] to promote grouping patterns. They

do not only consider a pair-wise combination of dimensions, but

rather search for high(er)-dimensional structures by using a sub-

space clustering algorithm. The quality of a subspace is measured

by the density distribution [FBT∗10] and an implicit algorithm sorts

the dimensions based on the quality of each individual subspaces.

Tatu et al. [TAE∗09] introduce three image-based quality criteria

to measure the quality of perceived clusters. The assumption of all

methods is that clusters are usually represented by clustered lines

with a similar position and direction. The image of the visualiza-

tion is transformed by a Hough transformation [VC62] into a new

image, such that lines with a similar slope and interception are at

a close location. The quality criterion measures the clusteredness

between two dimensions within the Hough space. For datasets with

given cluster labels, Tatu et al. adapt their measure and focus on

(1) the intra-class similarity, and (2) cluster overlap by measuring

the difference between the Hough space images per cluster.

One of the most central image-based QM approach is proposed

by Dasgupta and Kosara [DK10]. Pargnostics, following idea of

Scagnostics [WAG05] for Scatter Plots, are a set of seven quality

criteria for Parallel Coordinates: number of line crossings, angles
of crossing, parallelism, mutual information (dependency between

637



variables), convergence and divergence, overplotting, and pixel-
based entropy (randomness = uncertainty). The proposed measures

are computed from 1D statistics and 1D/2D distance histograms,

which allow for a rapid computation. The optimization algorithm

can make use of a weighted combination of features.

Finally, Johansson and Johansson [JJ09] provide an interactive

analysis of the whole high-dimensional dataset based on different

quality metrics that can be selected and weighted by the user. The au-

thors describe three criteria to measure the quality of a plot: (1) Cor-
relation analysis by the Pearson correlation coefficient [LRN88]

between neighboring dimensions. The quality scores between neigh-

boring dimensions are aggregated for the entire plot. (2) Outlier
detection based on a grid-based density computation. The quality

criterion combines the number of dimensions and the distance to the

nearest neighbor across multiple dimensions. (3) Cluster detection
by a subspace clustering approach (e.g., Mafia algorithm [NGC01]).

For each subspace cluster, a quality score is computed representing

density, dimensionality, and the fraction of the covered dataset.

So far, we have discussed quality criteria for combinations of two

or more dimensions. In order to find an optimal ordering for the en-

tire Parallel Coordinates Plot, optimization algorithms are necessary.

As shown by Ankerst et al. [ABK98], the reordering task in Parallel

Coordinates is NP-complete. The literature does not provide any

novel algorithmic solutions, but rather applies existing approaches.

To name a few: heuristic algorithms are used in [JJ09], a genetic

approach is presented in [ABK98], and graph-based algorithm is

applied in [TAE∗09, DK10, HO12].

Evaluation Methods for Parallel Coordinates Quality Metrics.
New quality metrics are mostly evaluated by showing examples

based on synthetic or real-world datasets. Often, the performance

of optimization algorithms is depicted in terms of efficiency. On-

ly a few approaches compare multiple quality criteria: Ellis and

Dix [ED06b] and Cui et al. [CWRY06] empirically compared their

own approaches with each other. Ferdosi and Roerdink [FR11] sys-

tematically compared their subspace clustering approach with the

similarity clustering method of Ankerst et al. [ABK98], the clutter-

based method of Peng et al. [PWR04], the Hough space method

by Tatu et al. [TAE∗09], and the hierarchical dimension clustering

method by Yang et al. [YPWR03].

The number of user-centered evaluations, investigating the per-

ceptual aspects of QMs, is limited, as also discussed by a recent

survey of Johansson and Forsell [JF16]. Few studies exist to measure

the influence of clutter: Holten and van Wijk [HVW10], Heinrich

et al. [HLKW12] and Palmas et al. [PBO∗14] quantitatively ana-

lyze the reduction of clutter through edge bundling techniques or

different variations of Parallel Coordinates extensions. Rosenbaum

et al. [RZH12] evaluates the readability of Parallel Coordinates

under different densities of data points, but focuses on progres-

sive analytics argumentations. A qualitative and quantitative evalu-

ation scheme considering the ordering of dimensions is discussed

in Claessen and van Wijk [CVW11] and Walker et al. [WLP∗13].

Further studies exist to compare axis arrangements in 2D vs. 3D

Parallel Coordinates: Forsell and Johansson [FJ07], Johansson et

al. [JFC14,JFLC08], Lind et al. [LJC09]. A recent eye-tracking study

of Netzel et al. [NVE∗17] revealed that participants pay more atten-

tion towards the center of Parallel Coordinates Plots. This finding

stands in contrast to the dimension contribution-based approaches,

for example, by Lu et al. [LHZ16].

Open Research Questions.
Promising future work is summarized by the survey of Johansson

and Forsell [JF16]. The community has developed many quality

metrics for Parallel Coordinates. The concepts of useful orderings

and clutter reduction approaches for the underlying method differ

significantly. However, there are no user studies that compare the

different metrics for different tasks and different data characteristics.

Based on such findings, the community could further develop task-

dependent quality metrics that support the perception of humans.

6.4. Pixel-based Techniques
Pixel-based techniques create a separate view (called subwindow)

for every dimension of a dataset. Within each subwindow, every data

record is mapped to exactly one pixel, colored according to the value

in the respective dimension [Kei00]. Pixel-oriented visualizations do

not face overplotting issues, and they are designed to display large

amounts of data without aggregation. The number of data points to

be visualized is only limited by the available screen space.

Figure 13: Pixel-based Visualizations – Optimization Goals, Analy-
sis Tasks & Visual Patterns

The most important aspect is the layout of pixels within each

subwindow. For each window, the same layout is applied in order to

make the dimensions comparable. Generally, the data points require

an ordering, such as a natural order (e.g., by time or size), or the re-

sult of a function (e.g., order of nearest neighbors to a query object).

Design recommendations by Keim [Kei00] and Wattenberg [Wat05]

propose that data points need to be layouted such that the given

ordering of the data is approximated in the subwindows. This means,

data points that are nearby in the ordering, should end up nearby

in the visualization. For rectangular-shaped subwindows, space-

filling curves are proposed to optimize these recommendations, for

example Hilbert Curves [Hil91] or H-Curves [NRS97].

Why Do We Need Quality Metrics for Pixel-based Techniques?
Pixel-based visualizations are designed to display large amounts

of data, but only for individual attributes. With high-dimensional

data with thousands of attributes being more and more common, it

is practically impossible to manually inspect the visualization for

each individual attribute for interesting patterns. Hence the need for

quality metrics for pixel-based visualization techniques. They help

users to analyze high-dimensional data sets by calculating a quality

metric for each attribute. These quality metrics can be used to iden-

tify interesting attributes. According to Keim [Kei00], there are four

properties that have to be considered when designing pixel-oriented
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Figure 14: Jigsaw maps and quality metric scores of the Ozone
datasets created by Albuquerque et al. [AEL∗10]. Depicted are
six Jigsaw maps along with their calculated Noise Dissimilariy
Measure. The top row shows the worst three plots and the bottom
row the best three plots with clearly visible patterns.

visualizations. The color mapping, the arrangement of pixels, the

shape of the subwindows, and the ordering of the dimensions. For

each of these properties, Keim [Kei00] presents design recommenda-
tions. For instance, the usage of space-filling curves like the Morton

curve [Mor66] for the arrangement of pixels. The problem is that the

methods proposed by Keim such as the ordering of dimensions, the

shape of the subimages, and arrangement of pixels require solving

complex optimization problems. Some of which are proven to be

NP-hard [ABK98].

Typical Analysis Tasks for Pixel-based Techniques
Pixel-based visualization techniques are useful for solving four dif-

ferent tasks on large high-dimensional data, as depicted in Figure 13.

When analyzing a single dimension, pixel-based visualizations can

be used to identify clusters and outliers. Clusters, such as visible in

Figure 14, can be identified by finding local regions of similar color.

Outliers, in contrast, are depicted as points with outstanding colors

in comparison to their surrounding region. Trends are depicted by

consistently reoccurring occurrences of similar color spread out

over the pixel plot. When considering multiple dimensions, pixel-

oriented visualizations can be used to identify correlations between

different dimensions. If a cluster occurs in multiple dimensions,

this can be an indication for a positive correlation, if they share a

color, or negative correlation, if they consistently depict a different

color. However, finding these visual patterns is only possible if the

ordering between and within dimensions is done appropriately.

Summary of Approaches.
The existing approaches for pixel-based visualizations can be

divided into data space, image space and hybrid approaches.

Keim [Kei00], in addition to his general optimization algorithm-

s for pixel-based visualizations, presents such data space quality

criteria for geospatially-related data. The presented quality criteria

focus on the layout and positioning of the pixels in the resulting

visualization and measure, for instance, the position-preservation

of the layout algorithms, the relative position-preservation or the

relative distance-preservation.

In addition to these data space approaches, also two image s-

pace approaches, Pixnostics [SSK06] and the Noise Dissimilarity

Measure (NDM) [AEL∗10] were presented for pixel-based displays.

Pixnostics calculates the information content of a pixel-based visual-

ization by calculating either the entropy or the standard deviation on

the distribution of gray-level histograms in different grid cells. If the

calculated score for a gray-level histogram of a cell is between two

user-defined thresholds, it is considered to be interesting. However,

this requires a manual setting of the interestingness thresholds. ND-

M uses the dissimilarity between a visualization and a noise image

generated by a random permutation of the original visualization.

Since the characteristic of the noise image is supposed to be the total

absence of structure, visualizations with a large Noise Dissimilarity

Measure are considered to have a higher potential relevance, as

shown in Figure 14.

Evaluation Methods for Pixel-based Quality Metrics.
In the presented works, there is no standard evaluation technique

for pixel-based visualization techniques apparent. Keim [Kei00]

provides a quantitative evaluation for geospatially-related data by

measuring and comparing the position and distance preservation

of different layout algorithms. Schneidewind et al. [SSK06] and

Albuquerque et al. [AEL∗10] both show the effectiveness of their

quality metrics in a use case study, by showing the potential to

find interesting visualization. Both start with a set of pixel-based

visualization. Schneidewind et al. create their test set by randomly

permuting the pixels of a Jigsaw map and Albuquerque et al. create

multiple visualizations for the Ozone dataset, as shown in Figure 14.

Both use their respective quality metric to calculate a score for each

visualization in their test set and show that visualizations with a high

QM score contain interesting visual patterns.

Open Research Questions.
The quality metrics for geospatially-related data proposed by

Keim [Kei00] focus on the , e.g. by calculating the position-

preservation of the resulting visualization, while the quality met-

rics proposed by Schneidewind et al. [SSK06] and Albuquerque et

al. [AEL∗10] focus on the image space. Both of these image space

approaches are particularly useful for identifying groupings. How-

ever, for other analysis tasks the pixel-visualization suitable quality

metrics are missing. A beneficial line of research could seek to adapt

e.g., TreeMaps QM (see: Section 7.3) to this domain. Furthermore, a

comparative and user-agnostic evaluation of the existing approaches

could help to identify a baseline for further research directions.

6.5. Radial Visualizations
Radial visualizations for high-dimensional data arrange the data

in a circular or elliptical fashion. Draper et al. [DLR09] presents

a general survey on the topic referencing 88 works. Prominent

techniques for high-dimensional data include, but are not limited

to: the MoireGraph [JM03], the TimeWheel and MultiComb visu-

alization both proposed by Tominski et al. in [TAS04] and the

projection-based techniques, such as RadViz [HGM∗97] and Star

Coordinates [Kan00]. Note that visualizations, such as Pie Chart-

s, Sunburst, or Radar Charts, albeit being radial visualization are

explicitly excluded here, since their optimization focuses on sto-

rytelling and semantic aspects, c.f., high-level quality metrics in

Section 3.2. The development of perceptual quality metrics was

mainly driven by high-dimensional (projection-based) radial visual-

izations and thus will be the focus of this Section.
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Figure 15: Projection-based Radial Visualizations – Optimization
Goals, Analysis Tasks & Visual Patterns

Projection-based radial visualizations are two-dimensional pro-

jections of high-dimensional data into a circle. For RadViz, the

dimensions of a dataset X are represented as points that are even-

ly spread around the circumference of a circle. Each instance of

the dataset xi ∈ X is also represented as a point inside the circle.

The positioning of each instance xi can be determined by connect-

ing it with springs to each of the dimension representatives on the

circumference of the circle. The final position of a point xi is de-

termined by the point pi where the sum of all spring forces is zero

and can be computed as pi =
∑n

j=1 dixi, j

∑n
j=1 xi, j

, with d j denoting the vector

pointing from the center to the position of the respective dimension

on the circumference [AEL∗10]. Star coordinates apply a nearly

identical mapping of points into a circle, but without the nonlinear

normalization, for which the denominator of the previous equation

is responsible. As a result of this, RadViz is especially advantageous

for sparse data, but its nonlinearity may hamper several other ex-

ploratory analysis tasks [RSRDS16]. Rubio et al. point out, that

due to their similarity, many algorithms, such as the quality metrics

developed by Albuquerque et al. for RadViz, can be directly applied

to Star Coordinates and vice versa.

Why Do We Need Quality Metrics for Radial Visualizations?
Similar to Parallel Coordinates Plots (see: Section 6.3), radial visual-

izations are highly dependent on the ordering of dimensions, which

is in turn dependent on the user’s task. For example, if one data

instance has high values in two neighboring dimensions, it is plotted

more closely to the circumference, in addition, another data instance

with high values in two opposite dimensions is plotted more closely

to the center of the circle. Given an ordering of the dimensions,

quality metrics can help to identify if the resulting visualization

has interesting patterns for a specific user task. However, finding

a suitable ordering is one of the key problems, which Ankerst et

al. [ABK98] proved to be NP-complete. Hence, QMs for radial

visualizations are not only necessary but also efficient techniques to

explore the search space of possible dimension orderings.

Typical Analysis Tasks for Radial Visualizations
RadViz was first proposed by Hoffman et al. [HGM∗97] to help

with the classification of DNA sequences. In their work they com-

pare visualizations of multi-dimensional DNA sequence data. They

compare, on the one hand, visualization techniques which are able

to display all dimensions, i.e., RadViz and Parallel Coordinates, to

techniques which use dimension reduction techniques to produce 2-

dimensional visualization, such as Sammon Plots, on the other hand.

They conclude that, although that some patterns can still be seen

in the dimension-reduction techniques, the exact symmetry is lost,

which is an inherent problem of such techniques due to the difficulty

of choosing the important dimensions. RadViz can also be used to

tackle various different tasks, as shown in Figure 15. Nováková and

Štěpánková show how radial visualizations can be used to detect

trends in time-series data [NŠ11]. Mrarmor et al. [MLDZ07] use

radial visualizations for outlier detection in lung cancer data based

on gene expressions of six genes. Finally, Bertini et al. [BDS05]

show how an extension of RadViz can help to detect correlations in

data. Kandogan advertises star coordinates as a means for cluster,

trend and outlier detection likewise [Kan00].

Summary of Approaches.
Albuquerque et al. [AEL∗10] show that due to the scatter properties

of RadViz, most quality measures for Scatter Plots (see: Section 6.1),

may be applied to RadViz as well, such as the Class Density Mea-
sure [TAE∗09] for labeled datasets. They also introduce the Cluster
Density Measure (ClDM) as a new quality metric to rank visual-

izations based on how well-defined the clusters of the resulting

projection are. This image-space based technique first applies an

image clustering algorithm and then calculates the quality metric

score based on the found cluster properties. They follow the fol-

lowing computational steps; calculate a density image based on the

local neighborhood in the original visualization; smooth the density

image by applying a Gaussian filter; identify clusters with the help

of Laplace filters; and calculate the ClDM measure, defined as:

ClDM =
1

K

K

∑
k=1

K

∑
l=k+1

d2
k,l

rkrl

where K is the number of detected clusters, dk,l the Euclidean

distance between the cluster centers ck and cl and with r as the

average radius of a cluster. Thus projection clusters with a small

intra-cluster and large inter-cluster distance are assigned high values.

Another approach to calculating quality metrics for radial vi-

sualizations is presented by Di Caro et al. [DCFMFM10]. They

determine the visual usefulness of a projection by using the Davies-

Bouldin (DB) index [DB79]. The DB index is known to be one

of the best methods to measure the inter- and intra-cluster separa-

tion. A smaller DB index represents more compact and separated

clusters. However, if a high-dimensional dataset d has a high DB

index, it may become difficult for the projected data p to offer a

high-quality visualization. Thus, the DB index is not directly used

as a quality metric, but rather the ratio R between the index of the

high-dimensional data DBd and the projected data DBp is taken,

with a high R corresponding to a higher visualization quality.

Evaluation Methods for Radial Visualization Quality Metrics.
Both quality metrics presented in the last section are used to eval-

uate new dimension-ordering techniques for RadViz. Di Caro et

al. [DCFMFM10] provide an independent and a RadViz-dependent

formalization of the dimension arrangement problem, which was

formalized by Ankerst et al. [ABK98] in a generic context. They

provide an exhaustive evaluation of both of these dimension arrange-

ment techniques, partly evaluating the visual quality of the resulting

arrangements. Moreover, Albuquerque et al. [AEL∗10] propose a

greedy RadViz generation algorithm in which they start with a two-

dimensional RadViz and iteratively add the remaining dimensions

by checking which dimension they have to add for optimizing a

quality metric. Additionally, they provide three comparisons of the

resulting visualizations, using the original RadViz algorithm, the
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t-statistics algorithm of Sharko et al. [SGM08], and their algorithm,

concluding that using their algorithm, the resulting projections show

a better cluster separation.

Open Research Questions.
So far two algorithms were proposed to measure the visual quality of

visualizations generated by RadViz. One data space and one image

space technique. Both approaches have shown, that their quality

metric can be used to determine the visual quality of a resulting

projection and they can even be applied during the construction

of RadViz visualizations. However, the shortcomings are that both

of these techniques focus on only one aspect, the intra- and inter-

cluster separation. As previously shown, there are various possible

applications of RadViz, with grouping only being one of these

applications. In future work, quality metric for these different tasks,

such as outlier or trend detection, or, if possible, a general quality

metric usable for various tasks should be developed. Additionally,

as Rubio et al. pointed in their comparative study of RadViz and Star

Coordinates [RSRDS16], algorithms designed for one technique,

may be applied to the other. Therefore, when developing techniques

for one technique, they recommend considering whether they would

be appropriate for the other technique as well.

6.6. Glyphs
In the 1960s, the term glyph was used as a synonym for the met-

roglyph [And57]. However, over the years different glyph designs

emerged and the initial definition was adapted to also describe new

representations. As a result, the term glyph is used ambiguously in

the visualization literature [Mun14]. Recent surveys tried to tack-

le this problem by identifying similarities across definitions and

combining them in a more general statement [FIBK16] or by cate-

gorizing already existing definitions into more specific or general

interpretations [BKC∗13].

In summary, all glyph designs are graphical representations of

data points, which can be positioned independently from each other.

This flexibility in the layout is the biggest advantage of glyphs. They

can be easily combined with other established visualizations opening

space for various application areas. Geo-Spatial Data visualization-

s [AA04], Node-Link Diagrams [US09], TreeMaps [FFM12], or

Scatter Plots [WG11] are just a few examples where glyph designs

can enrich other visualization techniques with additional informa-

tion about the data.

Although the design space of data glyphs is nearly endless

[Mun14], some designs have received more research attention

than others. Chernoff faces [Che73], star glyphs [SFGF72], or pro-

files [DTSS86] are prominent examples. However, in comparison

to faces, star-like glyph designs and profiles are more often used

in practice. Therefore, we want to focus on star-like glyphs and

profiles to outline a very different approach to quality assessment

and evaluation: design recommendations. For a better readability

and didactic reasons, we enumerate recent and influential works

on the evaluation aspect of design recommendations in the unified

subsection Summary of Evaluation approaches.

Why Do We Need Quality Metrics for Glyphs?
In general, Star/Profile glyphs are closely related to parallel coordi-

nate plots. They use a similar visual encoding to show dimensions

and data values. Data lines are radiating from a center point to repre-

sent attribute dimensions. The length of each line is dependent on the

Figure 16: Glyphs – Optimization Goals, Analysis Tasks & Visual
Patterns

underlying dimension value. The higher the data value, the longer

the respective line. The endpoints of the data lines are connected

to create a star-like shape. In comparison to parallel coordinates,

the major differences are the reduced size, the circular layout of the

axes and the presence of just a single data line in the plot.

As in Parallel Coordinates, the order of axis has a strong influence

on the visual appearance of the individual stars and, therefore, need

to be considered in the design process. Additionally, star glyphs can

also be represented without the surrounding contour line [PG88],

since this visual feature does not carry any information about the

data. Adding color to the plot or highlighting certain visual features

might also help to better solve the analysis task.

Profile glyphs are a more abstract term for small bar charts or line

charts (i.e., sparklines [Tuf06]). They are easy to read and understand

since they built upon a common mental model. Like in bar charts,

the width of the bars, as well as their ordering, can be varied or

single bars can be connected to show some trend information.

Although these two designs seem to be well-established, they still

allow for some design variations. To come up with an optimal design

is difficult, since the design of a glyph is a creative process with

only limited guidance and nearly numberless design possibilities.

Typical Analysis Tasks for Glyphs
Data glyphs are used in various settings and for different analysis

tasks. Based on Andrienko and Andrienko’s task taxonomy [AA06],

lookup tasks for single data values and similarity search are the

most common analysis tasks followed by visual search and trend

detection [FIBK16]. Therefore, the optimal glyph design strongly

depends on the task at hand. Is it important to perceive the entire

shape as a whole (like in synoptic tasks) or is the focus on reading

individual visual features (like in elementary tasks).

Summary of Evaluation approaches
Glyph designs are a good example of visualization techniques, that

strongly profit from design considerations based on results from

quantitative user evaluation. Star glyphs profit from the following

recommendations that can be used to guide the design process. The

surrounding contour line should be removed from the design. Studies

have shown that participants are more accurate when comparing

the similarity between data points using stars without a contour

line [FIB∗14]. There are also guidelines for ordering the axes of stars.

Results from experiments suggest avoiding salient shapes [KHW09].

This design consideration coincides with the clutter reduction quality

metric proposed by Peng et al. [PWR04]. Additionally, the axes

should be colored to reduce the negative influence from single spikes

for visual classifications tasks [KHLW09].
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To further improve the comparison between multiple stars, cluster-

ing results or statistical information should be added to the designs.

Based on study results, researchers suggest adding the first and sec-

ond principal component as additional axes to improve similarity

comparisons [BS92]. Yang et al. [YPWR03] also proposed a quality

metric to vary the angles between dimensions based on a hierarchi-

cal cluster analysis of the respective dimensions. Since no study has

been conducted, this metric must be considered with caution.

However, the general public has to be careful about those recom-

mendations, since all guidelines result from controlled experiments

which are constructed to reflect specific conditions (e.g., analysis

task, number of dimensions, layout). It is, therefore, difficult to

generalize those findings [FIBK16].

Open Research Questions.
It would be interesting to transfer quality metrics from other vi-

sualization techniques to the data glyph domain. A good starting

point can be Parallel Coordinates. Since Star Glyphs and Parallel

Coordinates share many visual features, approaches for ordering

dimensions could be adapted. Are Star Glyph specific orderings

better compared to approaches used in Parallel Coordinate plots?

Research has already made a first step in this direction by applying

similar approaches to both visualization techniques [PWR04, YP-

WR03, HO12]. However, there is still much space for further re-

search since the design space of data glyphs is huge.

7. Relational Data
In relational data, the units of observation are tuples rather than

atomic entities. We here focus on the common case of binary rela-

tions represented as graphs. Graphs mark the crucial generalization

from attribute data to relational data. A graph consists of a set of

vertices and a set of edges which consist of ordered (in a directed

graph) or unordered (in an undirected graph) pairs of vertices. Ex-

amples of data represented as graphs include dependency structures,

hierarchies, and social networks.

Since graphs model relationships between pairs of entities, some

relational data require even more general formalisms. Cleary, the

entities linked by relationships and the relationships themselves

can have additional attributes, thus increasing the complexity of the

data. The composition of entities involved, the relationships they are

subject to, and the attributes associated with either may change over

time, giving rise to various classes of dynamic graphs.

Although graphs are often used synonymously with Node-Link

Diagrams (7.1), there are many other graphical representations in-

cluding Matrix Representations (7.2), inclusion drawings – of which

TreeMaps (7.3) are a special case – contact representations (where

edges are represented by touching vertex features), and visibility

representations (where vertices are represented by sizeable features

such as lines or boxes and the line-of-sight between adjacent pairs

must not be blocked). Constrained variants such as orthogonal draw-

ings, dendrograms, or arc-diagrams further add to the diversity.

7.1. Node-Link Diagrams
In Node-link diagrams, the vertices of a graph are represented as

point-like features and its edges as line-like features connecting

them. The main challenge in designing graph visualizations is that

there are dependencies not only between different attributes, as

in Multi- and High-dimensional Data, but also within variables

representing relationships. By fixing the layout to a grid, matrix

representations avoid this difficulty but constrain relative locations.

Treemaps, in contrast, apply only to the very restricted case of graphs

that are connected and acyclic. Node-link diagrams, therefore, offer

the most degrees of freedom, but also pose the most challenging

layout problems [Tam13].

Figure 17: Node-Link Diagrams – Optimization Goals, Analysis
Tasks & Visual Patterns

Why Do We Need Quality Metrics for Node-Link Diagrams?
A key feature in the visual understanding of graph drawings is

the match between structural adjacency and graphical proximity.

Common two-dimensional representations, however, often cannot

depict the complex relationships faithfully [NEH13].

Because of the necessity to connect vertex features all these

graphical representations face the problem of visual clutter. Since

the layout is also contingent on the structure of relationships rather

than just the values of attributes, issues such as occlusion, small

angles between lines, or ambiguity of incidence arise. Many of

these are present simultaneously in what is referred to as hairball
drawings, i.e., drawings in which the structure of a (sub)graph is

unrecognizable due to heavy overplotting.

The question, then, is what are the most important structural fea-

tures to convey given a specific task, and where to compromise?

Typical indicators for readability, traditionally referred to as aesthet-

ics in the field of graph drawing, are the number of edge crossings,

the angular resolution at vertices, edge complexity in terms of bends,

the alignment of paths with straight lines connecting their origin

and destination, the directional flow in directed graphs, and many

more [DRSM15]. An indicator of the balancedness of a drawing as

a whole is proposed in [AN02].

Typical Analysis Tasks for Node-Link Diagrams
Various tasks have been identified [LPP∗06] and different design-

s have been proposed for different informational content (see,

e.g., [BFW13] for a survey in the context of social networks).

The quintessential task of reading a graph is to determine whether

two vertices are adjacent. More general versions of this task include

reachability (the existence of a path between two vertices), structural

distance, redundancy of connectivity, and the comparison of two

vertices based on their relative position.

In addition to tasks parameterized with pairs of vertices, the task

associated with single vertices include the size and structure of their

neighborhood, their centrality, their membership in groups, and role

as brokers between different regions of the graph.

Finally, structural features from the level of subgraphs to the
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graph itself are studied. These include size and density, center-

periphery divisions, variation in local cohesion (clustering, multi-

centricity), hierarchies, symmetries, and substructures prevalence in

graph mining.

The variety and complexity of these tasks increases further with

the consideration of additional attributes and dynamics.

Summary of Approaches.
Graph layout algorithms are typically based on optimization of lay-

out objectives that can be interpreted as quality criteria. The most

widely used methods are referred to as force-directed algorithms

and build on variations of the idea that adjacent vertices should be

close to each other while non-adjacent vertices should be farther

apart [Bra14]. As a consequence, these methods oftentimes also

serve to display clustering and symmetries. While most of the ob-

jectives are formulated in terms of distances between vertices, a

recent variant of stress majorization integrates dyad-wise direction

objectives [WWS∗18] and thus expands the expressiveness of such

models.

A less common example is the introduction of a quality metric

related to the visual group identification task [VBW17] in order to

compare different layout adaptation strategies [NOB15].

Other graph layout algorithms are often designed to address qual-

ity metrics in isolation. Crossing, bend, and area minimization are

prime examples. Many other techniques to reduce visual clutter in

graph layouts such as edge bundling, confluent drawings, semantic

substrates, or pivot graphs are based on alternative designs without

an explicit quantitative assessment of layout quality.

Evaluation Methods for Node-Link Diagram Quality Metrics.
As stated above, quality metrics are incorporated directly or indirect-

ly in optimization-based layout algorithms. For graphs conveying

domain-specific information, it has been suggested to incorporate

such information in terms of layout constraints, and restrict opti-

mization to readability criteria [BKR∗99]. Even then, however, the

choices made are rarely informed by users studies.

Most often, readability metrics are evaluated in user stud-

ies on task performance subject to different graph visualization-

s [Pur97, HvW09, HIvWF11]. Comparative eye-tracking experi-

ments are presented by Netzel et al. [NBW14] to study the effect

of different link representations on the readability and by Burch et

al. [BKH∗11] to investigate different node-link layout strategies for

their effectiveness. As a result, particular visualizations are consid-

ered more effective than others. An important concept to capture the

difficulties users face is cognitive load [WPCM02,HEH09]. A range

of works [BVKW11, HIvWF11] are trying to mitigate this problem

and present their superiority over baseline methods in controlled

user experiments. A range of other challenges, including cross-

representation comparisons, arises when studying representations

of graphs that change over time [AP16].

Open Research Questions.
The study of quality metrics in graph visualization has been mostly

incidental and would benefit from more systematic approaches.

Naturally, a principled and more comprehensive collection of quality

metrics for graph visualizations would be helpful in the design of

graph visualizations [DRSM15].

Quality-based evaluations so far have been concerned with rank-

ing visualizations by effectiveness for the most part. More detailed

analysis of the various pairwise relationships between data, tasks,

and users on the one side, and their individual and combined ef-

fects on quality metrics on the other side are yet to be devised.

While efficiency is often used as an indicator of effectiveness, it

could also be studied in its own right. Particularly for large graphs,

the evaluation of metrics on samples may generalize to multiple

problems [NHEM17].

Optimization need not involve the maximization of general read-

ability, but could also tap more into human interpretative biases, for

instance by deliberate misplacement in group detection tasks [M-

BK96]. Conversely, how do metrics have to be adapted in order

to correct, possibly in a personalized manner, for such biases? A

thorough understanding of the impact of graph invariants on layout

features relates not only to quality metrics, but would be highly

beneficial for the controllability of visualization systems and the

generation of instances for experimental user studies.

7.2. Matrix Representations
Matrix visualizations have an interesting property by design: They

are able to show data patterns at a local and a global level-of-detail.

This is facilitated by a simple, yet effective, layout algorithm in

which data entities are shown in rows and columns and data at-

tributes are mapped to the corresponding cell at the intersection of

the corresponding row, respectively column.

Figure 18: Matrix – Optimization Goals, Analysis Tasks & Visual
Patterns

Why Do We Need Quality Metrics for Matrix Representations?
Matrix visualizations have been studied for centuries in many re-

search and applications domains, such as archaeology, visualization

research, and mathematics. However, Bertin [Ber73, Ber81] first

recognized the reorderable matrix as an exploration tool, whose

row-/column ordering reveals or potentially hides data insights. To

understand why this is possible, it is important to note that the order

of matrix rows and columns can be freely changed without changing

the data in the matrix. Matrix reordering has been studied as an

optimization problem, where the objective function is a heuristic

to foster the visual appearance of visual base patterns depicted in

Figure 19. In this paper, we will not focus on an all-embracing

enumeration of matrix reordering algorithms. Interested readers can

find a great variety of information on this topic in the recent matrix

reordering survey of Behrisch et al. [BBR∗16], Liiv’s historic seri-

ation overview [Lii10], or Wilkinson’s and Friendly’s “History of

cluster heatmaps” [WF09].

Similar to the graph visualization community, there is no consen-

sus of an objective function in the reordering literature. Hence, we

cannot understand matrix reordering as a pure optimization problem,
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Figure 19: Visual base patterns for matrix visualizations: Block-
related patterns can be attributed to group and group relationship
aspects, line-related patterns help to answer connectivity questions.
If the matrix reordering algorithm is not able to reflect the underly-
ing data topology or the algorithms’ implementation characteristics
dominate the data topology aspect, visual anti-patterns can emerge.

but rather need to consider reordering algorithms according to the

structures they reveal visually [BBR∗16, Wil05].

Typical Analysis Tasks for Matrix Representations
Independent of an appropriate row-/column ordering, global net-

work characteristics, such as size and density, or outstanding entities

(e.g., highly connected entities), can be estimated [Ber81, GFC04].

Higher-level tasks, such as identifying groups, assessing distribution-

s and cluster memberships, retrieving of (adjacency) relationships

and general topology estimations, require a reordering of rows, re-

spectively columns, to reveal higher order patterns [BBR∗16]. Lee

et al. [LPP∗06] present a task taxonomy containing 12 low-level

tasks and 13 high-level tasks for graph analysis and compare their

applicability on five different visualization techniques.

Summary of Approaches.
The most challenging and focal question concerning matrix re-

ordering is defining and evaluating which permutation of rows and

columns is more effective than another. As depicted in Figure 20,

more than one subjectively interesting reordering exists for a given

matrix. Accordingly, the question arises which reordering result

allows the user to perceive the data set’s inner structure, patterns,

regularity, and the overall trend the most.

Figure 20: Visual matrix reorderings (a) ordered randomly (b) and
with three algorithms (c-e) revealing different patterns. Figure adapt-
ed from [BBR∗16]

Statistic global approaches to evaluate the visual quality of a

matrix reordering exist: For example, Column/row gradient mea-

sures, such presented by Hubert et al. [Hub74], Anti-Robinson
Events/Deviations [Che02,TLWC08], or the Inertia measure [CP05]

relate all node-to-node distances (or edge weights) to their index-to-

index distances. In that context, a matrix is said to have a Robinso-
nian form if the entries within each row and column are constantly

decreasing the further away from the main diagonal. Especially,

blocks/clusters, diagonal structures can be promoted by optimiz-

ing for these objective functions [Rob51, Pet03]. Improving graph-

theoretic metrics, such as the Linear Arrangement [Pet03, KH02] or

the Hamilton path length [CP05] causes similar nodes to be placed

close to one another and help to structure large matrices into smaller,

homogeneous parts. Stress measures, such as presented by Nierman-

n [Nie05], or the Measure of Effectiveness by McCormick [MDM-

S69, MSW72] can be used to find locally dense areas, which are not

necessarily centered around the main diagonal.

Wilkinson describes in “Grammar of Graphics” [Wil05] an en-

tirely different approach inspired by calculating the retrieval per-

formance. They are computing a Spearman correlation between

row/column indices of an a-priori known visual base pattern and per-

muted indices from various matrix reordering algorithms. Behrisch

et al. [BBH∗17] present a pattern-driven quality metrics, called Mag-
nostics, which generalizes Wilkinson’s idea. In an image feature-

driven approach averaged similarity scores to all base patterns (with

varying noise levels) are computed. The resulting six-dimensional

pattern-feature descriptor represents for each component the ap-

proximated visual similarity between the comparison matrix and all

visual base patterns depicted in Figure 19.

Evaluation Methods for Matrix Quality Metrics.
The aforementioned quality metrics are mostly evaluated with com-

parative quantitative evaluation procedures. One generalizable ex-

ample is Koren and Harel’s presentation of the Multiscale matrix

reordering algorithm [KH02] in which the processing time and the

linear arrangement score are presented for selected competitors on

the Petit testsuite [Pet03].

In case of the image feature-driven Magnostics approach,

Behrisch et al. conducted an empirical evaluation consisting of four

distinct sub-experiments (pattern response, -variability, -sensitivity

and -discrimination) to validate that an engineered feature descriptor

can be used to retrieve a specific base pattern.

Further influential for the understanding of matrix reorderings,

and the visual results they produce, is the work of Mueller et

al. [Mue04, MML07a, MML07b]. For example in [MML07a], a

perception-inspired qualitative evaluation procedure was present-

ed with the goal to measure (a) the stability of the visualizations

for varying reorderings and (b) the interpretability or usefulness

of the produced visual features. To a larger extent, Behrisch et

al. [BBR∗16] contribute to this discussion by focusing on the ques-

tion which matrix reordering algorithm/-group is (algorithmically)

able to depict a specific visual base pattern.

Open Research Questions.
The open research questions for this subfield are manifold. On

the quality criterion side, all heuristics are focusing on global s-

cores/aggregations. If a matrix is locally “well-organized”, but in

other parts rather noisy, global metrics will not be able to reflect

the human’s intuition. On the evaluation side, nearly no work has

been devoted to proving that a human-engineered heuristic is able to

mimic the human perception. Initial ideas to prove this congruency

are presented in [LHT15, PKF∗16] and should be adapted for this

subdomain. Lastly, on the understanding side, more work needs to

emphasize that visual distinct matrix reorderings of the same dataset.

Matrix reorderings with pot. different pattern/task foci should be

presented in a consistent format to the user.
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7.3. TreeMaps
Treemaps are space-filling visualizations that make efficient use of

the limited screen space to depict hierarchical data aspects. Shneider-

man et al. [Shn92] were the first to develop a recursive subdivision

schema for generating rectangular Treemaps. Each rectangle in

a Treemap represents a node in a tree. Its area is designed to be

proportional to the value of the node. To encode hierarchy, parent

node rectangles enclose child rectangles [KHA10]. Generally, space-

filling Treemap approaches allow one to remain comprehensible at

much higher data densities than node-link diagrams.

Figure 21: Treemaps – Optimization Goals, Analysis Tasks & Visual
Patterns

Why Do We Need Quality Metrics for TreeMaps?
Treemaps encode values using area. This basic construction paradig-

m is known to be less accurate than judgments of other visual

encodings, such as length [Cle93a, CM84]. Various design alterna-

tives have been proposed to overcome these issues, among others

luminance of rectangles, 3D-effects with borders or different parti-

tioning shapes. Yet, the creation of perceptually effective Treemaps

requires carefully investigating the produced aspect ratio of the gen-

erated rectangles. This is also the most important quality criteria for

Treemaps. Users find it difficult to compare regions with extreme

aspect ratios [CHM82].

Typical Analysis Tasks for TreeMaps
Goldberg et al. [GH05] present a set of eight typical tasks for

Treemap interfaces from the categories: Identification and counting,

comparison using one or more criteria, advanced comparison and

open-ended questions.

Summary of Approaches.
Bederson et al. [BSW02] present three quality criterion for Treemap-

s: Aspect Ratio, Change and Readability. The standard and accepted

quality criterion is to minify the average aspect ratio (maximum

of width/height and height/width) over all tree nodes. The lowest

possible average aspect ratio is 1.0 representing a Treemap that only

contains perfect squares.

The second and third quality criteria are more interesting, since

they are inspired by perceptual workload considerations: The layout-

distance-change quality criterion captures the idea that Treemaps

should remain visually stable even if the underlying data is incre-

mentally updated, such as often occurring in financial data analysis

scenarios. Bederson defines the layout distance change function as

the sum of all pairwise Euclidean distances between all rectangles

defined by their 4-tuple (x, y, width, height). Consequently, a change

of 0 would mean that no rectangles moved at all, and the more

the rectangles are changed, the higher this metric will be. Tak and

Cockburn [TC13], and Hahn et al. [HTMD14] presented alternative

calculation procedures following the same quality criterion idea.

Figure 22: The visual comparison is one of the prevailing evalu-
ation methods for Treemaps, as shown here for Treemap stability
approaches [SSV18]

Finally, the readability criterion tries to capture how easily a user

can to scan a layout to find a particular item. The measure tries

to mimic the motion of the reader’s eye fixation as the Treemap

layout is scanned in order. To be precise, Bederson et al. consider

the sequence of vectors needed to move along the centers of the

layout rectangles in order, and count the number of angle changes

between successive vectors that are greater than 0.1 radians (about

6 degrees) [BSW02, p. 9]. The resulting measure is equal to 1.0 in

the most readable case, such as a slice-and-dice layout, and close to

zero for a layout in which the order has been shuffled. Similarly, Tu

and Shen [TS07] introduced the continuity metric which quantifies

how often visual ordering does not match the data ordering in the

enumeration of rectangles.

More recently, Ghoniem et al. [GCB∗15] used a set of five quality

criterion to evaluate their geography-preserving Treemap variant,

amongst others average fragmentation (less is better), average an-

gular displacement (less is better) or average distance displacement

(less is better).

Evaluation Methods for TreeMaps Quality Metrics.
The Treemap layout algorithms are mostly compared with visual

examples and an additional comparative quality score comparison

based on various quality criteria.

A typical example is presented by Sondag in [SSV18] with the

goal to show the (visual) superiority of their stable Treemap layout

algorithm, as depicted in Figure 22.

Open Research Questions.
Bethge, Hahn, and Döllner recently presented an interesting dynam-

ic Treemap layout algorithm which automatically combines eight

existing Treemap layout algorithms [BHD17]. These novel hybrid

layout algorithms are able to improve Treemap subregions based

on data characteristics and quality notions. Even more interesting,

in the same publication [BHD17], a neural network approach is ap-

plied to predict the layout quality metrics relative direction change,

average distance change, and average aspect ratio.

Another open research question is the adaption of the exist-

ing quality criteria for non-rectangular shapes, such as Bubble-

Treemaps [GSWD18] or Voronoi-Treemaps [BD05].
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Figure 23: Maps – Optimization Goals, Analysis Tasks & Visual
Patterns

8. Geo-Spatial Data
Geospatial datasets have a reference to our real world and geogra-

phy [WGK10]. Many applications of geospatial data come from

Earth Science and Physics. Other applications arise from the need to

visualize census demographics, specific geospatial phenomena, and

statistics, among other uses. Cartographers create maps of the real

world to visualize and analyze spatial and non-spatial relationships

among the data. The most popular visualizations for geospatial data

are 2D maps, although there are other approaches such as 3D models

and Earth globes [Ope18, GHD∗17].

This work only surveys quality metrics for 2D maps because they

are among the most popular geovis techniques. Due to the large

scope of the techniques, we cover only an exemplary set of them,

following the classification of [WGK10]: dot and density plots, line

maps, area or choropleth maps, and cartograms [Tob04].

Why Do We Need Quality Metrics for Geo-Spatial Data Visual-
izations?
2D cartographic maps are the projected the representation of the

Earth. The projection models used to create the 2D maps present a

different kind of distortions that affect properties like shape, area,

distance, and angles. Moreover, cartograms use distortion as part

of the technique to express a given feature of a dataset. This distor-

tion affects the data represented on the map directly or indirectly.

There are references to previous work that show that distortion

can also be used to mislead analysis tasks [Mon14]. Therefore the

need for quality metrics. Another aspect that affects maps is clut-

ter [RLMJ05, ED06b]. Previous efforts such as the PixelMaps [KP-

SN04] technique minimize overlapping of features and thus, clutter,

and provide with performance metrics to measure its usefulness.

In the case of choropleth maps, they need to take into account the

perceptual limitations of color and the combination of other visual

variables to prevent undesired color effects and artifacts that can

affect the interpretation and analysis of patterns [War13].

Typical Analysis Tasks for GeoSpatial Data Visualizations
In contrast with other techniques, maps represent concepts with a

semantic closer to humanity, such as cities, lands, roads, etc. For

that reason analysis tasks are strongly attached to users and do-

mains of application. Some tasks can be seen as common to several

domains, for example: (1) map-reading of high-dimensional data,

multi-resolution, with different LoDs. (2) Identify geographic "hot

spots" where something interesting is happening. (3) Analyze statis-

tical distributions over a geography in form of 2D fields (continuous)

and grid (discrete) data. (4) Get insight about spatial patterns, clus-

ters, systematic and random errors. (5) Comparison among multiple

spatial objects or regions. Other common and generic tasks are to

query a specific location, search for nearest neighbors, etc.

Summary of Approaches.
For general purpose maps, previous work focused on one of the

most prominent characteristics of maps: distortion. All 2D map pro-

jections present distortion. The selection of the most effective map

should be based on the quality criteria and usage of the map. The

USGS [Sny82, KKESRIR00] provided a summary of map projec-

tions, properties, suitability, extent and location, and a qualitative

measure of the amount of distortion each approach presents.

In the case of dot density maps and choropleth maps, the ap-

proaches tackle scalability, dynamic ranges issues, and cluttering.

Pixelmaps [KPSN03, KPSN04] added a clustering pre-processing

to make important data visible and provided with performance met-

rics for validation. Bertini et al. [BGS07] presented a novel density

map technique based on statistical knowledge about the density

distribution and a set of quality metrics that allows for validation

of its effectiveness. Line maps cover a wide range of techniques

such as flow maps, route maps, and networks. There is vast research

done by Andrienko et al. [AAB∗13] for the assessment of quality

in trajectory visualization and movement data. Agrawala [Agr02]

has done extensive work assessing the quality of route maps, just to

mention a few works in the area.

Choropleth or Area maps use shades or colors to indicate areas,

identify interesting hotspots and patterns. Brewer et al. [BMPH97]

evaluated how the choice of a color scheme can influence the map in-

terpretation, pattern analysis, and cluster identification, for a the par-

ticular case of the NCHS mortality atlas. Correll and Heer [CH17]

presented a novel approach for the visualization of choropleth maps

based on the Bayesian surprise technique. Their approach tackled

misleading spatial patterns caused by sampling errors, artifacts or

artificial patterns caused by the technique used to visualize the data,

for example, normalization schemes such as percentages, per-capita

rates, and z-scores. For cartograms, Tobler et al [Tob04] revisited

definitions and algorithms used to construct them, as well as qual-

ity metrics to evaluate their performance and accuracy. Alam et

al. [AKV15] surveyed how distortion can affect effectiveness. For

a cartogram to be effective, it needs to be readable and recogniz-

able with respect to their shape and neighbor areas. They proposed

different classes of metrics: statistical distortion, topology distor-

tion, shape distortion and complexity to assess quality. Nusrat et

al. [NK16] surveyed three different types of quality metrics: topol-

ogy accuracy, geography accuracy, and statistical accuracy of the

geospatial data applied to Cartograms. They offered guides to miti-

gate inaccuracies:

(i) Topological inaccuracies: by using simple interaction tech-

niques, for example, "brushing" that highlights the neighbors

of a selected state can help identify the correct topological

relations.

(ii) Geographic inaccuracies: by showing the cartogram alongside

the undistorted geographical map with linking and brushing.

(iii) Statistical inaccuracies: by showing exact data values upon

mouse-over events or listing data values next to the cartogram.

Wongsuphasawat [Won16] defined quality metrics for the layout

design of Tile Grid Maps. Tong et al. [TRL∗17] proposed cartogram-

s or cartographic treemaps designed by combining space filling

layouts and geocoordinates and proposed screen space filling and

geospatial error metrics to validate their approach.
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Figure 24: Example of thematic maps. (a) Cartogram of the 2004
USA presidential election results, (b) Choropleth showing data from
the 2,000 population census from USA, and (c) PixelMap showing
telephone call volume analysis [SKNP04]

Evaluation Methods for Geo-Spatial Data Visualization Quali-
ty Metrics.
There are strong efforts to quantify quality measures such as read-

ability, effectiveness, expressiveness, performance, lookalikeness,

uncertainty, to mention just a few. We have selected three main qual-

ity criteria: (1) accuracy (reliability of the map), (2) effectiveness

(usefulness and effort required by the user to perform a task), and

(3) expressiveness (data preservation; no data is added or lost).

Open Research Questions.
3D cartographic models or 3D world globes have been used for a

long time but they became more popular lately with digitalization

techniques and the introduction of interactive systems, like for ex-

ample Google Earth, or 3D cartograms. Still, their use in analytical

tasks continues being a hot debate in the visualization community

in terms of how the navigation and interaction with the 3D map

can help or slow down the cognitive process. Quality metrics could

be very helpful in this endeavor. New augmented-reality, VR, and

mixed-reality technologies bring a new dimension to the interactiv-

ity of maps, also resulting in a need for new quality metrics and

perceptual studies to evaluate their effectiveness.

9. Sequential and Temporal Data
Sequential data is characterized by the serial order of data points in

a sequence. The most prominent instance of sequential data is tem-

poral and time-series data in which data involves consecutive time

measures (e.g., economic developments or weather forecasts). For-

mally, temporal data can be defined as an ordered set of data points

d = f (t), each being a function of time. For a distinct timestamp ti
the corresponding data object can be represented as di = f (ti).

The analysis of time series data includes exploring temporal

patterns, trend approximation and prediction, time-series segmen-

tation, signal processing, and various other tasks. More concrete,

MacEachren [Mac95] defines seven aspects of analysis concerning

temporal data; namely, the existence of an entity, temporal location

(when), a time interval (how long), temporal texture (how often),

rate of change (how fast), sequence (in what order), and synchro-

nization. There are two event types in a temporal analysis; namely

discrete time points or time intervals (duration).

Furthermore, time can be structured into linear time (assumes

starting point), cyclic time (periodic or recurring time events), and

branching time (drifts like splits and merges of data points). To

accommodate the diverse tasks related to sequential, especially tem-

poral, data analysis, various visualization techniques have been

proposed [AMM∗07]. In this section, we are reviewing the two most

common techniques with perceptual quality metrics.

Figure 25: Line Charts – Optimization Goals, Analysis Tasks &
Visual Patterns

9.1. Line Charts
A Line Chart is a sequential data visualization commonly used to

depict temporal data, such as stock market prices, census data, or

scientific data. Two axes in x- and y-direction are used for referenc-

ing the location of each data point in the coordinate system. Data

points are shown as markers and connected by a straight line.

Why Do We Need Quality Metrics for Line Charts?
Line Charts deal with two primary design problems, that occur simi-

larly in Scatter Plots (c.f., Section 6.1). First, when the number of

time-series increases the typical superpositioning of lines becomes

problematic. Second, choosing an inappropriate aspect ratio, i.e.,

height to width ratio, influences the orientations of the line segments,

thus affecting the visual perception of trends or the accuracy of value

judgments [Pal99, SED17].

Typical Analysis Tasks for Line Charts
Line Charts are used to analyze the temporal aspects of data. Accord-

ingly, their related analysis tasks can be categorized into discrete

comparison and trend assessment [ZT99]. More specifically, Saket

et al. [SED17] mention (derived) value retrieval, filtering, finding

extrema, sorting, distribution characterization, anomaly detection,

finding clusters, and spotting of correlations as the typical analysis

tasks for Line Charts. Whenever multiple time series are depicted,

Javed et al. add slope differentiation and discrimination tasks to the

list [JME10].

Summary of Approaches.
Interestingly, we found in our study that most of the heuristic QMs

presented for Line Charts put their exclusive focus on the task of

trend analysis. For many other tasks, Saket et al. [SED17] mentions

a set of five statements guiding under which circumstances either

Line Charts, Scatter Plots, Tables, Bar Charts, or Pie Charts should

be preferred. The guidelines were derived from a crowdsourcing

study with 203 participants measuring effectiveness and efficiency

concerns. Regarding Line Charts the authors state that: “[. . . ] line
charts and scatterplots have significantly higher accuracy and speed
for finding correlations [. . . ]” Moreover, they state that for tasks

that require readers to precisely identify the value of a specific data

point Line Charts should be avoided.

On the heuristic QM side, Cleveland et al.’s [CMM88] banking
to 45◦ is one of the fundamental quality criterion principles for im-

proving the discriminability of adjacent line segments. Cleveland et

al. [Cle93a, Cle93b, Cle94] proposed three quality metrics in the for-

m of aspect ratio selection methods: median slope, average absolute

orientation, and arc length weighted average absolute orientation.
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Later, Guha and Cleveland [GC11] and Talbot et al. [TGH11] devel-

oped independently the resultant vector, respectively the arc length

based methods, with the core intuition to minimize the arc length of

the plotted curve while keeping the area of the plot constant. To fos-

ter visual perception Heer and Agrawala [HA06] proposed selecting

the aspect ratio by maximizing the sum of squares of the angles be-

tween all pairs of segments in the plot. They developed two quality

metrics, named the global orientation resolution method and the lo-

cal orientation resolution. Additionally, Heer and Agrawala [HA06]

present a frequency space analysis approach to decompose a time

series into multiple components each of which can be banked in-

dependently. Recently, Wang et al. [WWZ∗17] proposed a novel

approach to combine existing aspect ratio selection methods, thus

allowing to take advantage of their respective advantages, such as

parameterization- or sampling invariances.

Evaluation Methods for Line Charts Quality Metrics.
Cleveland et al. [CMM88] were the first researchers who studied

aspect ratio selection systematically. They conducted human-subject

experiments and made the observation that the visual judgment

of slope ratios between adjacent line segments is most accurate

when the orientation resolution between segments is maximized.

Since then, quality metrics for Line Charts are mostly presented in

a comparative (visual) inspection; i.e., several data instances are

depicted with several algorithm choices. This evaluation approach

can be found in the most works in this subfield, e.g., Cleveland et

al. [Cle93b], Heer and Agrawala [HA06], Talbot et al. [TGH11]

By using Han et al.’s [HWZ∗16] problem formalization as line

integrals, Wang et al. [WWZ∗17] shows mathematically the similar-

ity of several QM approaches: arc length based methods, average

absolute orientation, and resultant vector. This kind of meta-analysis

is important in a field that lacks standardized evaluation procedures.

As mentioned above, Saket et al. [SED17] present a comparative

crowdsourcing study with 203 participants measuring effectiveness

and efficiency of various Information Visualization techniques, in-

cluding Line Charts, in ten distinct task scenarios (Find anomalies,

Correlation, Distribution, Order, Filter, Find Clusters, Derived Value,

Find Extrema, Retrieve Value, and Determine Range).

Open Research Questions.
Especially for Line Charts the first considerations for developing

quality metrics stem from user study observations. Subsequently,

more and more approaches have been developed and compared with

only implicitly perceptual aspect considerations. Substantial future

work remains to be done to close the gap between perceptual theory

and the proposed practical methods for aspect ratio selection. On top

of that, we see no perceptually-inspired QMs to guide aspect ratio

selection for other tasks than trend analysis. Also interesting is the

fact that the existing aspect ratio selection methods are designed for

one curve, i.e., one time-series. Clutter-reduction is mainly achieved

by faceting the problems into distinct, separate views [WGK10, 2nd

Ed.; p. 293].

9.2. Stacked Graphs
Similar to a line chart, Stacked Graphs map sequential data onto

a two-dimensional canvas. However, this type of visualization is

tailored to show the temporal evolution of several data streams si-

multaneously. Each data sequence is mapped to an area segment.

Figure 26: Stacked Graphs – Optimization Goals, Analysis Tasks &
Visual Patterns

Multiple sequences are stacked on top of each other. Most common-

ly, stacked graphs are used to visualize temporal data, for example

in the context of (news) topic evolution, where they are called The-

meRivers [HHWN02]. Stacked Graphs have two variations; on the

one hand, plotting the values against a fixed straight axis – also

referred to as Stacked Area Charts [Har00] – and, on the other hand,

plotting the values against a varying central baseline – so-called

interior Stacked Graphs [BW08].

Why Do We Need Quality Metrics for Stacked Graphs?
Havre et al. [HHWN02] introduced the ThemeRiver technique, an

alternative to Stacked Bar Charts that enabled the tracking of the

temporal evolution of attributes in a multivariate sequential dataset.

Inspired by previous work, e.g., LifeLines [PMR∗96], the main

design rationale behind the proposed ThemeRiver visualization is to

highlight the temporal continuity of every data value while show-

ing the overall trend of the complete dataset (sum of the parts). To

minimize the baseline shift for area segments, Havre et al. proposed

a central (interior) baseline as an alternative to the bottom-aligned

x-axis. This paper discussed two design challenges that influence the

quality of the visualization; namely, the choice of color for every da-

ta segment (distinguishability), as well as, the calculation of faithful

area portions through defining the right segment boundaries. Based

on the metaphor of a thematic river, various visualization approaches

have been proposed focusing on the analysis of the evolution of text

corpora over time. Furthermore, as discussed by Byron and Watten-

berg [BW08], in addition to the problems that occur for line charts,

e.g., wrong aspect ratio, Stacked Graphs deal with two other issues

that affect their visual perception. First, the order of the stacked area

segments has a direct impact on the legibility of the visualization

as is can hide patterns. Second, the shifting baseline is an integral

aspect of Stacked Graphs which influences the comparability of data

values and the detection of patterns. In addition, Cui et al. [CLT∗11]

discuss the need for optimizing the ordering of stacked segments to

show splits and merges of the different layers.

Typical Analysis Tasks for Stacked Graphs
In contrast to Line Charts, Stacked Graphs are typically used to high-

light the relation between multivariate data over time. If the temporal

relation is linear, i.e., changing values over time, both approaches

can be used to reveal patterns. However, to examine patterns within

branching timelines, have proven to be more effective [Har00]. For

example, Cui et al. [CLT∗11] analyze temporal relations between

segments in a Stream Graph, such as splits and merges, to follow

topic evolutions over time. In addition, tasks like analyzing the re-

lation of data values to others or to the overall graph are facilitated
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by Stacked Graphs [HHWN02]. In addition to following splits and

merges across layers, one central analysis tasks for Stacked Graphs

is temporal trend detection [BW08].

Summary of Approaches.
Most Stacked Graphs are presented in the context of specific applica-

tions scenarios. Hence, the proposed approaches for enhancing their

visual quality are tied to concrete algorithms that address the bulk of

the required quality criteria at once. As one of the first approaches

to address Stacked Graph optimization, Byron and Wattenberg [B-

W08] describe layout algorithms based on the following steps; (1)

computing the layer-geometry; (2) choosing the appropriate coloring

scheme; (3) labeling of layers; and (4) layer ordering. One desirable

characteristic for Stacked Graphs according to their design recom-

mendation is to optimize the overall shape of the graph through

avoiding “too flat or too spiky”. They propose an implicit quality

metric called a wiggle-minimizing method to avoid this issue. Ex-

tending their work for a specific domain problem, TIARA [LZP∗09]

was presented as an approach that segments a text corpus into topic

layers evolving over time. This visualization is designed to satisfy

three quality criteria to optimize the layer ordering; namely, “(1)

minimizing layer distortion, (2) maximizing the available space

within each layer to accommodate rich thematic content, and (3) en-

suring visual proximity of layers to be proportional to their semantic

similarity” [LZP∗09]. The semantic similarity of two layers is com-

puted by measuring the number of shared documents between their

respective topics. As an alternative to the mirrored, central baseline,

this approach proposed bottom-aligned graph to avoid “two artificial

groups of topics” [LZP∗09]. Addressing a similar analytical task,

TextFlow [CLT∗11] extends the previous visualization techniques to

include splitting and merging concepts over time. This paper propos-

es a layout algorithm that is based on a three-level Directed Acyclic

Graph to optimize the ordering of layers with the primary quality

criterium to avoid edge crossings. This graph-based approach ap-

proximates different splits and merges using nodes that are ordered

and placed according to their optimized position. Hereby, the notion

of optimality is determined by the following criteria; reduce edge

crossings; smooth topic layers (minimizing the edge length); and

favor symmetry. Furthermore, Cui et al. [CLWW14] extended their

previous work to support hierarchical data. They propose the usage

of an incremental evolutionary tree cut algorithm in order to propa-

gate the graph-based layout to different sub-layers, preserving the

stability of the context in the visualization.

Evaluation Methods for Stacked Graphs Quality Metrics.
The quality of Stacked Graphs has been mostly determined by quali-

tative evaluation methods. As most Stacked Graph approaches were

developed for the use case of topic evolution over time, the proposed

evaluation methods are based on the users’ perceived differences in

the visualization quality. However, the optimization of the layer or-

der, as well as, the graph baseline have been evaluated using defined

measures. These are often used within the layout algorithms to deter-

mine the layer ordering and are, therefore, only useful as evaluation

metrics in the broader context, i.e., when comparing the visual qual-

ity of different approaches. Byron and Wattenberg [BW08] describe

quality criteria and quantitative metrics for optimizing the aesthetics

and legibility of Stacked Graphs. They extend the baseline definition

of Havre et al. [HHWN02], introducing a “weighted wiggle” func-

tion. Liu et al. [LZP∗09] introduce the metric of “volatility” of a

topic layer to measure the fluctuation of a layer over time. This met-

ric computes the standard deviation of the layer heights to determine

a sorting strategy of the layers. For example, Liu et al. [LZP∗09]

propose sorting the least volatile layer close to the baseline. For

splitting and merging layers over time, Cui et al. [CLT∗11] propose

to evaluate the number of edge crossings in order to determine the

quality of the layout. Moreover, for hierarchical structures, Cui et

al. [CLWW14] propose metrics based on the smoothness between

adjacent tree cuts. They compute three values to determine the s-

moothness; namely, tree mapping (global tree cut energy function),

normalized mutual information (similarity between adjacent tree cut-

s), and tree distance (avg. difference between two related cut nodes

of the adjacent trees). In addition to their quantitative evaluation, this

paper measures the quality of their proposed visualization based on

the perceived stability of the generated graph. They performed user

studies to measure layout similarity, visual clutter, and the support

for topic tracking.

Open Research Questions.
As discussed by Byron and Wattenberg [BW08], there are various

areas of open research with respect to measuring the visual qual-

ity of Stacked Graphs. Quantifying the quality of different layer

reorderings, avoiding layer crossing, representing hierarchical infor-

mation [CLWW14], and studying the effect of a shifting baseline on

the graph legibility, are some of the open research challenges.

10. Text Data
The text is an inherently multivariate data source. Typically, when

referring to textual data, we are regarding text corpora as a semi-

structured source of information, molded by natural language pro-

cessing and computational linguistics. Generally, linguistic and text

visualizations [KK15, JFCS15] focus on revealing semantic infor-

mation from the underlying raw text data. These can be the result

of applying simple statistical processing (word-frequencies, bag-

of-words models, etc.), more sophisticated linguistic processing

(named-entity recognition, sentiment analysis, etc.), or combination-

s of both. Hence, most text visualization approaches rely on some

text-mining approaches to transform the raw text into a structured

data source [AdOP12, CC16].

These extracted data structures reveal different perspectives on

the text data depending on the analysis tasks at hand. Based on

the derived structure, various tailored techniques are utilized to

visualize the data. For example, applying named-entity recogni-

tion can unveil the geospatial aspect of a text source through

extracting mentioned locations, e.g., [CDW∗16, GWS17]. More-

over, through linguistic computation, a text source can be trans-

formed into a high-dimensional dataset of microlinguistic fea-

tures, e.g., [KO07, ARLC∗13]. In addition, parsing the relations

of entities mentioned in a text yields a relational dataset or ex-

poses hierarchical dependencies, e.g., [IM15, JEAGK17]. Further-

more, text corpora can be treated as sequential data, for example

through using the timestamp of documents in a given collection

(e.g., [EAGA∗16, LYW∗16]), or through parsing temporal informa-

tion contained in a text document (e.g., [FBM16, EASG∗17]).

All these potential transformations of text data make it a diverse

data source. Through text-mining and other computations, the vi-

sualization of text data depends on the chosen extracted structure.

In this section, we discuss two aspects of linguistic visualization
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that are inherent to text data, namely legibility of Typographic Vi-

sualizations (10.1) and Tag Clouds (10.2). Readers may refer to

the visualization types above to represent extracted time, geo, and

high-dimensional features of text data.

10.1. Typographic Visualizations
Typography [Fel11] is the study of arranging type units of writ-

ten language to display and render text. This arrangement de-

termines the legibility and visual appeal of text, which is essen-

tial for various fields, such as, information visualization, design,

and others. Typographic visualizations refer to all visualization-

s that rely on text sections, such as, labels in charts (e.g., [H-

WS17, EASG∗17]) or typographic displays for close- and distant-

reading (e.g., [GREA15, KJW∗14]).

Figure 27: Typographic Visualizations – Optimization Goals, Anal-
ysis Tasks & Visual Patterns

Why Do We Need Quality Metrics for Typographic Visualiza-
tions?
Typography is used in different environments. For example, labeling

a chart or a graph [BB16] has other constraints than displaying a

complete text corpus in close- or distant-reading views [BGN08, B-

B14b]. To optimize the use of typography in visualizations, different

parameters [SOK∗16, ACS∗17] have to be altered; these include

typeface, font size, font weight, color, orientation, intensity (bold-

ness), spacing, case, border, background, underline, shadow. The

accurate setting of those parameters determines the legibility of text,

thus, influences the understandability of visualizations. Furthermore,

using the correct highlighting mechanisms facilitates the search and

comparison in textual views or labels.

Typical Analysis Tasks for Typographic Visualizations
Optimizing typography is essential to perform three main tasks,

namely: legibility (readability); localization and identification (high-

light); and comparison (size). The first and most important task is

the legibility (readability) of a written text, i.e., to understanding

textual summaries [BB14b] or labels [BB16] in visualizations. Sec-

ond, texts are rendered in visualizations to highlight certain aspects,

therefore, localizing and identifying a specific text is an importan-

t task. For example, through using altering text and background

color of keywords, visualization designers establish a visual link-

age [SOK∗16] between them. The last task is comparing text labels.

Most commonly, labels are used to encode the importance of an

attribute, for example, in their size. Setting the right typography

for this task helps to avoid perceptual biases when comparing and

interpreting text labels [ACS∗17].

Summary of Approaches.
Similar to the design of Glyphs, the field of typography presents

quality considerations mainly by stating design recommendations

and guidelines. Brath and Banissi [BB14b] comprehensively review

different font attributes and their perceptual and analytic effect on

visualizations. In their paper, they list a set of font-specific proper-

ties (typography dimensions) that can be adjusted depending on the

analysis task. In addition, they discuss different usages of typograph-

ic attributes in visualizations to draw attention to words and regions

of interest. They conclude that typographic attributes can be mapped

back to visual channels [BB14a] to derive perceptual quality metrics

and guidelines. As an example, font weight (corresponding to the

size as a visual channel) would be more effective on ordered or

quantitative data encodings than font family (corresponding to the

shape as a visual channel). They also discuss integral (e.g., capi-

talization and italic) vs. separable (e.g., font weight and underline)

typographic dimensions. In another work, Brath and Banissi [BB16]

highlight the usage of optimized typography for the tasks of compar-

ison and identification of labeled elements in set visualizations. To

optimize the visual perception of text labels, they reviewed notice-

able differences in the visual encoding of the typography. Another

important task in the context of typography is typeface legibility. In

her doctoral thesis [Bei09], Beier gives a comprehensive overview

of the visibility and familiarity of typefaces and discusses the cogni-

tive aspect of separation in visual perception. Her thesis examines

the legibility of typefaces through extensive cognitive studies (also

discussed in [BL13]) debunking the statement “readers read best

what they read most” [Lic90].

Evaluation Methods for Typographic Visualization Quality
Metrics.
Studying the perceptual effect of typography in information visual-

ization has been a recent endeavor. So far, the typographic quality of

text, visualizations, as well as, info-graphics, has been qualitatively

evaluated through user studies. When it comes to the usage of typog-

raphy in visualization, two notable user studies [SOK∗16, ACS∗17]

evaluate common guidelines. In addition, Brath and Banissi [B-

B15] presented an information-theoretic approach quantifying the

lossiness in visualizations based on evaluating the fidelity (number

of unique levels perceivable for a particular visual attribute) in an

encoding. Their approach measures the effectiveness of a partic-

ular set of visual encodings, which allows an efficient pruning of

the design space of typographic dimensions. Moreover, the recent

study by Strobelt et al. [SOK∗16] empirically examined the effec-

tiveness of highlighting techniques through a crowd-sourced user

study, providing guidelines for nine different highlighting approach-

es. Their result shows the perceptual differences and superiority

of the examined typographic dimensions and gives guidance on

their utilization in information visualization. In a more recent work,

Alexander et al. [ACS∗17] study the perceptual biases in font size

as a data encoding. As a commonly used typographic attribute, the

font size has been utilized to encode data values in several visualiza-

tion techniques. In their paper, they discuss results obtained across

multiple experiments that consider factors such as the length and

width of words and the height of the characters on the ability to

judge comparative font sizes.

Open Research Questions.
Typography is an essential element of many visualizations and deter-

mines our understanding of the presented contexts. As such, study-

ing the perceptual effects of the different typography dimensions
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is a crucial task. Some preliminary approaches to measuring the

quality of typographic visualizations for different tasks have been

recently proposed. However, determining perceptually-superior ty-

pography variations for different visualization tasks is still an open

research question. Another exciting research challenge is in optimiz-

ing typography for people with reading difficulties, e.g., dyslexia.

Studies [RBY13] suggest that certain typefaces improve the accessi-

bility (legibility) of textual data, which could be a significant factor

for visualization design (similar to accessibility considerations for

color blindness).

10.2. Tag Clouds
Tag (or Word) Clouds are a general-purpose visualization tech-

nique for text data with a broad usage in commercial tools and

applications. This visualization technique has been proposed as

an intuitive distant-reading technique that highlights a selection of

prominent words or tags from a corpus to give an overview of the

content [VW08]. This technique became widely popular around

2009, after the introduction of the Wordle web-platform [VWF09]

for the automatic generation of word clouds from text snippets. As

a visualization technique, word clouds have often been debated, not

without controversy [SCH08, HR08], but nevertheless, have pre-

vailed and continue to be optimized based on some quality criteria.

Figure 28: Word/Tag Clouds – Optimization Goals, Analysis Tasks
& Visual Patterns

Why Do We Need Quality Metrics for Tag Clouds?
Tag Clouds map a selection of keywords onto a two-dimensional

canvas. Their four principal visual variables are tag size (typi-

cally representing a numerical attribute, e.g., the keyword fre-

quency); tag position (often algorithm-determined, in some cases

semantically-anchored); tag color (often random, in some cases

representing a categorical attribute); and tag orientation (mostly

algorithm-determined). To enhance the perceptual quality of Tag

Clouds, it is desirable to optimize the four visual variables, e.g.,

by determining optimal initial placements of keyword anchors and

optimizing the text readability through optimal keyword orientation-

s [WCB∗18]. Furthermore, for incrementally changing data (e.g.,

topics over time) or comparable text corpora (e.g., news about the

same event), one desirable optimization goal is the stability of word

placement to facilitate keyword localization [CWL∗10].

Typical Analysis Tasks for Tag Clouds
The primary analysis tasks supported by this visualization tech-

nique are exploration, overview, and summarization of document

collections. Hence, Tag Clouds have been used as a distant-reading

technique to get an initial impression of the content of a text cor-

pus [JFCS15], substituting traditional list-based views. Tag Clouds

have also been used for labeling automatically generated topics, as

discussed by Smith et al. [SLPS∗17] who studied different visual

representations for topic understanding. Lastly, Tag Clouds support

the task of keyword search and corpus navigation [RGMM07].

Summary of Approaches.
Seifert et al. [SKK∗08] propose a family of layout algorithms for Tag

Clouds to optimize the packing and compactness of keywords. In

their paper, they propose measures for evaluating the task-dependent

usability of Tag Clouds and compare a set of layouts. Strobelt et

al. [SSS∗12] propose an overlap removal algorithm that combines

a scan-line based method with concentric sorting to optimize the

packing of keywords in a Tag Cloud. Through removing overlaps

while maintaining the proximity relationships between tags, they

maximize the perceived quality of the visualization. Another ap-

proach for layout optimization is proposed by Cui et al. [CWL∗10].

In their paper on dynamic word cloud visualization, they present a

technique tailored to ensure semantic coherence, while preserving

the spatial stability of word clouds over time. Using an information-

theoretic approach, they assess the perceptual quality of Tag Clouds

through different criteria, for example, ensuring that words that ap-

pear or disappear simultaneously over time are spatially grouped

(co-occurrence criterion). Using a feature vector for every criteri-

on, a projection-based layout determines the initial placement of

keywords, later, a force-directed layout is used to compute the pack-

ing of all tags. A more recent approach by Wang et al. [WCB∗18]

presented a stability-preserving technique for Tag Cloud layouts.

Using a rigid body dynamics-based layout [Wit97], they introduce

a set of constraints based on a selection of forces that define the

quality of the Tag Clouds. These forces optimize, for example,

neighborhood-preservation (stability), tag-centrality, or keyword-

packing. The presented approach is tailored to retaining the stability

of the spatial position of the keyword while editing a word cloud. In

addition, semantic-preserving approaches are proposed to optimize

the placement of keywords in Tag Clouds with respect to content

clusters [WPW∗11], geo-spatial information [BCL∗16], or shape

projections [PTT∗12] .

Evaluation Methods for Tag Clouds Quality Metrics.
Similar to the evaluation of quality measures in typographic visual-

izations, the evaluation methods applied to measure quality in Tag

Clouds are mostly based on qualitative user studies. Rivadeneira et

al. [RGMM07] review the design space of Tag Clouds and present

experimental evidence for evaluating their quality. In their studies,

they considered optimizations based on typography (font weight,

size, and color), as well as, word placement (sorting, clustering, spa-

tial layout). They conclude that in designing Tag Clouds, the focus

ought to be on optimizing the spatial layout (rather than other vari-

ables) as it demonstrates an effect on high-level cognitive processes,

such as impression formation (overview). Another recommendation

they give in their paper is to “consider the upper-left quadrant as a

focal point” for placing tags that should be emphasized. Focusing

specifically on the spatial layout, Lohmann et al. [LZT09] conduct-

ed a study to examine three common layout techniques for Tag

Clouds on the user’s perception and performance for different anal-

ysis tasks. Based on their findings, they recommend the following

layout techniques; for the task of finding a specific tag: sequential

layout with alphabetical sorting, for the task of finding the most

popular tags: circular layout with decreasing popularity, and for

the task of finding tags that belong to a certain topic: thematically
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clustered layouts. Examining the effects of visual features, Bateman

et al. [BGN08] measured perceptual effects on tag selection through

varying nine visual properties of Tag Clouds, including typography

and layout attributes. Their results indicate that particular attributes

(e.g., font size, weight, and color) have a stronger influence on tag

selection than others (e.g., number of pixels) that are “less likely to

draw a viewer’s attention.” They also conclude that the centrality

of keywords on the canvas impacts its prominence. In addition to

layout and typography optimizations, Schrammel et al. [SLT09]

evaluate the impact of semantically structured layouts on the search

performance in Tag Clouds. Similarly, Halvey and Keane [HK07]

examined the influence of varying visual attributes on search time.

Furthermore, Jänicke and Chen [JC10] present a general quality

metric based on visual salience. Their technique applies to all types

of visualizations, as it measures how visual attention is directed in

an image, favoring visualizations that direct the attention to the most

relevant attributes. In their paper, they show how their technique is

applied to measure the visual quality of Tag Clouds.

Open Research Questions.
One of the open challenges for Tag Cloud visualizations is the in-

terpretation of spatial proximity [HMHS06]. Most quality criteria

value the stability and compactness of a layout, however, often the

produced visualizations form artifacts, such as perceiving two neigh-

boring words as an n-gram (or sentence), setting the stage for false

assumptions. Another aspect of quality that impacts Tag Clouds

is the quality of the linguistic processing of the presented tags. To

avoid repetitions of semantically-identical keywords in the visualiza-

tions, this visualization technique goes hand-in-hand with tailored

linguistic processing methods. An opportunity for future research is

in providing tighter integration of the visualization approaches and

the linguistic computation, allowing for user-steerable refinements.

11. Opportunities and Future Directions
While this document describes existing approaches for the quality

assessment of visualizations, there are still many opportunities to

improve and extend existing metrics. In this Section, we report

general findings and highlight promising future research directions.

11.1. General Findings and Discussion
In the following, we discuss common aspects of quality metrics that

span across most visualization techniques.

Which QM favors which visual pattern? One of the central ques-

tions for QM design is how an effective instance of a particular

visualization type should look like. This understanding is implicitly

modeled into a heuristic algorithm trying to capture if the subjective
QM designer’s expectation of the visual structure is met. However,

in exploratory analysis settings, it is unclear which QM to apply.

Some QMs favor one visual pattern, others another. But, it remains

to the user to guess which data or visual pattern is in the dataset.

What is even worse is that a majority of QMs is presented or pub-

lished for the purpose of quantitative algorithm evaluations without
describing which visual pattern they prefer.

What are the extreme cases that a QM can deal with? And what

happens if the specifications are not met? Only a few of our surveyed

approaches have been systematically investigated for their noise (in-)

variances and robustness toward skewed data distributions. However,

it is important that quality metrics can be applied independently of

the quality of the data or the existence of patterns. A user should

assume that no patterns exist in a dataset in case a quality metric

does not provide a useful representation.

Is QM research transferable among visualization types? We

found that some visualization subdomains share similar quality

criterion. For example, many QMs developed for Scatter Plots and

Line Charts (see: Section 6.1 and Section 9.1) are based on the bank-
ing to 45 degree principle. Another example are Scatter Plots and

Parallel Coordinate Plots (see: Section 6.1 and Section 6.3) where

the same clutter reduction techniques have been adapted for the

respectively other visualization field (c.f., [ED06a,ED06b]). Further

work should explore if research efforts can be transferred between

visualization techniques and subdomains.

Are QMs equally descriptive? In the case that QMs for different

visualization techniques are able to assess equally well the same

visual patterns, then QMs could be used as visualization type rec-

ommenders. This, in turn, presumes that a standard set of base

patterns has been accepted and established in the respective visu-

alization subfield. This itself is a challenging question, since not

only the type of dataset (e.g., hierarchical, high-dimensional, rela-

tional) influences the to-be-expected patterns but also the domain.

For example, time-series matrices, such as used for financial data

analysis [KNS∗06] or high-throughput analysis matrices [LBK∗18],

are incomparable in terms of their visual pattern although they are

matrix-like representations.

Evaluation of Quality Metrics. Notably, many works cited in this

survey acknowledge and explicitly mention the fact that the evalua-

tion of QMs is not backed up with perception-focused user studies.

This statement holds explicitly for quantitative quality metrics. As

mentioned in Section 3.3, design recommendations are mostly de-

rived from qualitative and quantitative user studies.

We claim that both approaches are valid but eventually should be

backed up with the respectively other approach. Heuristics should

be evaluated for their perceptual aspects and proven to correspond

to the humans’ perceptual properties. This can be only done in struc-

tured large-scale user studies. Especially, crowdsourcing studies,

such as in [HB10], allow for more and more (statistically) sound

statements to be made. Design recommendations, in contrast, should

be translated eventually into algorithms for deriving quantifiable

heuristics. This step allows one to make design recommendations

generally usable, comparable, and unambiguous.

Another important aspect for the evaluation of quality metrics

is the availability of perceptually-inspired benchmark datasets. As

one example, the Magnostics paper [BBH∗17] presents a syntheti-
cally generated benchmark dataset comprising 5.570 matrix pattern

images. For every of the five visual base patterns, and variations

thereof, a gradual pattern degeneration schema is applied. This leads

to perceptually increasingly vanishing/blurred instances of the visu-

al base patterns. Each pattern degeneration function has the purpose

to model quantifiable structural/topological-, algorithmic- or visual

noise/artifacts into the pure base pattern images.

To address this issue, Schulz et al. [SNEA∗16] propose generative

data models for the validation, evaluation, and benchmark genera-

tion. In their paper, they survey various approaches that have been

suggested to overcome the problem of the availability benchmark
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datasets for different types of data. They argue for the use of genera-

tive gold-standard data for a standardized evaluation of visualization

approaches, in particular, w.r.t.perceptual quality.

11.2. Open Research Questions and Promising Directions
Although Quality Metrics seem to be explored extensively, some

fundamental questions cannot be answered thoroughly for most

quality metrics:

Multi-Criterion QM. The current design of quality metrics fol-

lows one straight line. No bends or junctions are intended. However,

our visualizations almost never expose just one pure visual pattern

but present rather a mixture of several patterns. Accordingly, it is

challenging to say under which circumstances QMs work and fail.

What is needed are “flexible” QMs that adapt to the underlying

dataset at hand and promote the main visual pattern, and, what is

even more important, these Multi-Criterion QM should notify the

user upon usage that their dataset contains more than just the main

pattern and offer a faceted visual pattern space view. To give an

example for Matrix-based or Graph visualization: A Multi-Criterion

QM would first let the user see the primary expected pattern (e.g.,

data groupings) and then promote –optimally related– connectivity

aspects (e.g., the connection between these groupings) to the analyst.

Task-Adapted QM. In interactive and exploratory systems, the

notion of quality, especially in relation to the current analysis task,

may change over time. However, the current QM approaches are not

integrated into an exploration workflow and are not able to change

their quality notion by adapting to the currently conducted task. To

stick with our matrix-exploration example from above: An analyst

might explore a large set of matrices with the goal to first filter out

the potentially low number of matrices containing a visual pattern

(recall is important), then secondly switches to the task to find data

clusters, i.e., similarly behaving entities (recall and precision are

equally important), but then switches tasks again to reason how

these clusters related to each other (precision is of high importance).

In such a scenario, not only the quality metric needs to be gradually

exchanged during the exploration, but also importance for precision

and recall must be adopted gradually.

Interactive and Human-Supported Quality Steering. Related to

the two aforementioned aspects is interactive and human-supported

quality assessment. Interactive and reactive systems should be able

to facilitate the same exploration flexibility as the user in the process.

Several noteworthy approaches have been presented in this young

field with different foci on how quality metrics can be integrated in

the exploration workflow:

Behrisch et al. [BKSS14] present a relevance feedback approach

for a user-defined notion of interestingness in Scatter Plots. Users

iteratively rank presented candidate views for their perceived inter-

estingness. A gradually adapted classification model tries to mimic

the current understanding of interestingness in a given feature space,

while a so-called ”Decision Support System“ constantly monitors

the user and assesses the relevance-driven search process for conver-

gence and stability.

Another interesting approach is presented by Wongsuphasawat

et al. [WMA∗16] in their Voyager system. Voyager is designed as a

mixed-initiative system, in which intelligent services and the user

collaborate to achieve the analysis goals [Hor99] – an idea also

inherently incorporated in the Visual Analytics mantra [KAF∗08].

Upon startup, the user is provided with a gallery of automatically

generated visualizations for each (statistically) interesting data vari-

able. The user navigates in the data space by a drill-down on one

meaningful/expressive data variable and the underlying Compass
recommendation engine enumerates, clusters, and ranks related vi-

sualizations according to both their underlying data properties and

the resulting perceptual principles.

The interactive navigation and query definition for (complex)

visual patterns is in the focus of the work of Shao et al. [SBS∗14].

Confronted with a Scatter Plot pattern retrieval task the user draws

a vague idea of an expected visual pattern into a canvas. Upon

each stroke the system retrieves the most similar, respectively most

dissimilar plots, an idea referred to as guided-sketching. Visually

similar results are clustered and can be taken over to the canvas to

adapt the search in this specific direction.

Machine Learning. Deep-learning based approaches have proven

to be good visual pattern detectors. This could make deep-learning
based QM a viable research direction. Two preconditions must hold:

(1) a sufficiently large training dataset must be provided or gener-

ated, (2) an appropriate network structure has to be found that is

able to deal not only with one expected visual pattern but rather a

mixture-model of the pattern space. Recently, Sabour et al. [SFH17]

have shown an interesting approach in which the activity vector

of groups of neurons, so-called capsules, represents a specific type

of entity, such as an object or an object part. This approach could

be used for learning capsules, one for each visual pattern, and the

network routing scheme decides which of the visual patterns are

visually outstanding (have the most information content). While

these approaches could lead to satisfactory results, proving their per-

ceptual correspondence will be even harder since these approaches

suffer inherently from the interpretability gap.

Closing the Gap to Higher-level Perceptual QM. As described

before, mid-level perceptual quality metrics have the goal to re-

trieve interpretable visual patterns. In a successfully applied quality-

metrics-driven Information Visualization pipeline, as depicted in

Figure 1, the quality-metrics-driven automation part will help to

reduce the analysts’ cognitive overload by providing information

about the dataset’s inherent structure. While this is an active research

field today, it makes sense to outline the benefits of developing multi-

level perceptual and cognitive QMs. Multi-level quality metrics, e.g.,

combined of color perception QMs (low-level), pattern-detector QM-

s (mid-level), and memorability QMs (high-level) could find visually

outstanding information with a high likelihood to be remembered.

In another example, during the exploration of a relational dataset, a

Multi-Level QM could decide to favor a graph representation over

a matrix, since the analyst expressed more confidence in former

analysis scenarios.

Meta-visualizations are inevitable for the users’ understanding
and trust in the quality metric assessment. These visualizations need

to communicate the algorithmic certainty assessment, the percentage

of the explored parameter space (especially, important in incremen-

tal scenarios), and the relationship between the result instances.

11.3. Limitations of this Survey
This work surveys mid-level perceptual quality metrics by moti-

vating the needs and benefits of quality metrics in the respective
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visualization subfield, summarizing the challenges and outlining

analysis tasks supported by quality metrics in the literature. Our

goal is to provide a central document where concepts from multi-

ple visualization subdomains are enumerated and related, and their

overarching concepts are discussed in contrast to each other.

While we discussed at length several alternatives to our present

taxonomy, we finally opted to guide the reader through a structured

questionnaire in each visualization section. We believe that the

(missing) understanding of the visualization design challenges is a

fundamental barrier to the effective use of visualizations in practice

today. By providing a straightforward description of the problems

and possible solutions in simple terms, we hope to help a wide

audience better understand these algorithms and integrate them in

future systems and libraries.

While we are trying to educate the user in the selection of QMs

for a respective visualization type, a systematic answer to the ques-

tion “Which QM is the best one for my circumstances?” remains

extremely challenging. We decided against attempting to describe

this matching formally. In particular, we do not think this is pos-

sible without considering domain-dependent, data-dependent, and

user-dependent aspects.

12. Conclusion

This survey presents quality metric approaches for the field of In-

formation Visualization. We summarize the efforts from 14 distinct

visualization techniques/subfields along the five data types Multi-

and High-Dimensional-, Relational-, Geo-Spatial, Sequential- and

Temporal-, and Text data.

We found that the major research developments in the field are

increasingly abandoning the idea of pure clutter reduction approach-

es and focus on visual pattern retrieval. This in turn has significant

implications for visualization techniques and visual analytics in the

exploration process. Within an integrated QM-driven automation, as

depicted in Figure 1), the user will be guided to the primary (visual)

patterns within the data and will be presented with a birds-eye per-

spective allowing to assess the dataset-inherent importance of each

pattern. Thus, not only clustering-, but also outlier-, correlation-,

and trend analysis tasks can be accomplished more effective and

more efficient.

One of our core contributions of this work is that we formalize,

unify, and exemplify the major QM vocabulary. In future, we can ex-

pect that such a unified understanding will enable a more structured

work on this problem.

By gathering the knowledge in a central document, we hope to

inspire more research to develop novel quality metric measurement

strategies, more externalized and quantifiable criteria proven to

mimic the analysts perceptual system, as well as novel exploration

approaches to harness the power of QMs.
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