
Eurographics Symposium on Rendering 2018
T. Hachisuka and W. Jakob
(Guest Editors)

Volume 37 (2018), Number 4

On-the-Fly Power-Aware Rendering

Yunjin Zhang1∗ Marta Ortin2∗ Victor Arellano2 Rui Wang1† Diego Gutierrez2 Hujun Bao1

1 State Key Lab of CAD&CG, Zhejiang University 2 Universidad de Zaragoza, I3A
*Joint first authors †Corresponding author: rwang@cad.zju.edu.cn

Figure 1: We propose a novel on-the-fly, power-aware framework that selects the optimal rendering configuration to maximize visual quality,
while keeping GPU power consumption within a power budget. Different from existing approaches, our method requires only a few minutes
of initialization executed once per platform. The figure shows results for the Hall scene, where our power-optimal settings yield images of
similar quality as Maximum Quality, with significantly lower power consumption. The charts on the right show power consumption and
quality error (measured with the perceptually-based SSIM metric).

Abstract
Power saving is a prevailing concern in desktop computers and, especially, in battery-powered devices such as mobile phones.
This is generating a growing demand for power-aware graphics applications that can extend battery life, while preserving good
quality. In this paper, we address this issue by presenting a real-time power-efficient rendering framework, able to dynamically
select the rendering configuration with the best quality within a given power budget. Different from the current state of the art,
our method does not require precomputation of the whole camera-view space, nor Pareto curves to explore the vast power-error
space; as such, it can also handle dynamic scenes. Our algorithm is based on two key components: our novel power prediction
model, and our runtime quality error estimation mechanism. These components allow us to search for the optimal rendering
configuration at runtime, being transparent to the user. We demonstrate the performance of our framework on two different
platforms: a desktop computer, and a mobile device. In both cases, we produce results close to the maximum quality, while
achieving significant power savings.

CCS Concepts
•Computing methodologies → Rendering;

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13483

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

1. Introduction

Current mobile phones and other battery-powered devices incorpo-
rate increasingly complex functionalities and applications, which
in turn lead to higher power consumptions. Advances in computer
graphics have produced highly sophisticated real-time rendering al-
gorithms, which are used in games, data visualization, or virtual
reality. To extend the limited battery life, energy saving becomes a
primary goal [AMS08, JGDAM12]. A lot of research effort has re-
cently been oriented towards characterising the power consumption
of rendering algorithms and finding strategies to control the amount
of expended energy [SPP∗15, PLS11, APX14, WYM∗16].

Wang et al. [WYM∗16] proposed a state-of-the-art power-saving
framework, which traded power consumption for image quality at
rendering time. The system was capable of producing high-quality
images, while expending significantly less energy. Unfortunately,
the system required a pre-processing step of several days, which
had to be performed for every different scene to be rendered. More-
over, as a consequence of such precomputation, it could not handle
dynamic scenes, and required many memory accesses to fetch the
stored data, hampering performance.

In this paper, we propose a novel real-time, power-saving frame-
work that finds the optimal tradeoff between power consumption
and image quality on-the-fly, with only a few minutes of initializa-
tion. This is a significantly harder problem, which in turn makes the
framework useful for any new game or application without any ad-
ditional initialization, and enables handling dynamic scenes for the
first time. It predicts power consumption and estimates the quality
error of different rendering configurations at runtime, and leverages
those predictions to adjust the quality level of different shaders, in
order to tune the expended energy and keep it within a user-given
power budget.

The main challenge for such real-time power-efficient render-
ing framework is running without affecting user experience. Key to
solving this problem are our runtime power prediction and quality
error estimation strategies: First, our novel power prediction model
(Section 5) allows us to anticipate the power consumption for ev-
ery rendering configuration, without having to measure the actual
energy expended. Second, our quality error estimation (Section 6)
obtains the error for all configurations without the need to render
them. These two components yield extremely accurate predictions,
which completely remove the need for the time consuming pre-
computation of the entire camera-view-space, required for every
different scene in Wang et al.’s framework [WYM∗16].

We show results with an in-house, OpenGL prototype implemen-
tation that includes six different shaders, with three different qual-
ity levels for each one, which yields 729 different shader combina-
tions. We demonstrate the flexibility of our approach by running it
on two different platforms: a desktop PC and a mobile device.

2. Related Work

The reduction of power consumption is a growing concern in many
different areas, including both algorithms and hardware architec-
ture [KY14]. Many recent examples have been shown regarding
display technology [MWDG13, CWC∗14, CCC∗16], user inter-
faces [DCZ09], or cloud photo enhancement [GSC∗15], to name

a few. This issue is specially relevant in mobile devices with lim-
ited battery life [ILMR03]. We focus here on the particular aspects
more closely related to our work: energy saving in rendering and
GPU power modeling.

Energy saving in rendering. The power efficiency of several
existing graphics algorithms has been extensively examined on dif-
ferent GPUs, as a first step towards reducing the power consump-
tion associated to rendering [JGDAM12]. Power limitations are
specially relevant in GPUs for mobile devices, and power reduc-
tion techniques such as tiling architectures and data compression
have been broadly explored [AMS08]. Stravrakis et al. [SPP∗15]
employ dynamic voltage scaling based on framerate, and imple-
ment an energy-aware balancing algorithm that dynamically selects
the rendering parameters (geometrical complexity and texture res-
olution) to save power. Reducing the precision of arithmetic op-
erations can also effectively reduce energy consumption in pixel
shaders [PLS11]. With respect to hardware-based optimizations,
Arnau et al. [APX14] observe that many fragments are repeat-
edly rendered in different frames, and exploit this redundancy using
fragment memoization.

GPU power modeling. GPU power can be modeled by consid-
ering the static and dynamic power of each one of its architectural
units (floating point unit, ALU, cache, memory...) [HK10]. Instead,
we aim at predicting power consumption using only rendering in-
formation, in order to obtain a model directly related to scene com-
plexity. Vatjus-Anttila et al. [VAKH13] proposed a model for GPU
power consumption taking into account the contributions of three
different primitives separately (batches, triangles, and texels), and
combining them as a weighted sum. Different from this approach,
our model includes render passes, takes into account all primitives
simultaneously, includes the number of fragment shader invoca-
tions instead of texels as a better predictor of power consumption,
and adapts in real-time to changes in the scene. Besides, Vatjus-
Anttila et al. need to include an estimated percentage of backfacing
and depth culled primitives in order to improve the accuracy of
their model. In contrast, we obtain the precise number of primitives
used in each stage of the GPU pipeline and use them directly. This
allows us to handle more complex, dynamic scenes, and leads to
much higher prediction accuracy.

Recently, Wang et al. developed a power-optimal rendering
framework for mobile devices [WYM∗16], based on Pareto fron-
tiers in power-error space. Despite the very good results, the
method requires several days of precomputation of the whole
camera-view space for each scene. This is impractical, limits the
application of the method to static scenes only, imposes large mem-
ory requirements, and forces all novel views produced at runtime
to be interpolated, which may lead to large errors even in static
scenes with large content changes between views (e.g. unoccluded
objects).

In contrast, we introduce a novel real-time power prediction
model and an error estimation mechanism, which can handle new
games and applications without any specific precomputation. It
adapts to the scene being rendered in real-time, thus being able
to handle dynamic scenes and effects while providing very high
accuracy for scenes with different characteristics and complexity.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

156

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 2: Example of the rendering process composed of three
rendering passes: base shading, shadows, and reflections.

3. Problem definition

We consider the rendering process as composed of multiple ren-
dering passes that define the visual effects (shadow mapping, re-
flections, antialiasing...), as illustrated in Figure 2. Each pass is ex-
ecuted with a shader with a particular quality level. The input of
the rendering process is thus a rendering configuration s (a vector
describing the sequence of shaders corresponding to each render-
ing pass), and the camera parameters c (position and view). In the
s vector, the ith component represents the shader quality level used
for the ith pass. The contributions from all the passes are combined
by a function f to generate the final image; generalizing the render-
ing process as a function f allows us to implicitly include forward
and deferred rendering in our framework. Table 1 sums up all the
symbols used the paper.

Different rendering configurations yield results of varying vi-
sual quality. Let sbest denote the rendering settings that generate
the best quality image. Similar to the recent work of Wang et
al. [WYM∗16], we can define the quality error e(s,c) of any im-
age produced by different rendering settings as

e(s,c) =
∫ ∫

xy
|| f (sbest,c)− f (s,c)||dxy (1)

where x,y define the pixel domain of the image, and || · || indicates
the chosen norm.

Besides yielding varying quality errors, different s and c vec-
tors also result in different power consumption P(s,c). In general,
higher quality images require more power, which generates a trade-
off between power and error. Therefore, given a power budget Pbgt,
we look for a vector s such that e(s,c) is minimized, while P(s,c)
remains within the budget:

s = argmin
s

e(s,c) subject to P(s,c)< Pbgt (2)

Different from Wang’s work, we demonstrate in this paper how
to predict P(s,c) and estimate e(s,c) in real-time. This is a sig-
nificantly more difficult problem, since Wang’s framework relied
on a time-consuming precomputation (in the order of a few days)
of the entire camera-view-space, to be performed for each partic-
ular game or scenario. Our implementation includes six different
shaders (resolution, base shading, reflections, shadows, metals, and
antialiasing), with three quality levels each, generating a total of
729 different rendering configurations.

s Rendering configuration: vector with shader quality level
for each pass

si Shader for pass i
sbest Rendering configuration that generates best quality im-

ages
c Camera position and view

f (s,c) Image rendering function with s and c.
e(s,c) Image quality error with s and c, simplified as e(s).
P(s,c) Rendering power with s and c, simplified as P(s).

Pbgt Power budget
Pm Minimum power consumption of the GPU
PM Maximum power consumption of the GPU

b, v, f Batches, vertices, and fragments used to render a frame
B, V , F Batches, vertices, and fragments that saturate the GPU

kb, kv, k f Coefficients for batches, vertices, and fragments
Insvi, Ins f i Instructions in vertex and fragment shaders for pass i
Texvi, Tex f i Texel accesses in vertex and fragment shaders for pass i

χ Cost asociated to the execution of one instruction
ψ Cost asociated to the one texel access
l j Quality level j used for a given pass

lmax Worst quality level for a given pass
s0 Rendering configuration where every pass uses shader

quality level 0, same as sbest

sl
i Configuration where every pass uses shader quality level

0 except for pass i, which uses level l(l > 0)
slmax

i Configuration where every pass uses shader quality level
0 except for pass i, which uses the worst quality level

k Coefficient that relates the quality error of two shaders for
the same pass

Table 1: Symbols used throughout the paper, and their definition.

4. Algorithm Overview

Our algorithm is based on two key components, depicted on Fig-
ure 3: a power prediction model, and a quality error estimation
mechanism. Our power prediction model fits a set of coefficients
in an equation describing scene complexity, requires minimal ini-
tialization, and adapts in real-time to the content being displayed. In
order to select the optimal rendering configuration within a power
budget, we introduce a strategy to reuse fitted coefficients to predict
power consumption in new configurations with minimal computa-
tion.

For our quality error estimation, we first compute the error of
a frame with several rendering configurations (one per pass, six
in total in our prototype implementation) by running the renders in
the background and calculating the SSIM perceptual quality metric.
We then use the obtained values to estimate the error for all the
other configurations (729 in our case).

Our on-the-fly power-efficient rendering framework makes use
of these two components to produce a final image with the highest
possible quality, within a given power budget. Sections 5 and 6 ex-
plain the details of our power prediction model and error estimation
mechanism, respectively, while Section 7 describes how the power
prediction and error estimation steps are combined at runtime to
obtain the optimal rendering configuration.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

157

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 3: Main components of our algorithm: power prediction
model, and quality error estimation. Both components are com-
bined in our on-the-fly, power-efficient rendering framework to gen-
erate the optimal rendering configuration.

5. Power Prediction Model

We introduce our power prediction model based on scene complex-
ity, describe the initialization and real-time fitting process, show
how we can predict the power for all our rendering configurations
by fitting our model for only one of them, and describe implemen-
tation details.

5.1. Our model

The rendering pipeline starts running when we command the GPU
to draw a group of triangles (called a batch) already uploaded to
the GPU memory. Those triangles go through several consecutive
stages: first, the vertex shader executes per-vertex processing op-
erations; then, rasterization runs per-primitive processing to cull
hidden primitives; finally, the fragment shader interpolates per-
fragment parameters, texturing, and coloring to generate the final
pixel color [Hen]. When setting a fixed frame rate, the complexity
of the scene determines the load imposed on the GPU, and power
savings are achieved when the GPU is idle between consecutive
frames. Our power prediction model takes into account consump-
tion at the different stages of the GPU pipeline, according to scene
complexity; it includes the number of batches b, vertex shader calls
v, and fragment shader calls f (in the rest of the paper we will refer
to these variables as primitives).

Similar to previous work [VAKH13], we observe that GPU
power consumption follows an inverted exponential function be-
tween a minimum Pm and a maximum PM power, as the render-
ing load increases. Given a rendering configuration s and camera
parameters c, we thus propose the following power consumption
model:

P(s,c) = Pm +(PM−Pm)(1− exp−α) (3)

α = kb
b
B
+ kv

v
V

+ k f
f
F

Each one of the b, v, and f primitives is normalized by the number
of elements that causes the GPU to saturate to its maximum capac-

Figure 4: Power consumption for the Hall and Subway scenes.
Our power prediction closely matches the ground truth, measured
power consumption. For comparison, we also show the prediction
using the model proposed by Vatjus-Anttila et al. [VAKH13].

ity (B, V , and F , respectively). They are additionally weighted by
coefficients kb, kv, and k f , to take into account the relative impact
of each one on the total power consumption. All the parameters
depend on the rendering configuration s; additionally, the camera
parameters c are implicitly included in the primitives b, v, and f ;
we omit these explicit dependencies in the rest of the paper for the
sake of clarity.

Since the complete rendering process is composed of several
passes, we extend our previous power model to represent each pass
individually:

P = Pm +(PM−Pm)(1− exp−∑
N
i αi) (4)

αi = kbi
bi

Bi
+ kvi

vi

Vi
+ k f i

fi
Fi

where N is the number of passes, and the subindex i for each vari-
able indicates its per-pass value. Figure 4 depicts results for two
example scenes (Hall and Subway) with ground truth measured
power, showing how our equation yields a good prediction of power
consumption: an average of only 1% error in Hall and 2% in Sub-
way. The model proposed by Vatjus-Anttila et al. provides worse
power predictions (11% error in Hall and 37% error in Subway)
because it does not model the contribution of each rendering pass,
it does not consider the number of fragment shader invocations, it
uses an estimated correction factor to compute the number of prim-
itives, and it does not adapt to the scene being rendered in real-time.
More examples can be found in the supplementary material.

5.2. Initialization

Given our power model, we first obtain Pm by sending an empty
scene to the GPU; we then progressively increase the complexity
of the scene to find the values of PM , Bi, Vi, and Fi that saturate
the GPU. This is an offline process that needs to be performed only
once per hardware platform, and requires only 3 minutes, in con-
trast with the costly precomputation of the camera-view-space re-
quired for every scene in Wang et al.’s proposal [WYM∗16]. In
addition, we also obtain the number of instructions and texel ac-
cesses for the rendering passes with each quality level, which will
be explained in Section 5.4.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

158

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 5: Timeline showing how refitting works in our model.
First, rendering samples are collected during a prediction accu-
racy check window. We then check if the accuracy of the predicted
power is above a given threshold. If the predicted power needs to
be updated, we collect new samples during a fitting window, which
are used to refit the power model and yield a new prediction.

5.3. Real-Time fitting

A key aspect of our method is our real-time power fitting process,
which allows us obtain very high prediction accuracy without im-
posing a penalty in performance. When the scene starts running, we
collect rendering samples† during a fitting window, and use them to
fit coefficients kbi, kvi, and k f i using a linear regression on the power
consumption and number of primitives (see Equation 4).

After the fitting takes place, we check periodically during run-
time if the process has to be triggered again, to improve the accu-
racy of the prediction due to scene changes: First, we collect render-
ing samples during a prediction accuracy check window, and com-
pare our predicted power consumption with the actual consumption
measured in the GPU. If the average difference (computed during
the frames of the prediction accuracy check window) is above a set
threshold, we trigger the real-time fitting process again, and update
the coefficients of our power model. This process is illustrated in
Figure 5.

5.4. Reusing the fitted coefficients for other configurations

At any given moment, we are rendering the scene and fitting our
power model with a single rendering configuration. However, each
configuration leads to a different power consumption. Therefore, in
order to find the optimal rendering configuration, we need to predict
the power consumption for every one of them (729 in our prototype
implementation); fitting the model for every configuration would
obviously be impractical, and too computationally expensive.

To solve this problem, we leverage what our coefficients repre-
sent: kbi, kvi, and k f i express the cost associated to batches, vertices,
and fragments, respectively. In particular, kbi is the cost of a render-
ing request and all the exchange of information between CPU and
GPU required to perform the rendering task. In general, this cost

† A sample includes the measured power for a frame, and its corresponding
number of batches, vertices, and fragments for each rendering pass.

Figure 6: Power consumption of the Hall and Subway scenes, for
rendering configuration sA = (l0, l2, l1, l1, l2, l2). We show ground
truth measured data, predicted power with our real-time fitting,
and predicted power with coefficients reused from the fitting of a
different configuration sB = (l1, l1, l1, l1, l1, l1).

is fixed for all the shader quality levels of a given pass, so we can
reuse the same kbi for all our rendering configurations. On the other
hand, kvi, and k f i are related to the number of executed instructions
and texel accesses ‡, so we can express the coefficients associated
to pass i with shader quality level si as:

kvi(si) = χInsvi(si)+ψTexvi(si) (5)

k f i(si) = χIns f i(si)+ψTex f i(si) (6)

where Insvi(si), and Ins f i(si) represent the average number of exe-
cuted instructions for vertices and fragments in pass i, with shader
quality level si; Texvi(si) and Tex f i(si) are the average number of
texel accesses for vertices and fragments in pass i with shader qual-
ity level si; χ and ψ are the costs associated to an instruction and
a texel access. Since vertex shaders usually have the same number
of instructions per triangle for each pass regardless of the quality
level, and they do not access texels, we can simplify Equation 5 as
kvi = χInsvi. We obtain Insvi, Ins f i(si), and Tex f i(si) during the ini-
tialization step, which is performed only once per platform (Section
5.2). We instrument the shaders while they are being loaded into the
GPU to include atomic counters that automatically count the num-
ber of executed instructions and texel accesses for each primitive,
and compute the average after running a dummy scene for a few
minutes§. Therefore, the only unknowns are χ and ψ, which we
obtain by solving the inconsistent overdetermined system of equa-
tions with a linear regression.

This strategy has one key advantage: By fitting only one render-
ing configuration, we obtain the coefficients kbi, χ, and ψ, which do
not depend on that particular rendering configuration. We can then

‡ Even though any memory fetch could be issued from vertex and fragment
shaders, we use the term texel access because they generally constitute the
vast majory of memory fetches.
§ Any scene can be used to obtain the necessary information, as long as
all the shaders in the rendering engine are executed. At 30 fps, running the
scene for a couple of minutes allows us to obtain stable, averaged results.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

159

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

reuse them together with Equations 4, 5 and 6, to obtain power
predictions for all our configurations. Thus, the power consump-
tions associated to different rendering configurations depend only
on the number of executed instructions, texel accesses, and primi-
tives. Figure 6 shows our resulting prediction reusing coefficients
from a different configuration.

5.5. Implementation details

Our prediction accuracy check window has a length of 10 frames,
and our refitting window lasts 30 frames. These values are selected
to enable a fast fitting process while collecting enough data to en-
sure the robustness of our fitted model. The complete fitting process
and reuse of coefficients is completed in less than 1.5 s after the pre-
diction accuracy check is launched. We set the accuracy threshold
to 10% of the difference between Pm and PM . The linear regression
to fit our power model takes an average of 2.6 ms, and the compu-
tations to reuse the coefficients for other configurations require 0.7
ms. To ensure that they do not interfere with the rendering process,
we execute them in a separate thread on the CPU, while the GPU
continues rendering the scene.

6. Quality Error Estimation

To select the optimal rendering configuration, we need to assess
the quality error of any frame, by comparing it with its correspond-
ing reference frame ϕr, rendered with the highest quality. Simi-
lar to Wang’s budget rendering framework [WYM∗16], we use the
perceptually-based Structural Similarity Index (SSIM) [WBSS04],
with error given by e = 1−SSIM.

Let ϕ be the current frame for which we want to obtain the error,
and let ϕs represent all other alternative renderings using all other
rendering configurations. In Wang’s previous offline approach, ev-
ery high-quality reference frame ϕr, all their alternative renderings
ϕs, and their associated quality errors had been precomputed in ad-
vance, based on a dense partitioning of the camera-view space of
the scene. We face a much harder problem, since we aim to per-
form all necessary computations at runtime, on a dynamic scene.
This involves, apart from obtaining the reference frame ϕr, render-
ing frames ϕs with all other rendering configurations, and calculat-
ing their associated quality error. In the rest of the section, we first
describe how error is computed; however, given the large space of
all rendering configurations, it is impossible to compute the error
for all of them without visibly affecting performance. We thus in-
troduce our approach to accurately estimate most errors, without
the need to explicitly compute them.

6.1. Computing quality error

Since error computation should not interfere with the user experi-
ence, ϕr and all ϕs are rendered in the background, to a secondary
frame buffer (not shown on the screen); ϕr is saved in a texture,
while each ϕs is rewritten in successive renderings after its associ-
ated error has been calculated. To avoid a visible drop in the frame
rate from rendering ϕr and all ϕs consecutively, we distribute the
task over time. We save the rendering settings used to obtain ϕ, as

well as the positions of moving objects¶, and restore them with
an error computation frequency to render one frame in the back-
ground.

Distributing the rendering tasks over time avoids a sudden drop
in performance, but in turn it makes the process excessively long
for all the different rendering configurations. To overcome this, the
quality error can be computed for just a small subset of rendering
configurations. Since this step takes place after power prediction,
such configuration subset can be selected from the configurations
with higher power below the threshold, which are more likely to
produce high quality images. The selection of the optimal rendering
configuration would then choose the best configuration among the
available ones. Alternatively, we propose an approximation to ob-
tain estimated quality error values for all the configurations, with-
out the need to compute all of them. This approximation is suitable
for our application, since it allows us to obtain relative estimations
to compare different configurations.

6.2. Estimating quality error for all rendering configurations

We make two important observations that allow us to estimate the
error for all 729 rendering configurations by rendering and comput-
ing the error for only six of them (one per rendering pass).

For the following discussion, we define s0 as the rendering con-
figuration where every pass uses the highest shader quality (level 0,
l0), and sl

i as the configuration where every pass uses l0 except for
pass i, which uses level l(l > 0). Our two observations are:

• First, we can approximate the quality error for a rendering con-
figuration by adding up the error introduced by each individual
pass. This means that the total error for any rendering configura-
tion can be expressed as a sum of errors using only sl

i rendering
configurations. For example, with three rendering passes, the er-
ror for rendering configuration s = (l2, l0, l1) can be obtained as:

e(s = (l2, l0, l1)) = e(s2
0)+ e(s1

2) (7)

• Second, given two rendering configurations, sl1
i and sl2

i , with best
quality shaders except for one pass i using shaders l1 and l2, their
associated quality errors follow:

e(sl1
i) = ke(sl2

i) (8)

The set of all coefficients k depends only on the rendering engine
used, not on the particular scene being rendered, and thus can
be computed beforehand (together with the initialization of our
power model).

Combining these two observations, we can estimate the quality
error for all our configurations by computing only the error for all
slmax
i , that is, one configuration per pass. Figure 7 shows the accu-

racy of the estimated error using these simplifications. Note that
all error computations and estimations are performed in real-time;
only the k coefficients have to be obtained beforehand.

¶ In our implementation, we identify moving objects by the presence of
animated skeletal meshes.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

160

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 7: Computed and estimated quality error for the Subway
scene, using our observations in 6.2. Left: Quality error for render-
ing configuration s = (l0, l2, l2, l1, l0, l0), approximated by adding
up the error from each individual pass (Equation 7). Right: Qual-
ity error of one rendering pass with medium quality (configuration
s= (l0, l0, l0, l1, l0, l0)), using the observation in Equation 8 and co-
efficient k obtained from the Sponza and Valley scenes. Please refer
to the digital version to distinguish the overlapping computed and
estimated quality errors.

6.3. Implementation details

We compute the error for a frame ϕs once very 10 frames. This error
computation frequency was selected to minimize the length of the
error computation and estimation process while guaranteeing that
the GPU is able to keep up with the target frame rate. Alternatively,
the error computation frequency can be adjusted at runtime based
on the current and target frame rates.

Obtaining the SSIM index is computationally expensive, taking
an average of 0.05 s. Therefore, after a frame ϕs has been ren-
dered in the background, the quality error with SSIM is computed
in parallel on a separate thread, while the GPU continues rendering
the game. The GPU-CPU communication takes 0.02 seconds in the
worst case, which corresponds to the exchange of data to compute
the SSIM index for 2048x2048 resolution.

7. On-the-fly Power-Efficient Rendering

In the previous sections we have described our power prediction
model and quality error estimation mechanism. We now show how
those components are combined at runtime to select the optimal
rendering configuration. Our periodic selection for the optimal con-
figuration is followed by a temporal filtering to gradually transi-
tion to the new configuration, as illustrated in Figure 8. When the
new configuration is set, we start the real-time fitting of our power
model.

7.1. Selection of the optimal rendering configuration

Given our power predictions and quality error estimations, we aim
to find the optimal rendering configuration for a given scene and
camera parameters, minimizing quality error while meeting our
power budget, as formulated in Equation 2. This selection process
is triggered periodically, with a configuration selection frequency.

We first use our power prediction model to obtain the power con-
sumption for the current frame with all possible rendering config-
urations. Wang et al. [WYM∗16] precompute the power and error

Figure 8: Timeline illustrating power consumption during render-
ing (measured and predicted with our model), and how our algo-
rithm is executed. Given a configuration selection frequency, a new
optimal rendering configuration is selected (purple box). Our tem-
poral filtering is executed to transition to the new configuration.
Immediately after that, the power accuracy check is performed,
followed if necessary by the real-time fitting, and the reuse of fit-
ted coefficients (orange boxes). In this example, when switching to
rendering configuration B, the power check step detects an above-
threshold gap between the measured and the predicted power, so
fitting and reuse are activated. However, when switching to render-
ing configuration C, the power check confirms that the gap is below
threshold, and refitting and reuse are not launched. Please refer to
the text for more details.

for all configurations, producing a large two-dimensional power-
error space. To simplify their runtime search for the optimal con-
figuration, they also precompute the Pareto frontier to reduce their
two-dimensional exploration of the power-error space to a one-
dimensional search along the Pareto frontier. Instead, we predict
the power consumption and estimate the error at runtime. This is
difficult, as argued in the paper, but in turn it offers an additional
advantage: since the power budget is known in advance, when we
predict power consumption we can discard all the configurations
with a power consumption higher than our budget. The costly two-
dimensional search in power-error space is then reduced to a one-
dimensional search in error space; this means that we can com-
pletely eliminate the need to compute the Pareto frontier.

For the configurations that meet our power budget, we estimate
the quality error following the process described in Section 6: We
render ϕ in the background with configurations s0 and slmax

i , and
compute their error (according to the error computation frequency
to ensure a constant frame rate), and use Equations 7 and 8 to es-
timate the quality error for the rest of the configurations. Finally,
since we already discarded all the configurations above the power
budget, we simply need to choose the rendering configuration with
the lowest quality error. This process corresponds to the purple box
in Figure 8, and is illustrated by Figure 9, which shows how our
rendering configurations are distributed in power-error space, and
how our strategy is effective in selecting the one with lowest error
within the power budget.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

161

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 9: Our rendering configurations drawn in power-error
space. We discard all the configurations over the power budget,
and perform just a one-dimensional search in error space on
the remaining configurations, selecting the one with lowest error
(marked with a red circle). This eliminates the need to compute the
Pareto frontier in our framework (shown in red for reference only).

Since we do not rely on scene-specific precomputed data, and
different scenes may have very different power requirements,
which are thus not known in advance, setting the power bud-
get as an absolute predefined value (as in Wang et al.’s pro-
posal [WYM∗16]) is not practical. Therefore, we define the power
budget as a percentage between the minimum and maximum power
consumption of the scene, which is a very intuitive value to repre-
sent the trade-off between power consumption and image quality.
For example, if our power budget is 40%, only configurations with
predicted power lower than Pm +0.4(PM−Pm) will be eligible.

7.2. Temporal filtering

To avoid a sudden change in image quality when a new rendering
configuration is selected, the transition to the new configuration
is performed smoothly with the temporal filtering introduced by
Wang et al. [WYM∗16]. During an interpolation interval T, while
the framework transitions from sold to snew, the effective rendering
configuration used for rendering seff is computed as:

seff = [(1− t
T
)sold +

t
T

snew] (9)

where the brackets denote the closest integer and t is the time after
starting the transition to the new configuration.

7.3. Real-time fitting of the power model and reusing
coefficients

Every time a new rendering configuration is set, our power predic-
tion accuracy check is triggered (small orange box after temporal
filtering in Figure 8). If the accuracy of our prediction is below a
threshold, we refit our power model, as explained in Section 5.3.
This happens twice in Figure 8, and is represented by larger or-
ange boxes. The newly fitted coefficients are then used to update the
power model for all other configurations by obtaining the cost as-

sociated to each instruction and texel access (Section 5.4 and third
small orange box in Figure 8).

7.4. Implementation details

The configuration selection frequency triggers the process to select
a new optimal rendering configuration 200 frames after the pre-
vious configuration was set. This frequency allows us to quickly
detect changes in the scene while minimizing the impact of the as-
sociated computations. Refitting the power model and reusing the
coefficients for other configurations (3.4 ms), predicting the power
for all configurations (0.02 ms), and estimating the error and select-
ing the optimal configuration (0.03 ms) are executed on separate
threads. The temporal filtering interval used for interpolation is 2
seconds.

8. Implementation

To show how our on-the-fly power-budget framework adapts to
different hardware, we have implemented it on two different plat-
forms: A desktop PC with an Intel Core i7-7700 and an NVIDIA
Quadro P4000, and a mobile Qualcomm Snapdragon 660 (with a
8x Kryo 260 CPU and an Adreno 512 GPU).

8.1. Power Measurement

To measure the power usage of the graphics card in the desktop
PC, we use the NVIDIA Management Library (NVML) [NVM15],
which allows us to directly access the power usage of the GPU
and its associated circuitry. The specifications report an accuracy
of 5%. In our mobile device, we use an external source meter to
directly supply the power of the device. We use a Keithley A2230-
30-1, which provides APIs to access the instantaneous voltage and
current (same setup used by Wang et al. [WYM∗16]). During the
stages of our algorithm when we have to collect rendering samples
(for the power prediction accuracy check and real-time refitting),
we measure the power consumption for every frame. In order to re-
duce variance, in our graphs we report the average power measured
over 30 frames.

8.2. Rendering Configurations

Our rendering framework runs at 30 frames per second in the desk-
top PC and at 10 frames per second in the mobile device, and has six
passes, each one with shaders of three different quality levels; this
amounts to a total of 729 different rendering configurations. The
complete set of parameters and values of these shaders is given in
Table 2. In particular, we have included:

Resolution: When setting the resolution of a frame, the number
of fragments for other passes are proportionally scaled.‖

‖ The resolution is technically not a pass, it sets the screen resolution,
which affects other passes. However, it is included in the list of passes for
convenience, because it has an effect on power consumption and quality
error, and has to be considered as an additional degree of freedom when
selecting the optimal rendering configuration.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

162

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Passes Parameters Values
Resolution buffer resolution 60%, 80%, 100%
Base shading specular reflections cheap spec., improved point

lights, microfacet spec.
Reflections (samples, kernel) off, (16,1), (64,9)
Shadows map resolution 512, 1024, 2048
Metals samples 2, 6, 60
Antialiasing steps off, 2, 32

Table 2: List of parameters and values forming the space of ren-
dering settings.

Base Shading: The simplest level is a cheap specular shader,
which is improved with a better model for point lights in the next
level. The best quality level implements microfacet-based shading.

Reflections: For objects with specular materials; it is a multi-
pass shader where quality levels increase the number of generated
secondary rays, and the kernel size for color filtering [Sta15].

Shadows: The quality level is given by the resolution of the
shadow map.

Metals: It is an importance sampling algorithm where quality
levels are defined by the number of samples.

Antialiasing: We rely on the FXAA morphological antialiasing
to detect edges in the pixel shader [Lot09, JGY∗11].

When using Equation 4, we consider the following: i) The res-
olution pass has no associated primitives, only having an effect on
the number of primitives used in other passes. Therefore, we do not
include that pass specifically in the power model formula. And ii)
The antialiasing pass works on the final image, and thus does not
depend on the number of batches and vertices, it is only affected by
the number of fragments.

9. Results and Evaluation

We have tested our power-efficient rendering framework on two
different platforms (a desktop PC and a mobile device), with four
scenes of different complexity, to verify its efficiency in a wide
range of scenarios; refer to Table 3 for a summary of their main
characteristics. In every case, we are able to maintain the predefined
30 frames per second (10 fps in the mobile device). Our framework
supports free exploration of the scene, but we use predefined cam-
era paths to facilitate comparisons and measurements with different
qualities, and show the potential of our framework in the long run.
For each demo, we specify the preset power budget used to guide
our optimal configuration selection process.

Figure 10 shows the average power consumption and average
quality error of the four scenes, with maximum and minimum qual-
ity, and using our framework with the power budgets reported in
this section. It can be seen how we significantly reduce power con-
sumption, while keeping visual quality very close to the maximum.

In the following, we show images from our four scenes with the
maximum and minimum quality rendering configurations, together
with the result of our power-aware framework. Zoomed-in insets
allow to better appreciate details, showing how our results are close

Demos
Scene Statistics Rendering

Triang. Objects Scene Size Duration
Hall 229.4 k 23 22.33 MB 1.6 min
Sponza 262.1 k 381 25.4 MB 2.7 min
Valley 143.3 k 61 17.0 MB 1.5 min
Subway 526.6 k 453 77.5 MB 2 min

Table 3: Statistics for our four demo scenes, including number of
triangles, number of objects, size on disk of each scene, and dura-
tion of the demo.

Figure 10: Average power consumption per frame and quality er-
ror in our four demos. Note that the quality error for maximum
quality is zero.

to the maximum quality, at a reduced power cost (shown in the
accompanying plots). In addition, the supplemental video shows
the full demo, including split-screen comparisons.

Hall: This scene has a spotlight acting as a lamp and is composed
of diffuse objects, except for the reflective floor and two metallic
buddha statues. It has a high polygon count but very few objects,
thus being useful to test scenarios with a small number of batches.
Results for our framework running under a power budget of 40%
are shown in Figure 1.

Sponza: We use one directional light as the Sun, and one spot
light as a candle, both casting shadows rendered by our shadow
pass. There are two metallic lion head ornaments (rendered with
our metal pass), and the rest of the scene is diffuse (rendered with
our base shading pass). The floor of the scene is slightly reflective.
Figure 11, top, shows the results for a power budget of 60%.

Valley: This relatively low-poly scene is illuminated using the
Sun as a directional light, without any spotlights. There are no re-
flective or metallic objects, hence demonstrating the effectiveness
of our model on scenarios where some passes do not affect qual-
ity error. This also leads to a smaller difference between maximum
and minimum power consumption; although this challenging scene
limits the range for improvement, our framework still manages to
save considerable energy with minimal image degradation when
setting the power budget to 40% (Figure 11, middle).

Subway: This complex, high-poly scene is used to test our
method in high power usage scenarios. The scene is located un-
derground, so it has no Sun. All the lighting comes from a spotlight
located in a lightbulb. The floor of the scene is reflective. The two
fighting soldiers are metallic, while the remaining objects are dif-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

163

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 11: Sponza (top), Valley (middle) and Subway (bottom) demo scenes, executed on a desktop PC. We compare the minimum and
maximum quality rendering configurations against our power-optimal configuration. For Sponza, we use a power budget of 60% (which
corresponds to a percentage of the difference between the Min and Max power consumptions); for Valley we use 40%, and for Subway
we use 50%. Our method generates images very similar to those rendered with the maximum quality configuration, while keeping power
consumption lower. Please refer to the supplementary video for the full demos.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

164

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

Figure 12: Valley demo scene executed on our mobile device.
We compare the minimum and maximum quality rendering con-
figurations against our power-optimal configuration with a 50%
power budget. Our method generates images very similar to those
rendered with the maximum quality configuration, while keeping
power consumption lower. Please refer to the supplementary video
for the full demo.

fuse. The soldiers are animated using skeletal meshes, allowing us
to test our framework on a dynamic scene. Results with a power
budget of 50% are shown in Figure 11, bottom.

Additionally, in the supplementary material we show the results
for different power budgets applied to the Sponza scene.

To demonstrate the efficiency of our framework on mobile de-
vices, we show additional results for the Valley scene running in
our mobile phone, with a power budget of 50% (Figure 12). We
are again able to keep power consumption within our budget with
image quality very close to the maximum quality.

10. Discussion

Our on-the-fly power-aware rendering framework successfully ad-
dresses the two key limitations of previous work: it does not require
any precomputation, and it can handle dynamic scenes. We have
shown results for four different scenes of different characteristics,
demonstrating large power savings while maintaining image qual-
ity close to maximum quality. Analysing the optimal configurations
chosen by our framework, we notice that image resolution is rarely
lowered, since it leads to high quality errors. Our algorithm does
not lead to any degradation of the frame rate, as we demonstrate in
our supplemental video.

Our power prediction model may have other applications be-
yond budget rendering. For example, by detecting an increase in
power consumption (which indicates higher rendering complexity),

Figure 13: Power cosumption of the Hall and Sponza scenes with
ground truth measured data, predicted with our power model with
real-time fitting and predicted with our power model with generic
fitting.

it could analyse different options to avoid frame-rate drops in video
games before they happen. It could also be applied to estimate the
total energy consumption of a new rendering task, given a limited
set of initial data. Since b, t, and f in Equation 4 can be fetched with
native OpenGL queries, incorporating our power prediction model
to any project is straightforward, and requires no modifications of
any existing shader code.

As we have shown, real-time fitting of our power prediction
model provides very high accuracy. However, it is also possible
to fit the model with a generic dataset to obtain valid coefficients
before running any specific scene. To do that, we collect rendering
samples from dummy scenes with a varying number of batches,
vertices, and fragments, covering the whole parameter space from
Pm to PM . With these data, we fit kbi, kvi, and k f i in Equation 4
using linear regression on the power consumption and number of
primitives. This offline process takes around 4 minutes for one ren-
dering configuration, and provides a reasonable approximation of
the actual power consumption (see yellow curve in Figure 13).

To perform our runtime quality error computations, we have set
a frequency of 10 frames, which we have selected to be as small as
possible without minimizing the impact of background rendering
on the frame rate. Alternatively, this frequency could be automat-
ically adjusted during runtime according to the current frame, to
guarantee a given target frame rate.

Throughout the whole paper, we have defined the power optimal
configuration as the one with lowest quality error that meets our
power budget (Equation 2). Similar to Wang’s work [WYM∗16],
solving the analogous problem of obtaining the rendering configu-
ration with the lowest error consumption within an error budget is
straightforward:

s = argmin
s

P(s,c) subject to e(s,c)< ebgt (10)

In this case, we would start our selection of the optimal configu-
ration by estimating the error for all configurations and discarding
the ones above the budget, then predicting power for the remaining
configurations, and choosing the one with lowest consumption.

Limitations and future work: Our framework still has some
limitations that could be addressed in future work. Our power pre-
diction model seamlessly supports dynamic scenes, by using the in-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

165

Y. Zhang, M. Ortin, V. Arellano, R. Wang, D. Gutierrez, H. Bao / On-the-Fly Power-Aware Rendering

formation of the current frame to predict power consumption. How-
ever, our error computation mechanism needs to explicitly store
the positions of moving objects and restore them for background
rendering. For scenes with a large number of moving objects, this
could become too computationally expensive.

Our power model is based on the typical rendering pipeline with
basic processing of batches, vertices, and fragments. It does not
accurately model other GPU stages that could be integrated into the
pipeline, such as geometry shaders or tesselation, which should be
included as additional contributors to our formula. Apart from that,
our model is already able to seamlessly represent the additional
fragments generated by a geometry shader.

We have demonstrated the viability of our framework using a
reasonable number of different shaders, under the strict constraint
of real-time execution. We have not, however, exhausted all the pos-
sibilities; testing our proposal in a complex rendering engine is a
very interesting direction for future work.

Our framework may produce inaccurate predictions when the
rendering samples used to fit the model do not include information
related to a certain pass (e.g., the Reflections pass if no reflective
surfaces were being rendered at the time). However, these inaccu-
racies tend to last only a few frames, and the system eventually
self-corrects; we have found that this does not have a relevant im-
pact on performance in the long run.

Acknowledgements

We would like to thank all reviewers for their insightful com-
ments. We also thank Bowen Yu for his contribution in the ini-
tial phase of this project, and Julio Marco for helping with fig-
ures and proofreading the paper. This research has been par-
tially funded by National Key R&D Program of China (No.
2017YFB1002605), NSFC (No. 61472350), Zhejiang Provincial
NSFC (No. LR18F020002), the Fundamental Research Funds for
the Central Universities (No. 2017FZA5012), European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (CHAMELEON project, grant agree-
ment No 682080), and the Spanish Ministerio de Economía y Com-
petitividad (projects TIN2016-78753-P and TIN2016-79710-P).

References
[AMS08] AKENINE-MÖLLER T., STROM J.: Graphics processing units

for handhelds. Proceedings of the IEEE 96, 5 (May 2008), 779–789. 2

[APX14] ARNAU J.-M., PARCERISA J.-M., XEKALAKIS P.: Eliminat-
ing redundant fragment shader executions on a mobile GPU via hardware
memoization. In ISCA (2014). 2

[CCC∗16] CHEN W., CHEN W., CHEN H., ZHANG Z., QU H.: An
energy-saving color scheme for direct volume rendering. Computers &
Graphics 54 (2016), 57 – 64. Special Issue on CAD/Graphics 2015. 2

[CWC∗14] CHEN H., WANG J., CHEN W., QU H., CHEN W.: An
image-space energy-saving visualization scheme for OLED displays.
Computers & Graphics 38 (2014), 61 – 68. 2

[DCZ09] DONG M., CHOI Y.-S. K., ZHONG L.: Power modeling of
graphical user interfaces on OLED displays. In Proceedings of the 46th
Annual Design Automation Conference (2009), ACM, pp. 652–657. 2

[GSC∗15] GHARBI M., SHIH Y., CHAURASIA G., RAGAN-KELLEY J.,
PARIS S., DURAND F.: Transform recipes for efficient cloud photo en-
hancement. ACM Trans. Graph. 34, 6 (Oct. 2015), 228:1–228:12. 2

[Hen] HENNESSY D. A. P. . J. L.: Computer organization and design :
the hardware/software interface. Appendix C: Graphics and Computing
GPUs., 5th ed. ed. The Morgan Kaufmann Series in Computer Architec-
ture and Design. Morgan Kaufmann, Elsevier„ Boston :. 4

[HK10] HONG S., KIM H.: An integrated GPU power and performance
model. In Proceedings of the 37th Annual International Symposium on
Computer Architecture (New York, NY, USA, 2010), ISCA ’10, ACM,
pp. 280–289. 2

[ILMR03] IYER S., LUO L., MAYO R., RANGANATHAN P.: Energy-
adaptive display system designs for future mobile environments. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Appli-
cations and Services (2003), ACM, pp. 245–258. 2

[JGDAM12] JOHNSSON B., GANESTAM P., DOGGETT M., AKENINE-
MÖLLER T.: Power efficiency for software algorithms running on graph-
ics processors. In Proceedings of the Fourth ACM SIGGRAPH / Euro-
graphics Conference on High-Performance Graphics (2012), pp. 67–75.
2

[JGY∗11] JIMENEZ J., GUTIERREZ D., YANG J., RESHETOV A., DE-
MOREUILLE P., BERGHOFF T., PERTHUIS C., YU H., MCGUIRE M.,
LOTTES T., MALAN H., PERSSON E., ANDREEV D., SOUSA T.: Filter-
ing approaches for real-time anti-aliasing. In ACM SIGGRAPH Courses
(2011). 9

[KY14] KYUNG C.-M., YOO S.: Energy-Aware System Design: Algo-
rithms and Architectures. Springer Publishing Company, Incorporated,
2014. 2

[Lot09] LOTTES T.: FXAA, 2009. URL: https://developer.
download.nvidia.com/. 9

[MWDG13] MASIA B., WETZSTEIN G., DIDYK P., GUTIERREZ D.:
A survey on computational displays: Pushing the boundaries of optics,
computation, and perception. Computers & Graphics 37, 8 (2013), 1012
– 1038. 2

[NVM15] NVML: Nvidia management library, 2015. 8

[PLS11] POOL J., LASTRA A., SINGH M.: Precision selection for
energy-efficient pixel shaders. In Proceedings of the ACM SIGGRAPH
Symposium on High Performance Graphics (2011), pp. 159–168. 2

[SPP∗15] STAVRAKIS E., POLYCHRONIS M., PELEKANOS N., ARTUSI
A., HADJICHRISTODOULOU P., CHRYSANTHOU Y.: Toward energy-
aware balancing of mobile graphics. In IS&T/SPIE Electronic Imag-
ing, International Society for Optics and Photonics (2015), vol. 9411,
pp. 94110D–10. 2

[Sta15] STACHOWIAK T.: Stochastic screen-space reflections. In ACM
SIGGRAPH 2015 Courses Advances in Real-Time Rendering in Games
(2015). 9

[VAKH13] VATJUS-ANTTILA J. M., KOSKELA T., HICKEY S.: Power
consumption model of a mobile GPU based on rendering complexity.
In 2013 Seventh International Conference on Next Generation Mobile
Apps, Services and Technologies (Sept 2013), pp. 210–215. 2, 4

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (April 2004), 600–612. 6

[WYM∗16] WANG R., YU B., MARCO J., HU T., GUTIERREZ D., BAO
H.: Real-time rendering on a power budget. ACM Trans. Graph. 35, 4
(July 2016), 111:1–111:11. 2, 3, 4, 6, 7, 8, 11

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

166

https://developer.download.nvidia.com/
https://developer.download.nvidia.com/

