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Figure 1: Overview. Our pipeline takes as input a model and its polycube mapping (a); we compute the relative hex-mesh and locate the

surface areas in need of padding analyzing the mapping quality (b); we set and solve a binary problem to find a set of facets to extrude in

order to create a selective padding layer (c); we compute and analyze the mapping with the new hex-mesh structure (d).

Abstract

Hexahedral meshes generated from polycube mapping often exhibit a low number of singularities but also poor quality elements

located near the surface. It is thus necessary to improve the overall mesh quality, in terms of the minimum Scaled Jacobian (MSJ)

or average Scaled Jacobian (ASJ). Improving the quality may be obtained via global padding (or pillowing), which pushes the

singularities inside by adding an extra layer of hexahedra on the entire domain boundary. Such a global padding operation

suffers from a large increase of complexity, with unnecessary hexahedra added. In addition, the quality of elements near the

boundary may decrease. We propose a novel optimization method which inserts sheets of hexahedra so as to perform selective

padding, where it is most needed for improving the mesh quality. A sheet can pad part of the domain boundary, traverse the

domain and form singularities. Our global formulation, based on solving a binary problem, enables us to control the balance

between quality improvement, increase of complexity and number of singularities. We show in a series of experiments that our

approach increases the MSJ value and preserves (or even improves) the ASJ, while adding fewer hexahedra than global padding.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid, and object representations

1. Introduction

Volumetric meshes are an ideal tool for physically-based simulations,
especially in the fields of mechanical simulation and computational
fluid dynamics. While tetrahedral meshes are very simple to obtain
and flexible in adapting to the computational domain, hexahedral
meshes have better numerical properties and lower complexity. One
straightforward way to generate a hexahedral mesh on a given do-
main passes through polycube mapping.

Polycubes are three-dimensional domains formed by connecting
axis-aligned cuboids face to face. The simplicity of their structure ex-

plains their popularity for several computer graphics problems such
as quadrilateral and hexahedral meshing (e.g., [HXH10, GSZ11]),
efficient texture mapping (e.g., [THCM04, CL∗10]), morphing (e.g.,
[FJFS05]), spline fitting (e.g., [WHL∗07]), etc.

When the volumetric domains to partition in hexahedra are regular
enough (e.g., with limited range of levels of details like mechani-
cal and CAD models), polycubes are an ideal tool for generating
hexahedral meshes, by computing volumetric mappings with their
corresponding domains. However, the quality of the hexahedra di-
rectly depends on the mapping distortion. While the distortion is
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typically negligible inside the domain (because of the regularity of
the lattice we use to grid the polycube), it can be excessive near
the boundary. For instance, when a convex boundary edge of the
polycube with a folding angle of 90 degrees, maps to a flat part of
the domain boundary, with 180 degrees.

A common solution consists in “padding” the entire domain
by adding extra layers of hexahedra, in a way that pushes inside
all 90-degree edges and replaces them with edges incident to two
hexahedra. Padding offers a means to trade deformation for number
of elements, and increases the overall quality of the domain.

In this paper, we present an automated method able to insert
padding elements only where they are needed to increase the overall
quality. Our algorithm works selectively on the volumetric domain,
keeping untouched the parts that are directly derived from the poly-
cube mapping having already a good quality. It reaches this goal op-
erating selective insertion of sheets of hexahedra inside the domain.
We review next the previous work relating to padding strategies, and
we position our solution in terms of complexity and quality of the
final hexahedral mesh.

2. State of the Art

Polycubes and Parameterization-based hex-meshing. Intro-
duced in 2004 [THCM04], polycubes attracted a great attention
from the Computer Graphics community, for several applications.
An important field in which polycubes have immediately spread
is the one of volumetric applications and hexahedral meshing,
in particular for domains with limited range of levels of details
[LVS∗13, HJS∗14, YZWL14, GSZ11, FXBH16]. Shortly after their
formalization, it was clear that the use of polycubes for purposes
different from texture mapping needed an algorithmic strategy for
their generation [LJFW08, HWFQ09, GSZ11]. Recent approaches
improve the polycube quality by reducing the mapping distortion,
lowering the number of corner singularities [LVS∗13, HJS∗14] and
preserving axis-rotation invariants [FBL16]. However, most of these
approaches do not address the quality of polycube-generated hex-
meshes.

A wide range of approaches aim at generating well-structured vol-
umes, based on skeletons (e.g., [LMPS16]), gridding (e.g., [LJLJ15])
or expanding methods (e.g., [TBM96]). Parameterization-based

methods are another important class of hex-meshing methods. They
map the input volume to another parametric space where the final
mesh connectivity is generated. With the polycubes spread, new
approaches were proposed for meshing [GSZ11, LVS∗13] and opti-
mization [CLS16, GDC15]. The added value of these approaches is
clear: reasoning with a simple structure (together with a mapping
function with the original shape) yields several advantages in terms
of efficiency and simplicity of implementation, as a polycube can
be trivially hex-meshed with a regular grid. Nevertheless, most algo-
rithms devised for polycube generation overlook the quality of the
elements of the final mesh.

The structure of the final mesh is defined by the shape of the
polycube and the lattice in which it has been gridded (the corners
of the polycube become singularities in the mesh). Such a structure
is regular with high quality elements inside the domain, but it may
exhibit very low quality elements near the domain boundary. For this

reason, polycube-based hex-meshes often require a post-processing
step referred to as padding (or pillowing [MT95]) on the entire do-
main boundary. As detailed by Shepherd [She07, SJ08], the padding
operation starts with an initial mesh from which a subset of hexa-
hedra is defined to create a shrink set. The shrink set is separated
from the original mesh and shrunk. The void left by such a shrinking
process is filled by adding a new layer of hexahedra.

The motivation for our approach stems from the observation
that, for specific shapes, the padding operation is not necessary for
the whole boundary. In addition, it may in some cases worsen the
mesh quality. We explore the possibility to perform such a padding
operation via local sheet insertion.

Hex-mesh refinement A wide range of local refinement algorithms
have been proposed both for quadrilateral and hexahedral meshes
[SDW∗10]. A common objective is to change the mesh resolution,
to decrease the valence of inner vertices or to adapt the mesh density
in specific areas as required by FEM simulations.

Zhu et al. [ZCWG14] proposed a method to improve the quality
of CAD-based hex-meshes. While the user deforms the CAD model,
the associated hex-mesh is automatically improved by adding or
removing hexahedral sheets by using dual operations, in order to
keep the resolution and the quality of the mesh constant. In our
setting the regularity of the mesh is guaranteed by the polycube
properties. We can hence limit our topology changes to the mesh
boundary.

Chen et al. [CGWW16] introduced an approach to achieve com-
plex sheet inflation under various constraints, in order to improve
the mesh quality. The method takes as input a set of user-defined
boundary mesh edges and a set of hexahedra. The edges specify the
boundary position where the new sheets should be inserted, and then
the algorithm computes, through an iterative solving of a Max-Flow
and optimization steps, the whole layer position. In our meshes,
even if we allow the sheet insertion in all the mesh, we restrict
the quality analysis to the mesh surface, because polycube-based
hex-meshes always have regular and good-quality inner elements.
For this reason, it is easier, in our case, to automatically detect the
position where the insertion of a new hexahedral sheet can improve
the mesh structure.

Wang et al. [WSC∗17] proposed an automated block decompo-
sition method based on sheet operations, which generates a block
decomposition from which a high-quality hex-mesh stems. They
start from a B-rep solid model, compute the relative tet-mesh and
finally extract a hex-mesh. They insert and collapse whole sheets of
hexahedra to improve the obtained hex-mesh by solving an integral
linear problem. We instead rely on the good polycube-based inner
structure and insert sheets of hexahedra to improve the quality of
the near-surface elements in the final hex-mesh. It is interesting
enough that they agree on the importance to develop an algorithm
for a robust insertion of boundary hexahedral layers, which is what
we propose in this paper.

Owen et al. [OSE17] contributed a template-based approach for
generating locally refined all-hex meshes. Using a restitched set of
split configurations, a local refinement of the hex-mesh structure
is performed, yielding elements with minimum Scaled Jacobian of
0.3. Our approach hinges upon a similar set of templates. Since we
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apply the sheet insertions in polycube based hex-meshes, we can
afford to use a restricted set of dual operators to achieve the desired
result. Indeed, since we only have edges belonging to 1 to 4 facets
in polycube-based hex-meshes, we can obtain our goal just by using
the set of operators that increase by one the valence of the hex-mesh
edges, where it is needed.

Wang et al. [WGZC18] presented a method to improve the topol-
ogy of hex-meshes via frame field optimization and sheet operations.
Starting from a hex-mesh in which they build an initial frame field,
they optimize the field in order to obtain a high-quality one, that can
be used to identify the most problematic areas in the mesh. Then,
they adjust the structure of the mesh via a set of sheet operations.
Even if we work with different topologies and perform other types
of analysis, Section 6 compares our approach with this work as
we are adopting different methods to achieve similar goals. Indeed,
working with polycube-based hex-meshes, we can afford to focus
our analysis on the mesh boundary, while they need to analyze the
whole structure to perform the optimization.

2.1. Positioning and Contributions

In this work we present an algorithm to perform selective and lo-
calized padding into polycube-based hex-meshes. The introduction
of distortion when mapping an object with curved surfaces or non-
right angles into an axis-aligned shape like a polycube (e.g., a sphere
mapped to a cube) is inevitable. We, thus, aim here to improve the
quality of the mapping by adding hexahedral elements only in se-
lected and limited areas of the hex-mesh topology.

State-of-the-art padding operation - global padding in the whole
hex-mesh surface - can sometimes have the opposite effect of locally
worsening the quality of the mesh instead of improving it. Our idea
is to analyze the quality of the mapping between the polycube space
and the object space, and then to identify where a selective insertion
of sheets of hexahedra can improve the quality of the final mesh. We
change the topology of the mesh only where it is needed, and we
leave it untouched in areas where the quality is already acceptable.

3. Rationale and Overview

The starting point of our approach is the mapping quality of the
hexahedral mesh elements. We choose as error metric the Scaled
Jacobian (SJ) which computes, for each hexahedron, a value be-
tween −1 and 1. When SJ = 1 the hexahedron is a perfect cube with
highest possible quality. When SJ ≤ 0 the hexahedron is flipped
and thus unfit to further processing. The quality of a hexahedron is
judged low when SJ is smaller than a user-specified threshold.

We now select a simple example to convey the intuition behind
our approach. Assume a box-cylinder object formed by a right box
and a cylinder on top, as depicted by Figure 2. When computing the
hex-mesh of such an object by gridding its polycube, the distortion
is localized in the cylinder portion of the object, where the polycube
forms right angles.

Performing global padding on this model decreases the quality
of elements which are of high quality in the input model, as shown
by second row of Figure 3. By analyzing the local mapping distor-
tion and performing selective padding instead, we insert a sheet of

Figure 2: Introducing distortion. From left to right: the tet-mesh

of the input model, its polycube (tet-mesh) and the final hex-mesh

with distortion highlighted. Here and in the other figures we use

the color ramp on the right as a quality indicator where red stands

for highly distorted elements, yellow for medium quality, and green

stands for good quality elements.

hexahedra only around the cylinder, and straight through the box
to avoid creating too many unnecessary elements and singularities
(edge and vertex turns, see Figure 3, top right). The additional el-
ements provided by sheet insertion offer a means to improve the
SJ-distortion of the low-quality elements, after vertex relocation.

Figure 3: Global vs selective padding applied to the box-cylinder

model. Top: global (left) and selective (right) padding. Bottom:

we show the quality of the elements induced by the two padding

strategies.

It is forthwith evident the local negative effect of global padding
where it is not necessary. Performing global padding increases the
quality around the cylinder surface but also decreases the quality
of the right box, while adding 850 elements. Our selective padding
instead increases the quality only where it is needed (improving both
the minimal SJ and the average SJ) and adds only 336 elements.

Figure 4 depicts a sub-set of three template configurations used to
extrude the facets of a hexahedron element. To minimize the number
of added hexahedra, we allow the new layers of hexahedra to turn,
around an edge (edge turn) or a vertex (vertex turn). Note that an
edge turn introduces 2 singular edges, while a vertex turn introduces
7 singular edges. For this reason, in the following sections, we pro-
pose a way to balance between introduced elements and introduced
singularities.
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Figure 4: Padding via facet extrusion. Top to bottom: padding a

single facet (one added hexahedron), padding two facets (two added

hexahedra and one edge turn) and padding three facets (three added

hexahedra and a vertex turn).

Overview. Our approach takes as input a volumetric mesh and its
polycubes generated by the Polycut algorithm [LVS∗13]. It pro-
ceeds in two main steps: mapping analysis (Section 5) followed by
selective padding (Section 4). The selective padding step refines the
mesh structure to provide additional elements, and hence degrees of
freedom, for existing mesh optimization approaches.

More specifically, the role of the mapping analysis step is to
identify a set of facets delineating hexahedra with high mapping
distortion. According to an analysis of the dihedral angles between
facets of bad quality hexahedra, we determine the set of facets used
as padding constraints for the global solver.

Starting from these facets, our goal is to selectively pad the mesh
with just-enough hexahedra to reduce distortion where needed. Our
solution to preserve the structure of the hexahedral mesh is to pro-
ceed by sheet insertion, the sheets being decomposed into a series
of consistent facet extrusion operators.

We formulate a model with a constrained objective function with
binary variables: one variable per facet; one variable per edge (to
count edge turns) and one variable per vertex (to count vertex turns).
The goal of the optimization is to find a satisfactory balance between
quality, number of elements and number of singularities.

4. Selective Padding

We pose the local padding problem as a binary all-linear problem
with a set of constraints that preserve the consistency of the topo-
logical hex-mesh structure. Given a set of Hard-constrained Facets
(HF) which should be padded, the solution of the binary problem
yields a set of facets which allow a consistent padding that includes
at least the facets from HF . Our formulation enables the user to
trade the number of additionally padded facets for the number of
singularities introduced via padding.

4.1. Simple Binary Problem

Let M = (V,E,F,H) be the polycube-based input hex-mesh com-
posed of vertices, edges, facets and hexahedra. We create a binary
variable x fi for each facet specifying whether this facet should be
padded (through extrusion) or not. By definition, every inner edge
of a polycube-based hex-mesh has four incident facets. If we need
to change the mesh by extruding facets (as explained in Section 4.3),
we can extrude, for an inner edge, only two or four facets without
creating topological inconsistencies. The outer edges, on the other
hand, can be incident to 1, 2 or 3 hexahedra. We denote by E1H,
E2H and E3H these sub-sets of edges.

Our first objective is to pad as few facets as possible:

Epadding = |H|−
2
3 ∑

fi∈F\HF

x fi (1)

where the term |H|−
2
3 is added to achieve resolution independence.

We enforce two constraints during optimization. Firstly, all facets
in HF must be padded:

x fi = 1 ∀ fi ∈ HF (2)

Secondly, in order to achieve a valid, hex-topology preserving
padding, we require the number of padded facets around each edge,
but the ones belonging to E1H and E2H, to be even:

∑
fi∈F(e j)

x fi = 2k j ∀e j ∈ E \ (E1H ∪E2H) (3)

where k j is an integer variable defined for each edge involved in this
constraint, and F(e j) is the set of the facets incident to edge e j . We
need to treat them in different ways with respect to the constraint.

1. Edges in E1H can have 0, 1 or 2 selected incident facets. All
these configurations are suitable.

2. Edges in E2H can only have three incident facets, two on the
surface and one inside. Almost all the possible paddings are legal:
(i) the padding of the inner facet, (ii) the padding of both surface
facets, (iii) the padding of one of the surface facets along with
the inner one, causing an edge turn, and (iv) the padding of all
three facets. We insert in the model a custom constraint to avoid
the case of padding only one of the surface facets that would
cause a topological inconsistency.

3. Edges in E3H are covered in the general constraints of Eq 3.
We are aware that in this way we are excluding legal cases but,
considering how we define the insertion of new layers via facet
extrusion, they would not generate valid solutions. We are, more-
over, not limiting the possibility to reach an optimal solution.

Figure 5 illustrates an example solution of this simple binary
problem. We extend next our formulation in order to reduce the
number of inserted singularities.

4.2. Binary Problem Extension

Minimizing Epadding alone under constraints 2 and 3 yields a valid
solution with the lowest number of extra elements. In practice,
however, this may not always be the desired solution. As depicted by
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Figure 5: An example of our padding strategy. In (a) the red set of

facets has to be extruded; in (b) the solution obtained with the basic

formulation; the mesh in (c) is similar but, in this case, padding

straight to the bottom would insert many hexahedra. Our simple

formulation finds the solution in (d) with fewer added hexahedra by

introducing edge and vertex turns inside the mesh.

Figure 5d, the padding may introduce singularities inside the mesh.
While adding few more hexahedra is often better than introducing
extra singularities, turns of the padding layer provides us with a
means to avoid generating many extra elements. A trade-off between
extra elements and extra singularities is required.

We thus extend our problem formulation with a binary variable
tei for every edge ei ∈ E, recording a turn configuration at the
location of ei (cf. Figure 4 middle) and thus the introduction of a
pair of valence 3 and 5 edges. Additionally, we add a binary variable
tvl for every vertex vl ∈ V , recording a vertex turn configuration
(cf. Figure 4 bottom). Using these edge and vertex variables we
can formulate the additional objective of keeping the number of
introduced singularities low (e.g., minimizing the number of layer
turns) via:

Ecomplexity = |H|−
1
3 ∑

e j∈E∗\E1H

te j + ∑
vl∈V∗\V 1H

tvl (4)

where E∗ and V∗ are the sub-sets of edges and vertices that are
incident to two orthogonal facets of HF since these layer’s turns
are unavoidable and will be in the final solution. As for edges, V 1H

denotes the sub-sets of vertices incident to only one hexahedron.

As before we add the term |H|−
1
3 to the left sum to render the

formulation independent from the hex-mesh resolution.

In order to ensure that the indicator variables tei are 1 if and
only if an edge turn configuration is present, we add the following
constraint:

te j = |x fi − x fk| ∀e j ∈ E
∗ \E1H,

~fi = ~fk and fi, fk ∈ F(e j)
(5)

where F(e j) denotes the set of facets incident to edge e j . According
to Equation 5, to detect a possible edge turn in the edge e j we

Figure 6: Detection of an edge turn. Left: two selected facets with

similar orientation. Middle: |x fi − x fk| = 0 hence no edge turn is

detected. Right: |x fi − x fk|= 1 hence an edge turn is detected.

consider a pair of facets fi, fk ∈ F(e j) having the same orientation
(~fi = ~fk). As can be observed in Figure 6, the value of the subtraction
|x fi − x fk| determines whether an edge turn is present in e j .

Similarly, to ensure that the indicator variables tvl are 1 exactly
when a vertex turn configuration is present we add the following
constraint:

tvl = |tei − tek| ∀vl ∈V
∗ \V 1H,

~ei = ~ek and ei,ek ∈ E(vl)
(6)

where E(vl) denotes the set of edges incident to vertex vl . According
to Equation 6, to find a vertex turn we consider a pair of edges ei,ek

in the set of edges incident to vl in E(vl) having the same orientation
(~ei = ~ek). We subtract, in absolute value, the te variables of the
selected edges and can thus detect whether a vertex turn is present
in vl .

Finally, under constraints 2, 3, 5 and 6, we optimize a linear
combination of Epadding and Ecomplexity:

min E = Epadding +λ ·Ecomplexity (7)

Adjusting the coefficient λ provides the user with a means to trade
the number of extra elements for the number of extra singularities.
Figure 12 illustrates the output solution for three different values of
λ.

Note also that, satisfying Equation 2 for all surface facets is
a feasible solution, so we can say that a solution satisfying the
aforementioned constraints always exists.

4.3. Sheet Insertion

The output of the solver is a set of facets PF representing the ar-
eas where one or several hexahedral sheets must be inserted. We
generate the padding layer by extruding each facet fi ∈ PF and
transforming it into a hexahedron. The set of extruded facets forms
the new layer. We extrude each facet in both directions, considering
a fraction of the edge lengths of incident hexahedra as a reference,
except for the surface facets which are extruded only towards the in-
side. The final structure of the mesh, including the new elements, is
deduced from analyzing the global configuration of facets in PF . As
shown by Figure 7, the extra singularities are decided in accordance
to the adjacent facets.
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Figure 7: Example of padding configurations and associated sheet

insertions. When four facets are selected (a) the resulting new layer

of hexahedra introduces new singularities, depicted with red circles

(b). If the same four facets are selected, together with four more ones

(c) the final layer is different (d), and there are no extra singularities

added.

5. Mapping Analysis

In the previous section we described a method which, given a set
of facets HF that need to be padded, finds a complete set of facets
which can be extruded while preserving the hex-mesh structure. We
now detail how we find a suitable set HF such that the completed
padding improves the quality of the hex-mesh.

5.1. Distortion per Facet

As polycube-based hex-meshes are commonly well shaped inside
the domain, our main idea is to analyze the boundary hexahedra in
order to identify the ones which would benefit from being padded.

The quality of a hex-mesh is commonly measured via the Scaled
Jacobian (SJ). For each hexahedron in the hex-mesh we compute
the minimum determinant of the Jacobian matrix, evaluated at each
of its 8 corners, and the center of the element, divided by the corre-
sponding edge lengths. According to the Verdict manual [SEK∗07],
a “good” quality hex-mesh should have only hexahedra hi such
that SJ(hi) ≥ 0.5. As we observed in our experiments, improving
the quality of the mesh beyond this value is sometimes possible.
Therefore, we decided to limit our analysis to the boundary hexa-
hedra whose Scaled Jacobian is lower than T = 0.6, considering
the remaining ones as already good. This value may be, of course,
adjusted to fit application-specific requirements.

The quality of a boundary hexahedron can often be improved by
padding. However, padding all its facets is not suitable (cf. Figure 3).
We must therefore transition from a distortion measure per hexahe-
dron to a distortion measure per facet, where a high facet distortion
indicates that padding is required. The set HF of facets which must
be padded can then be simply defined as those facets whose distor-
tion measure exceeds a user-specified threshold T derived from the
quality requirement of a specific application.

We do the transition in two steps. First, we define a distortion
measure per boundary edge based on the dihedral angle between
incident facets. The distortion of a facet is then defined as the max-
imum of the distortion of the four facet edges. In Section 4.1, we
introduce the sub-sets of edges E1H, E2H and E3H as the edges
respectively incident to 1, 2 and 3 hexahedra. Since padding the
facets incident on the edges of E2H introduces two new hexahedra
which again share a E2H edge, distortion is unlikely to improve.
We therefore only consider boundary edges in E1H and E3H, both
shown in Figure 8.

Figure 8: Example of E1H edge (left) and of E3H edge (right).

For each boundary singular edge, belonging to either E1H or
E3H, we compute the dihedral angles between its incident boundary
facets as θ = −→ni ·

−→n j (see Figure 8 to identify ni and n j), and we
measure how much they deviate from their ideal values (90◦ for
the E1H edges or 270◦ for the E3H ones). For E1H surface edges,
we define D(e) = θ if θ ≥ 0.5 and 0 otherwise. For E3H surface
edges, we compute θ based on the two incident inner facets fi and
f j , because they determine the angle we need to split in case of high
distortion. We define D(e) = |θ| if θ ≤−0.5 and 0 otherwise. We
finally assign a value D( f ), between 0 and 1, to the surface facets, to
record how much it is necessary to extrude them in order to improve
the quality of the mesh. We define D( f ) as the maximum distortion
of the four incident edges: D( f ) = maxe∈ f D(e). In this step we
ignore areas of the mesh composed only by hexahedra with SJ ≥ T .

5.2. Padded Facets

Each facet of the polycube hex-mesh surface is now assigned a
distortion value. In our experiments, we observed that the direct use
of these values to determine the set of constrained padding facets
HF is not ideal as they may form a fragmented set with isolated low
distortion facets in the middle of high distortion patches, and vice-
versa (see Figure 10). To obtain a more consistent set of uniform
patches of facets HF we first smoothly propagate the distortion
values, then define HF via the solution of a Max Flow - Min Cut

problem.

Figure 9: Example of propagation of the D( f ) values on the domain

boundary, with k = 4.

To propagate the distortion values associated with the surface
facets, we apply a simple iterative flooding algorithm that starts
from facets with D( f ) 6= 0 and fills the adjacent empty ones. The
process is iterated for a maximum number of steps denoted by k in
the following formula:

D( fi)
n+1 = D( f j)

n · e
−n

2 ∀ fi ∈ Nb( f j), 0 ≤ n ≤ k (8)
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where n is the current iteration, e
−n

2 is a term to favor a soft prop-
agation of the deformation values (see Figure 9), and Nb( fi) is the
set of neighboring boundary facets of fi. The described formula is
applied only to facets with D( f ) = 0, while the facets with a value
different from 0 are not changed.

The Max Flow - Min Cut graph is defined by two nodes for the
two used labels (L1 for facets f ∈ HF and L0 for the other facets), a
node for each surface facet, an arc between adjacent surface facets
and an arc between facet nodes and label nodes. We then formulate
the Max Flow - Min Cut problem as follows:

E(L) = ∑
f∈SH

Pf (L f )+ ∑
〈 fp, fq〉

Ppq(Lp,Lq) (9)

where SH is the set of hexahedra with at least one face on the
boundary. Pf (L f ) represents a penalty for cutting an arc between a
facet fi and the label L fi

. We define Pfi
as:

Pfi
(Li) = 1−|li −D( fi)| (10)

where li = 0 for Pfi
(L0) and li = 1 for Pfi

(L1). Assume D( fi) is
close to 1: Pfi

(L0)≃ 0 and Pfi
(L1)≃ 1. Therefore, it is convenient

to cut the arc between fi and L0 and to assign to fi the label L1. Note
that assigning the facet fi to the label L1 corresponds to inserting fi
in the HF set of hard constraints.

The right sum represents the penalty for cutting an arc between
two adjacent facets fp and fq. In other words, it assigns a price to
assigning two labels Lp and Lq to two adjacent facets fp and fq and
Lp 6= Lq. We define Ppq as:

Ppq(Lp,Lq) = [1−|D( fp)−D( fq)|] · [D( fp)+D( fq)] (11)

where [1−|D( fp)−D( fq)|] measures the difference between D( fp)
and D( fq), and [D( fp) +D( fq)] favors cuts between arcs in low
distortion areas.

The solution of the Max Flow - Min Cut returns a collection of
facets ready to be used as hard constraints (HF) in the binary prob-
lem formulation described in Section 4. As shown by Figure 10 they
are organized in consistent patches with neither holes nor isolated
facets.

While the above steps may appear ad-hoc, they offer a robust
way to produce homogeneous patches of hard constraints. We also
considered the alternative solution to compute one distortion value
per facet then use such values as soft constraints by modifying
the objective function. However, considering the negligible time
required by the graph-cut solve step (fractions of a second), we
decided to keep this method in order to provide the solver with
a set of hard constraints. By using hard constraints obtained as
described above, we achieve better results (concerning both quality
and singularity count) in considerably lower time. Moreover, by
visual inspection of the hard constraints, users are provided with the
guarantee that they will be part of the final solution.

6. Results

All our experiments are conducted on a computer equipped with an
Intel Core i7 4GHz processor, 16GB of RAM and Linux OS. We

Figure 10: Computing hard constraints. Left: D( f ) values associ-

ated to each facet after the first step; notice, on the top model the

isolated high-distortion elements, on the bottom model the isolated

low-distortion elements (pointed by the arrows). Middle: D( f ) val-

ues after the propagation. Right: final constraints resulting from

solving the Max Flow - Min Cut formulation, which have filled the

gaps.

used the data structures of the Cinolib [Liv17] library for developing
our C++ suite of code, the Max-Flow algorithm proposed in [BK04]
to compute the hard constraints set, and Gurobi [GO16] as numerical
solver. We used Polycut [LVS∗13] to produce polycube-maps, im-
plemented the meshing pipeline described in [GSZ11] to produce all
the polycube-based hex-meshes, and used the hex-mesh optimizer
described in [LSVT15] to optimize the showed results. For a fair
comparison, we apply the optimizer in the no-padded version and in
the ones with global and selective padding, to show the differences
in using it to the different meshes. During optimization we set the
surface attraction as high as possible to preserve the original shape
of the model. In this way, we always obtain, for each one of the
models in this paper, a maximum Hausdorff distance lower than
0.009 w.r.t. the bounded box diagonal.

In all the figures depicting results we use the following color-
code: the mesh separatrices are depicted in red, and the quality of
the mesh elements ranges from green (good) to red (bad). For each
model we compare the hex-mesh directly derived from the polycube
with the hex-meshes with global and selective padding applied.
Table 1 reports the most relevant data for our models: hexahedra
count; quality of hexahedra in terms of minimum and average Scaled
Jacobian; number of singularities (vertices and edges); time required
by the solver to identify the set of facets to extrude. The sheet
insertion operation takes less than a few seconds and thus we do not
report it, since it is negligible.
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Model
Original model Global Padding Ours (Selective Padding)

#H #Sv # Se mSJ aSJ #H #Sv # Se mSJ aSJ #H #Sv #Se mSJ aSJ Time

Bearing 7362 64 988 .07 .95 12132 128 1052 .11 .86 8062 72 1020 .42 .97 0.9 s

Block 12408 48 944 .08 .93 17896 96 992 .15 .95 15216 56 1008 .69 .98 2.5 s

Chamfer (λ = 0)
4347 20 358 .10 .96 6197 40 378 .10 .94

4945 40 588 .60 .95 7.6 s
Chamfer (λ = 4) 5773 20 366 .74 .98 31.6 s

Chamfer (teaser) 10354 20 486 .02 .96 13750 40 506 .13 .95 12121 28 614 .61 .98 40.6 s

Column 940 16 224 .12 .94 1790 32 240 .09 .91 1276 24 240 .81 .97 0.2 s

Double hinge (NH)
3120 24 424 .03 .94 5342 48 448 .31 .89

3770 40 536 .65 .95 3.1 s
Double hinge (WH) 4550 40 536 .63 .95 4.2 s

Gear 6816 72 796 .03 .96 10136 144 868 .03 .93 8640 72 812 .70 .98 8.2 s

Joint 9032 32 680 .09 .97 13868 64 712 .16 .95 9872 40 804 .67 .97 5.3 s

Lego (λ = 0)
8676 112 1828 .10 .94 18810 224 1940 .13 .77

9372 520 2596 .39 .94 2.3 s
Lego (λ = 2) 9876 160 1876 .54 .97 3.9 s
Lego (λ = 4) 9940 176 1900 .31 .95 8.9 s

Wrench 1576 32 472 .06 .95 3576 64 508 .14 .89 1796 40 492 .71 .97 2.7 s

Test 1 4272 72 832 .07 .95 7688 144 904 .03 .90 5080 72 852 .66 .98 4.06s

Test 2 4752 40 520 .06 .92 7026 80 560 .10 .87 6672 56 556 .73 .96 20.7s

Test 4 9779 56 812 .14 .97 14391 112 868 .17 .95 11730 56 824 .68 .99 2.6s

Test 5 50830 84 2266 .10 .95 73666 168 2350 .19 .94 53686 84 2370 .41 .98 49.8s

Table 1: Statistics. We compare three meshes: input, with global padding and with our selective padding method. For each model we report

the number of hexahedra (#H), the number of singular vertices and edges (#Sv and #Se), and the minimum and average Scaled Jacobian (mSJ

and aSJ). For the Chamfer and Lego models we record the results obtained with different λ values, to measure the impact of λ over the final

mesh. For the “Double hinge” model we report the version without padding the holes (NH) and the one with padded holes (WH). It shows that

padding concave angles, sometimes, does not significantly improve the final quality. We apply our algorithm on the models Test 1, 2, 4 and 5

taken from [WGZC18].

As we commented in the introduction, the padding operation
usually improves the global quality of a volumetric mesh. We are
able to show that our selective padding allows to obtain a substantial
quality improvement over the global padding. In Table 1 we also
show that, on the top of obtaining a better quality, our method adds
fewer extra elements than global padding. The only trade-off to pay
is, sometimes, the increased number of singularities.

Table 2 records a brief comparison between the results of our
algorithm and the one described in [WGZC18], applied to the same
domains. As we have not been granted access to the original soft-
ware, we performed comparisons on a series of results produced
by their algorithm. Therefore, starting from the same shape, we
extract and optimize a polycube-based structured hex-mesh, while
they analyze and optimize an unstructured one. This allows us to
start from a regular structure of good quality inside the shape, and
apply our algorithm just on the surface. We obtain comparable or
better results for both the minimum and average Scaled Jacobian.

Extra elements vs extra singularities. The improvement of the
hex-mesh structure requires to find the right trade-off between the
number of extra elements and the number of extra singularities.
The user-specified λ parameter controls the number of turns of the
inserted sheets and therefore the addition of singular vertices to the

Model
[WGZC18] Ours
mSJ aSJ mSJ aSJ

Test 1 .35 .94 .66 .98

Test 2 .34 .88 .73 .96

Test 4 .64 .96 .68 .99

Test 5 .39 .89 .41 .98

Table 2: A comparison between results obtained with our approach

and those obtained with [WGZC18].

mesh structure. Figure 12 shows the differences in the final result for
the Lego model, depending on the used λ value. With a low λ value
the solver can insert turns everywhere in the mesh structure, with
the goal of padding as few facets as possible. With a high λ value
the number of turns – and new singularities – is limited at the price
of adding more extra elements. Finding the well-balanced λ value
allows to reach a reasonable compromise between extra elements,
extra singularities and final quality, as it is shown in Figure 12d.
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Figure 11: A gallery of results obtained with our method compared to the input mesh and global padding. GP stands for global padding and

SP for selective padding (ours). In red are singular edges. Colors indicates quality as described in Figure 2. In the front half of the mesh we

show only the hexahedra with a Scaled Jacobian below 0.75, the others are transparent.
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(a) Input mesh (b) Global Padding

(c) Ours (λ = 0) (d) Ours (λ = 2) (e) Ours (λ = 4)

(f) Ours (λ = 0) (g) Ours (λ = 2) (h) Ours (λ = 4)

Figure 12: Padding the “Lego” mesh. Global padding (b), and

selective padding (c, d, e). The padding layers are shown in blue in

(f, g, h).

Timing. The solver’s timing depends on the number of elements
in the mesh and its shape. The solution space varies depending on
the input structure of the mesh. We usually use “coarse” meshes
to solve the padding problem since a refinement step is always
possible in post-processing (e.g., splitting each hexahedron in eight
sub-hexahedra). When a model is complex enough not to allow to
start from coarse hex-meshes, the solver can require up to several
minutes of computation to produce the set of facets to extrude.

Mechanical parts vs. organic shapes. As mentioned in Section 1,
polycubes are an ideal tool for generating hexahedral meshes of
quite regular shapes with a limited set of details. In this class of
objects, mechanical pieces and CAD models are relevant subsets.
As it is clear from our results, we focus our attention on this class of
objects. Indeed, the application of our selective padding on organic
and free-form polycube-based shapes produces the same result of
global padding. In Figure 14, we show the use of our algorithm on
the Bunny model. It is evident that, to improve the mesh quality, we
need to push inside all the singular edges of the mesh.

6.1. Limitations

While our experiments show excellent results, improving the quality
of both the original and the global padding models, we cannot prove
that our approach reaches the maximum possible quality for the
chosen application field. Searching for the best trade-off between
complexity and distortion would require either trying all possible
λ values and then selecting the one yielding the best results, or

(a) Input (b) Global Padding

(c) Ours (padding holes) (d) Ours (not padding holes)

(e) Ours (padding holes) (f) Ours (not padding holes)

Figure 13: Padding the “Double hinge” mesh. Global padding (b),

and selective padding, including holes (c) and without holes (d).

The padding layers are shown in blue in (e , f).

proceeding by dichotomy. According to our experiments, the value
of the λ parameter which leads to the best results depends on the
shape of the model. It is thus not possible to suggest the silver bullet
value of λ that could work for any model. The choice of λ can be a
fine-tuning task and we let the user set it interactively.

Our method can detect distortion in the proximity of all concave
tunnels in models with genus greater than 0. For simplicity, we refer
to these particular shapes as “Holes”. However, padding the holes is
not always relevant for improving the overall quality. Experiments
carried out on the Double hinge model (Figure 13) show that the
quality can even decrease.

In the end, we produce a new hex-mesh topology suitable for
obtaining a good quality final mesh, but the final quality is strictly
dependent on the hex-mesh optimizer. We use the approach from
[LSVT15] but, considering that the untangling is still an unsolved
task in 3D, our results may not have the desired quality despite their
good structure.
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Figure 14: Selective padding in organic shapes. On the left the

model without padding, on the right the selective padding (equiva-

lent to the global one) applied on the same model.

7. Conclusion and Future Work

We introduced in this paper a novel pipeline for the generation of
quality hexahedral meshes, where high quality of a hexahedron
refers to low deviation from the perfect cube. Our pipeline utilizes
a polycube mapping for decomposing the input 3D domain into
portions which are simple to discretize into a hexahedral mesh. In
this pipeline our main contribution is a selective padding step which
automatically adds sheets of hexahedra only where they are needed,
in order to increase the global quality of the output hexahedral
meshes. These sheets can form turns inside the domain, which
induce extra edge and vertex singularities. Compared to global
padding or greedy straight sheet insertion, our approach improves
the global quality while generating fewer hexahedra. It works at its
best when applied to input domains bounded by a piecewise planar
surface, which is typical of mechanical parts. On concave holes the
gain is only moderate.

In the future we plan to explore an automatic parameter selection
approach in order to find the best balance between quality and com-
plexity. We also wish to explore a global optimization approach to
select the optimal set of constrained facets that yields the maximum
quality. We then intend to analyze whether a combination of padding
and inverse padding (remove hexahedral layers from the mesh) can
provide better results. Furthermore, we plan to extend our approach
to more general polycube-based hex-mesh structures, like those used
by Fang et al. [FXBH16].
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