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Figure 1: The LSMAT is a novel efficient least-squares formulation of the medial axis transform that operates on unorganized oriented point
sets. (a, b) Regardless of input noise, the resulting medial representation is stable. (c, d) Its least-squares nature allows it to operate in the
presence of heavy noise where most approaches would fail. We visualize the oriented point cloud with oriented splats, draw the union of
medial spheres in light red, and their corresponding centers in dark red.

Abstract
The medial axis transform has applications in numerous fields including visualization, computer graphics, and computer vision.
Unfortunately, traditional medial axis transformations are usually brittle in the presence of outliers, perturbations and/or
noise along the boundary of objects. To overcome this limitation, we introduce a new formulation of the medial axis transform
which is naturally robust in the presence of these artifacts. Unlike previous work which has approached the medial axis from a
computational geometry angle, we consider it from a numerical optimization perspective. In this work, we follow the definition of
the medial axis transform as “the set of maximally inscribed spheres". We show how this definition can be formulated as a least
squares relaxation where the transform is obtained by minimizing a continuous optimization problem. The proposed approach is
inherently parallelizable by performing independant optimization of each sphere using Gauss-Newton, and its least-squares form
allows it to be significantly more robust compared to traditional computational geometry approaches. Extensive experiments on
2D and 3D objects demonstrate that our method provides superior results to the state of the art on both synthetic and real-data.
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CCS Concepts
•Computing methodologies → Point-based models; Volumetric models; Shape analysis;

1. Introduction

A medial representation of an object encodes its solid geometry as
the union of a collection of spheres of different radii and origins;
see Figure 2. While volumetric or surface mesh representations are
more commonly used in computer graphics and computer vision,

since its introduction by Blum et al. [Blu67], medial representations
have found applications in many 2D/3D geometric problems such as
animation [BP07], fabrication [MHR∗16], image processing [TD17],
shape analysis [SSCO08], and real-time tracking [TPT16]. The
process of converting an input model into a medial representation is
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maximally inscribed spheres normal flow shock graph bisectors / equidistance bi-tangency / local symmetry

Figure 2: Visualization of four alternative definitions of medial axis; base image courtesy of [TDS∗16].

generally referred to as the Medial Axis Transform (MAT), and the
collection of origins of the spheres in a medial representation form
a medial skeleton.

Stability. A common pitfall of medial axis methods is their sensitiv-
ity to noise: in a traditional medial representation, new branches of
the medial skeleton may form at all negative local curvature extrema.
If our shape is represented via a piecewise linear boundary, such as a
polygonal mesh in 3D, spurious branches form when the surface ex-
hibits even minor levels of noise; see [TDS∗16, Fig.9]. These issues
are typically resolved by resorting to postprocessing, in which sets
of spheres are filtered out according to various engineered criteria.
We present a new algorithm for computing the medial axis transform
of an oriented point set which is naturally capable of handling noise,
outliers, and other artifacts that create characteristic problems for
traditional methods.

Definitions. As summarized in Figure 2 and [TDS∗16], the medial
axis transform may be defined in a few ways, with each definition
producing equally valid and useful representations. In practice, each
definition of the medial representation leads to a different way to
compute the medial axis. For example, the normal flow variant leads
to the commonly employed voxel thinning algorithms [SBdB16],
while the equidistance definition leads to techniques leveraging
Voronoi diagrams [BA92]. In this paper, we build over what is likely
the most well known definition of the medial axis transform:

Definition 1.1. The Medial Axis Transform MAT(O) of
O is the set of centersM and corresponding radiiR of
all maximally inscribed circles/spheres in O.

While previous work such as Ma et al. [MBC12] has proposed meth-
ods to construct medial axis representations using this definition, it
is interesting to note that they have treated the problem from a com-
binatorial geometry standpoint. Instead, we consider the medial axis
transform from a numerical geometry perspective, where the medial
axis is given by the solution of an optimization problem. We achieve
this by expressing the concepts of maximality and inscription from
Def. 1.1 in a least squares form. The robustness of the approach to
imperfections arises from the fact that least squares optimization
attempts to find an approximate, rather than exact, solution to the
given problem. We are motivated in our approach by considering
a least-squares problem as a maximum likelihood estimate of a

function in the presence of noise obeying a Gaussian probability
distribution.

Method outline. Our method takes an oriented point cloud as input,
and produces an unconnected medial point cloud as output by min-
imizing a combination of a maximality energy, and an inscription
energy. Our key technical challenge is in formulating these energies
correctly; our maximality energy is designed to have a constant
magnitude, ensuring that the optimization energy of each medial
sphere is constant regardless of its radius, and our inscription energy
is based around a locally supported approximation of the signed
distance function of the point cloud. In order to prevent spheres from
sliding towards local maxima of local shape thickness, we introduce
a pinning constraint as a quadratic barrier energy. The resulting
optimization problem is quadratic, with differentiable but non-linear
energy terms, and we solve it with an iterative Gauss-Newton solver.

Contributions and Evaluation. Our main contributions are a novel
interpretation of a problem that is classically solved by standard
computational geometry as a numerical geometry problem, and
a novel algorithm for computing the medial axis transform of an
oriented point set that inherently handles imperfections in the input.
We present a number of qualitative results throughout the paper for
both 2D and 3D oriented point clouds. Finally, we also present side-
by-side quantitative evaluations of the proposed algorithm against
several state-of-the-art methods.

2. Related Work

Many techniques exist to compute the medial axis transformation,
as detailed in a recent survey [TDS∗16]. We focus our discussion
around two central aspects: methods that operate on surface 2D/3D
representations (e.g. point clouds and triangular meshes), and meth-
ods that attempt to resolve the instability of medial axis via post
processing.

2.1. Medial axis computation of sampled surfaces

Assuming the surface is sampled by a sufficiently dense set of points,
the Voronoi diagram can be used to compute the medial axis trans-
form with relative ease. For a closed boundary in 2D, any interior
Voronoi vertex, as well as Voronoi edges connecting interior vertices,
approximate the medial axis with a convergence guarantee [BA92].
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unfiltered

Figure 3: Effectiveness of standard filtering Voronoi methods with
high level of noise. As expected, neither angle nor distance methods
were capable of filtering out all noise for any selected threshold
value. Leveraging global information, the scale axis is able to deal
with noise, but with a significant computational burden. Further,
note that we provide these technique the ground truth inside/outside
labeling, which is not available in our context.

Unfortunately, Amenta et al. [AB99] has shown how this prop-
erty does not hold in 3D due to sliver tetrahedra. Thankfully, as
we increase the sampling rate, the Voronoi poles (see definition
in [AB99]) do converge to the medial axis, allowing the use of
3D Voronoi diagrams for the task at hand. These methods suffer
two fundamental shortcomings: ¬ they are global and optimize the
entire set of centers at the same time, and  the extracted axis is
heavily susceptible to even minor levels of noise; see Figure 3.

Sphere-at-a-point methods. Leveraging an oriented sampling,
Ma et al. [MBC12] proposed an alternative way to compute the
transform by marrying the maximally inscribed definition of Fig-
ure 2(a) to the bi-tangency of Figure 2(d). Unlike Voronoi methods,
which consider the entire point set at once, their method can com-
pute a maximal sphere at a point in isolation, leading to extremely
efficient GPU implementations [JKT13]. These methods represent
the most efficient way of computing the medial axis, but, similarly
to Voronoi methods, they suffer stability issues; see Figure 4. An-
other method for computing a local approximation to the axis was
proposed by Shapira et al. [SSCO08] via casting rays in a cone
oriented along the anti-normal. The distance between the point and
the intersection with the surface is aggregated by a robust function
(e.g. median) to estimate the shape diameter function. While this
approximation has found widespread use as a shape descriptor, the
radius estimate suffer of bias, and the algorithm does not generalize
to point clouds.

Shape approximation methods. Recently, a new class of tech-
niques has been proposed which attempt to approximate water-
tight surfaces via Sphere Meshes – linearly swept spherical primi-
tives [TGB13,TGBE16]. This is achieved via local mesh decimation
relying on iterative edge collapses, where spherical quadrics are em-
ployed in place of the traditional quadric metrics [GH97]. In many
cases the produced model resembles a medial axis. When executed
on 3D data the result can contain tetrahedra, however, the medial
axis of a 3D shape is known to consist only of points, curves, and
surfaces. Addressing these concerns, the Medial Meshes work by
Sun et al. [SCYW16] extended sphere meshes to decimate a medial
axis mesh, and discard unstable branches. Marrying sphere meshes
to medial meshes, Li et al. [LWS∗15] followed up this work and
proposed QMAT, a more computationally efficient version based on
spherical quadrics. While these techniques, in juxtaposition to our
local method, are global, they can only cope with minor levels of
noise: “with very noisy input, however, the simplified medial mesh is
not a stable representation”; see [SCYW16, Fig.9]. The follow-up
work by Li et al. [LWS∗15] performs slightly better as it can opti-
mize for sphere centers, but our algorithm can still cope with noise
that is one order of magnitude larger; see [LWS∗15, Fig.16].

2.2. Instability and filtering techniques

Techniques that do not attempt to produce an approximation suffer
from instability when computing the medial axis. Filtering tech-
niques attempt to remove portions of the medial axis that do not
contribute significantly to the geometry reconstructed as the union of
medial spheres. As shown in [MGP10, Fig.2], this works fairly well
for inputs with little or no noise. Conversely, with large noise (and/or
outliers), these methods become mostly inappropriate; see Figure 3.

Angle filtering – θ-medial axis. One way to identify the signifi-
cance of a point is the largest angle formed by the center of the
corresponding maximal sphere and two of its tangent points on the
shape boundary. The θ-medial axis of [FLM03], filters out balls as-
sociated with low aperture angle. While this filtering can disconnect
portions of the medial axis, see Figure 3(c), the issue can be avoided
by homotopy-preserving pruning [AM97].

Distance filtering – λ-medial axis. Another metric for filtering
discards a sphere whenever its tangent points lie on the surface
below a certain distance [CL05, ACK01]. As Figure 3(d) illustrates,
this results in a loss of features even before all noise has been
removed. This shortcoming makes these solutions inappropriate
whenever the input shape contains structures at different scales.

Scale filtering – σ-medial axis. The scale axis transform intro-
duced by Giesen et al. [GMPW09] and extended to 3D by Mik-
los et al. [MGP10] are methods built over the maximality property
of the medial axis. First medial spheres are scaled by a given σ > 1
value, and spheres that are no longer maximal (i.e. contained in
another sphere) get discarded. The medial axis of the scaled union
of balls is then computed, and its spheres unscaled by a factor 1/σ.
This method is global as it processes the whole point set at once,
and computes multiple Voronoi diagrams in the process, resulting in
reduced computational efficiency – e.g. ≈ 2 min. for a mesh with
≈ 100k vertices, see [MGP10, Tab.1].
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Figure 4: (left) The sphere-shrinking of Ma et al. [MBC12], and
(right) its resulting maximal spheres on a noisy point set.

3. Technical details

In Section 3.1, we start by reviewing the highly relevant method of
Ma et al. [MBC12], which computes the medial axis by searching for
maximal spheres via local analysis. We then formulate our numerical
optimization to compute medial spheres in Section 3.2.

Notation. We are given in input an oriented point cloud
{(pn,nn)}n=1...N drawn from the solid object O with watertight
surface/boundary ∂O. The cloud is affected by noise with standard
deviation σp. We give all numerical values of σp and other parame-
ters which represent distance values as percentages relative to the
diagonal of the bounding box of the input shape. WithMwe refer to
the internal medial axis of O; see [TDS∗16, Fig.2]. With s = (c,r)
we indicate a sphere centered at c of radius r, and with t the index
of the solver iteration.

3.1. The sphere-shrinking algorithm – Figure 4

The algorithm proposed by Ma et al. [MBC12] is an iterative method
that shrinks an initially large sphere until it satisfies the medial axis
properties. Assuming p is a point on the boundary, this process
leverages two properties: ¬ that the sphere passing through p should
be empty; and  that p−c for a smooth input curve is parallel to the
contact point normal n. The sphere-shrinking algorithm is initialized
with a large sphere, passing through p, containing the entire point
set, and whose center c lies along the ray (p,−n). Whenever the
distance to the closest point f ∈ ∂O from c is less than r (i.e. the
sphere is not empty), the center c is updated by computing the sphere
tangent to (p,n) and passing through f; see Figure 4. Finally, the
loop terminates when the sphere radius change across iterations
is below numerical precision. This algorithm is highly efficient as
each sample can be processed completely independently from the
others, but as it treats all points as hard constraints in a combinatorial
manner it does not cope well with noisy inputs. Our formulation
borrows from this one, but generalizes it by ¬ reformulating it into
a continuous optimization problem, and  making it more robust to
noise and outliers.

3.2. Optimizing for maximally inscribed spheres

We define a least-squares optimization capable of generating maxi-
mally inscribed spheres given an oriented point cloud P . Our opti-
mization energy for a sphere s consists of the combination of two

terms:

Emedial = ω1 Emaximal + ω2 Einscribed (1)

We will now proceed to describe these terms in detail, and then
provide comparison against alternative formulations in Section 4.2.

Maximality. The maximality energy creates a constant positive
pressure term that tends to increase the sphere size at each iteration.
By design, we define this energy to have a constant magnitude,
that is, a contribution to the optimization energy that is constant
regardless of the radius of the given medial sphere. This is achieved
by considering the radius at the previous optimization iteration with
a constant offset ε:

Emaximal = ||r− (rt−1 + ε)||22 (2)

Inscription. Consider a signed distance function (SDF) Φ(x), where
Φ(x) < 0 for an x inside the shape. If the expression of this func-
tion were available to us, an inscription constraint could be easily
expressed by the inequality Φ(c) < −r, which we can convert in
our least squares formalism as:

Einscribed =R(r+Φ(c))2 (3)

where the ramp functionR(x) = max(x,0) only penalizes a sphere
when it violates an inscription constraint. Unfortunately, an SDF
function for our oriented point set P is not readily available without
computing a full surface reconstruction of the point cloud [BTS∗16].
However, the family of moving least square (MLS) methods are
capable of building locally supported approximations in a neighbor-
hood of ∂O – that is, as Φ→ 0. For example, the MLS formulation
by Kolluri [Kol08] approximates Φ as a weighted sum of locally
supported point-to-plane functions:

Φ(x) = ∑n ϕn(x,h)nn · (x−pn)

∑n ϕn(x,h)
(4)

where in our case ϕn(x,h) = ϕ(‖x− pn‖2,h) and ϕ(x,h) is a
smoothly decaying radial basis function [GG07] with compact sup-
port [0,h]:

ϕ(x,h) = b
( x

h

)
; b(x) =

{
(1− x2)4 x < 1
0 x≥ 1

(5)

Note that as Equation 3 evaluates the function Φ at the medial center,
which could be potentially far from ∂O, this representation is not
immediately appropriate. However, in the context of registration,
several works have shown how a quadratic approximation of Φ

2

can be built by appropriately blending point-to-point with point-to-
plane distance functions [PH03, MGPG04]. In more detail, point-
to-point distances are a good approximation of Φ

2 in the far-field
(i.e. for Φ

2� 0), while point-to-plane distances are more suitable
in the near-field (i.e. for Φ

2→ 0). Let us first define c̄n = ct−1−
nn(ct−1−pn) ·nn, the projection of the center on the hyperplane of
point pn. We can use this to interpolate between the two metrics:

Φblend(s)
2 = mix(Φplane(s)

2,Φpoint(s)
2,ϕn(c̄n,hblend)) (6)

where Φplane(s) =R(r− (pn−c) ·nn) represents the distance from
the sphere to a plane, Φpoint(s) =R(r−‖pn−c‖2) is the euclidean
distance from the sphere to a point, and mix(a,b,x) = xa+(1−
x)b is the linear interpolation operator; see Figure 5. Based on the
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Figure 5: (a) The function Φhalfplane uses point normals to give a signed distance value that penalizes spheres which move outside the shape,
but may give nonsensical values for points belonging to parts of the surface that are not well approximated by the sphere. (b) The function
Φpoint does not suffer from this issue but does not enforce that the sphere should respect the orientation of the surface. (c) We mix between the
two distances independently for each point using the distance between the point and the projection of the sphere center onto the plane defined
by the point. (d) This allows us to use the sided distance only for points where it makes sense, and use the unsigned point-to-plane function
otherwise.

iteration 0 iteration 4 iteration 8 iteration 16 converged

Figure 6: Iterations of LSMAT optimization on an input noisy point set. We randomly initialize sphere centers and radii, and demonstrate the
excellent convergence properties of our optimization. Here the center-pin correspondence is marked by the dotted line. Notice how although
some spheres are initially outside, the optimization pushes them into the interior of the point set.

geometry of Φ
2
blend, we can then re-formulate our inscription with

respect to each oriented point pn. Analogously to Equation 4, this
energy is accumulated over all points in P:

Einscribed ≈∑
n

ϕ(R(||ct−1−pn||− rt−1),hsupport)︸ ︷︷ ︸
6=0 for a subset of the N points

Φblend(s)
2 (7)

The parameter hblend defines the scale used for blending between
distance types, and hsupport limits how far outside of a sphere a
point may be before its contribution falls to zero. As is typical
in robust optimization (e.g. IRLS) the weights are computed with
respect to the parameters st−1 at the previous iteration – inscription
is evaluated only for points within, or in proximity of the sphere in
its previous geometric configuration st−1.

Figure 7: While the algorithm is initialized in a neighborhood, op-
timizing for larger spheres will cause the solver to have the sphere
converge to areas of locally maximal radius.

Pinned spheres. The medial axis provides an estimate of the local
thickness of the shape through its sphere local radius. However,
as our variational formulation attempts to create larger spheres,
nothing prevents a sphere from traveling along medial branches
wherever we have a non-vanishing medial radius gradient onM;
e.g. a sphere would slide from the tip of a cone to its base; see
Figure 7. We can avoid this issue by “pinning” medial spheres.
Generalizing the exact constraints of the sphere-shrinking algorithm
by [MBC12], we subject the sphere associated with a given point
p to the hard constraint ‖c−p‖− r ≤ dpin, which keeps the sphere
in contact with a sphere of radius dpin centered at p. We include
this constraint in our optimization via the penalty method [NW06],
yielding a quadratic barrier energy:

Epinning =R(‖c−p‖− (r+dpin))
2 (8)

Optimization. Similarly to [LCOLTE07], our optimization induces
the definition of medial sphere as the fixed point solution of an
update equation:

s = F(s) = argmin
s

Emedial +Epinning (9)

Our optimization problem is quadratic, but while its energy terms
are differentiable, they are not linear. Hence, we iteratively compute
a solution via Gauss-Newton. This requires the linearization of the
arguments of the quadratic functions with respect to c and r, which
is straightforward in our setting.

The definitive version is available at wileyonlinelibrary.com

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13599


Rebain et al. / LSMAT: Least Squares Medial Axis Transform

Implementation. Due to the independent nature of the per-sphere
optimization, our implementation is straightforward. At each step
we compute Jacobian matrices and residual vectors separately for
each sphere and thus are only required to solve a DxD linear system
for each, where D is the number of degrees of freedom of a single
sphere (3 or 4 in our experiments). This property eliminates the need
for any advanced solvers or factorizations and enables the imple-
mentation to be completely parallel over the spheres, as required for
effective GPU acceleration. Additional performance optimization
could be achieved by collecting the points for each sphere whose
contribution is non-zero using accelerating data structures such as
kd-trees [FBF77].

4. Results and evaluation

We show medial representations generated by our method, in both
2D and 3D, throughout the paper and in Figure 16. As shown, our
method produces valid medial representations for a wide variety
of shapes and models, and in the presence of noise and outliers.
Throughout the paper, we process all input with the same parame-
ters whose values were set according to the analysis in Section 4.6.
We evaluate our method in several ways. First, we consider vari-
ations of the inscription and maximality energy, and show how
alternative formulations fail. Second, we evaluate the performance
of our algorithm against ground truth on synthetic benchmarks con-
taminated by noise and outliers. Third, we compare our generated
medial representations against the state-of-the-art in both 2D and
3D, again in the presence of noise. Finally, we provide an analysis
of our algorithm parameters.

4.1. Variants of inscription energy – Figure 8

We consider two modified formulations of Equation 7 in which we
either penalize the squared distance to points, or the squared distance
to half-planes as opposed to our blended formulation. We investigate
this behavior by randomly initializing the algorithm, and snapping
ϕn(c̄n) to either zero or one for all points. When ϕn(c̄n) = 1, point-
to-point energy is used and the algorithm attempts to make spheres
empty in a least square sense. However, nothing prevents the opti-
mization from generating maximal spheres outside the shape in the
ambient space. When ϕn(c̄n) = 1, point-to-plane energy is used, and

Φhalfplane Φpoint LSMAT

Figure 8: Qualitative evaluation of inscription energy variants.

Figure 9: Qualitative evaluation of maximality energy variants.

the algorithm attempts to make half-spaces empty. As illustrated
in Figure 8 and the supplemental video, this results in difficulties
for the algorithm in dealing with sharp concavities. In the example
above, we expect all centers to cluster to one of the two centers,
but spheres in the neighborhood of the sharp concavity might read
the normal of a point on the opposite side, with a halfplane request-
ing the radius of a sphere intersecting with it to be significantly
smaller. This problem is caused by the fact that point-to-point and
point-to-plane energies approximate the squared SDF of a point
set respectively in the far and near field. Our LSMAT formulation
respects this geometric property, and deals with both issues at once.

4.2. Variants of maximality energy – Figure 9

We consider two alternative formulations of the maximality con-
dition in our optimization: penalizing the squared inverse of the
sphere radius, expressed as ‖1/r‖2, or directly specifying Rmax,
the maximum size of a medial sphere, and optimizing ‖r−Rmax‖2.
While intuitively these are potentially feasible solutions, they incur
a significant limitation: the amount of “pressure” a medial sphere
will apply will be dependent on its size. That is, small spheres will
be associated with a higher energy level. For example, using the first
formulation, as r→ 0 its gradient will tend to −∞; as illustrated
in Figure 9, this can cause spheres in the neighborhood of small
features to bulge out. Our solution, detailed in Equation 2, does not
encounter this problem, as our energy is constant regardless of the
sphere size.

Figure 10: As the optimization of Equation 9 is executed, the av-
erage/max ground truth errors converge to the maximum precision.
This plot illustrates the error for the iterations visualized in Figure 6.
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LSMAT

%
%

Figure 11: (top) Quantitative evaluation on state-of-the-art methods
showing increasing error as we increase the noise level. (bottom)
Qualitative results corresponding to the two dashed lines in the plot.

4.3. Quantitative evaluation metric – Figure 10

We consider ground truth geometry polluted by noise, and evaluate
the quality of an extracted axis by computing the distance of each
medial center to the closest point on the ground truth axis M̃:

Eavg =
1
N ∑

n
argmin
c̃n∈M̃

‖cn− c̃n‖2 (10)

Emax = max
n

argmin
c̃n∈M̃

‖cn− c̃n‖2 (11)

We compute M̃ via the medial axis module of the python skimage
package, derived from the ridges of the distance transform from the
ground truth boundary ∂O. As we discretize images with a bounding
box at a 10242 resolution, the “numerical precision” of the metrics
above is of one pixel. To obtain scale invariance, we report these
errors in relation to the diagonal of the bounding box. In Figure 10,
we visualize the convergence of our iterative optimization scheme.

4.4. State-of-the-art comparisons in 2D – Figure 11

Through the metric from Section 4.3, we quantitatively evaluate the
performance of LSMAT against local filtering methods, as well as
the global scale axis transform. Figure 3 shows how neither distance
nor angle filtering is very effective; hence we employ a compound
variant where we first filter by distance with λ > σp, and then by
angle θ > 110◦. For the scale axis, we set σ = 1.3, and for our
method, we use our default parameters. We gradually increment the
level of noise, and plot the corresponding error metric in Figure 11,
as well as a few example frames from the plot. Note that LSMAT
correctly captures the shape of the ground truth boundary, whereas
all other local methods fail.

4.5. State-of-the-art Comparisons in 3D – Figure 12

We qualitatively evaluate the performance of LSMAT in three
dimensions by comparing our results to those generated by the

SAT [MGP10], QMAT [LWS∗15], and sphere-shrinking [MBC12]
methods. To compare with methods that expect a mesh in input,
we finely re-triangulate the surface, and apply normal displacement
perturbation with σp ∈ [0%,2%] relative to the diagonal bounding
box. On the fertility model, LSMAT produces a convincing medial
axis representation even when the input oriented point cloud is af-
fected by extreme noise – i.e. with a magnitude close to the one of
the local feature size. For the vase model, LSMAT still produces
a smoother and more faithful medial axis representation than the
existing state-of-the-art. Even in the presence of minor amounts of
noise (second row), LSMAT faithfully produces a medial axis repre-
sentation with a smooth surface, and whose skeleton resembles that
of the uncorrupted model. The results are particularly encouraging
on the horse dataset, where we attempted to use a very small number
of target primitives for QMAT (≈ 500) and a large value of scale for
SAT (≈ 1.3). Our formulation is the only one capable of computing
a relatively noiseless arrangement of medial spheres. The timings
for our LSMAT and sphere shrinking results can be found in Table 1.
All experiments were run on a machine with an Intel Xeon E5-1650
CPU and an Nvidia GTX 1080 GPU.

4.6. Algorithm Parameter Analysis – Figure 13

Our algorithm depends on five parameters: the kernel sizes hblend
and hsupport, the relative weight ω1/ω2, pinning distance dpin, and
radius expansion constant ε. The effect of varying the first four
given different levels of noise is shown in Figure 13. Note we only
consider the ratio between the ω∗, as the two energies balance each
other. As hblend increases, spheres near sharp concave corners begin
to shrink as they eventually use the point-to-plane distance for all
points in their neighborhood. When hsupport grows significantly be-
yond the local feature size, the MLS formulation is no longer able to
recover a meaningful surface. As ω1/ω2 increases and the relative
importance of maximality versus inscription increases, spheres ex-
pand until they no longer form a faithful medial representation and
ultimately escape the point cloud. Finally, as dpin grows, the spheres
are allowed to slide further from their starting positions towards ar-
eas of locally maximal radius. We assume that estimates of the input
noise characteristics are available, and choose our default value for

Model (σp) LSMAT Sphere Shrinking
10k Spheres Time Iterations Time Iterations

Fertility (0%) 11.8s 40 0.30s 9
Fertility (1%) 11.6s 40 0.35s 11
Fertility (2%) 12.0s 40 0.33s 10
Fertility (5%) 16.2s 40 0.34s 10

Vase (0%) 11.2s 70 0.16s 9
Vase (1%) 12.1s 70 0.17s 10
Vase (2%) 11.8s 70 0.16s 9
Vase (5%) 6.1s 70 0.16s 9

Horse (2%) 6.8s 60 0.16s 9

Table 1: Run-times for LSMAT and Sphere Shrinking results pre-
sented in Figure 12. Both algorithms are GPU accelerated and run
on the same hardware. Note that our efficiency claims are made
with respect to QMAT and the scale axis transform, for which GPU
acceleration is not availible.
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Figure 12: Qualitative evaluation on state-of-the-art methods as we increase the noise level. The QMAT [LWS∗15] and SAT [MGP10] in the
first two columns are global methods that assume a watertight surface, while the sphere-shrinking [MBC12] and the LSMAT proposed here
are local methods.

each of these four parameters based on empirically derived linear
functions of σp; see Appendix B for details. Through experiments
we observed that it is sufficient to choose a constant value for the
fifth parameter ε, as different values of it merely change the optimal
relation between ω1/ω2 and σp. For all our experiments we use
ε = 100%. We believe improved formulations of LSMAT could

eventually coalesce some of these parameters hence improving the
ease of use of our algorithm.
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Figure 13: A qualitative analysis of parameters in our algorithm. Each quadrant shows the result of sweeping a parameter (horizontal) for
different noise values (vertical). The highlighted images represent the "default" parameter choice as defined in Section 4.6. The right column
in each quadrant shows an unreasonably high choice to demonstrate that there is an upper bound for each parameter.

5. Future works

Expressing the Medial Axis Transform as a non-linear least squares
problem opens up several interesting avenues for future research.

Robustness to outliers – Figure 14. Least squares problems can
be interpreted as a maximum-likelihood (ML) estimation given a
Gaussian probability distribution of the noise variables. If the input
is corrupted by other forms of noise, one could replace Gaussian
with other error distributions, and derive the corresponding ML
optimization scheme. For example, if we assume the probability
distribution of the noise to be Laplacian, the least-squares problems
would simply be transformed into an `1 (i.e. least norm) optimiza-
tion. However, these type of problems can still be computed with
Gauss-Newton type methods by using iteratively re-weighted least
squares (IRLS) techniques [DDFG10]. As illustrated in Figure 14
this results in an IR-LSMAT algorithm that can cope with significant

amounts of outliers. While these results are promising, the conver-
gence speed of the optimization is severely reduced, as a much
smaller value for ε was needed to produce these results. The gen-
eralizability of LSMAT to `p robust norms [BTP13] is particularly
interesting. More specifically, consider the optimization problem
consisting only of the following energy:

argmin
c,r

∑
n
|‖c−pn‖− r|p. (12)

For p = 2 this simplified version of the sphere-fitting problem is con-
vex, hence generating a single solution regardless of initialization.
However, as p→ 0 the problem is non-convex and the local minima
reached by optimization depends on the initialization. Our prelimi-
nary investigation revealed how these local minima correspond to
spheres belonging to the symmetry set, a superset of the medial axis;
see Figure 2(d) and [TDS∗16, Sec. 2.1.4]. How to exploit (12) to
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Figure 14: Iteratively Reweighted LSMAT and its ability to cope with an increasing number of outliers (as % of input point set).

efficiently compute the MAT of a point set is an interesting venue
for future works.

Smoothness priors – Figure 15. Our pinning formulation is highly
efficient, but its local nature can be also considered a intrinsic limi-
tation. For example, in the noisy maple leaf example in Figure 16,
at times the estimated medial spheres could be over and/or under-
estimated in size, resulting in medial centers that do not necessarily
sample the underlying piecewise-smooth manifold of the MAT. How-
ever, if our input is a sampling of a smooth surface ∂O, then we
know that [SP08]: ¬ the medial centers c∗ should be lying on a
piecewise smooth manifold, and  the sphere radius function on
this manifold should vary smoothly. Another desirable character-
istic might be to have a uniform sampling of this manifold. We
can convert these priors into least-squares energies, resulting in a

initialization iteration #1

iteration #20

Figure 15: Optimizing LSMAT centers placement. To highlight the
smoothness of the resulting shape, we only display the input point
set overlaid to the initialization.

maximum a-posteriori optimization. In Figure 15 we illustrate a
few iterations of this optimization on the moon shape, where the
“pinning” constraints from Section 3.2 have been disabled. While the
optimization behaves as expected, this suffers similar shortcomings
to those illustrated in Figure 7, and would result in a single sphere if
executed for t→∞. Modifying the variational LSMAT formulation
to obtain a regularly sampled distribution of medial centers is an
interesting venue for future works.

Optimization acceleration. In our experiments, we initialize the
optimization with random sphere positions and radii. Nonetheless,
given how a smooth object is composed of smooth piecewise man-
ifolds M, and a smooth radius function R defined thereon, one
could easily envision a locally bootstrapped version of the algo-
rithm, where unsolved medial balls are initialized with the c∗,r∗
of their neighbors – which could also be re-interpreted as a multi-
scale solver. Notice that techniques such as the sphere-shrinking
algorithm from [MBC12] do not permit this type of acceleration.

Shape approximation vs. reconstruction. A number of methods
leverage the medial axis for interpolatory reconstruction [Dey06],
and our work is a stepping stone towards the creation of approximat-
ing reconstruction [BTS∗16] algorithms based on the medial axis.
Methods such as Medial Meshes [SCYW16] and QMAT [LWS∗15]
assume a reconstruction of the watertight surface is already avail-
able, and attempt to extract its approximation via swept-spheres.
Conversely, our work could be extended to directly compute a
reconstruction of the input point cloud by minimizing data fit-
ting metrics based on Hausdorff distances [SCYW16] or spherical
quadrics [LWS∗15]. A “topology surgery” step could then be inter-
weaved with our optimization to stitch medial spheres together and
create a medial mesh with connectivity information.

Orienting a point set. Finally, while our formulation is based on
an oriented point set and an approximation of its SDF in the near/far
field, an interesting variant of our algorithm could consider an un-
oriented point set, where the quantities to be optimized for would
be the radii [r1,r2], and contact plane [k,n] of a pair of twin spheres.
The contact point t should then be then be optimized on the manifold
∂O, while the complementary outside/inside label of each sphere
be optimized to result in a smooth signing of the environment space.
This approach would then provide a “medial axis” analogous to
recent efforts in variational reconstruction of non-oriented point
clouds [MDGD∗10].
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6. Conclusions

We have introduced the Least Squares Medial Axis Transform, or
LSMAT, a continuous relaxation of the medial axis transform that is
not only stable, but also robust to high levels of noise even though
it is based solely on local optimization. While in most of the paper
we visualized the generated maximal spheres covering more or
less the entire shape, we would like to remind the reader that the
algorithm operates on each sphere independently; the algorithm is
therefore trivially parallelizable and particularly suitable for GPU
implementations. Our method produces results on noisy inputs that
state-of-the-art methods fail to handle, without a reliance on ad-
hoc postprocessing. Our approach is efficient, parallelizable, and
therefore suitable for real time applications where reliable medial
representations are required, and where captured inputs are likely to
be noisy.
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Appendix A: Gradients of Energy Components

Gradients are written in the form∇s f (s) =
[
∇c f (s), ∂ f (s)

∂r

]
.

Inscription Term. Given oriented surface point (pn,nn):

∇sΦplane(s) =H(Φplane(s))[−nn,1] (13)

∇sΦpoint(s) =H(Φpoint(s))
[

pn− c
‖pn− c‖2

,1
]

(14)

Maximality Term.

Rmaximal = r− (rt−1 + ε) (15)

∇sRmaximal = [0,1] (16)

Pinning Term. Given pin point p:

Rpinning =R(‖c−p‖− (r+dpin)) (17)

∇sRpinning =H(Rpinning)

[
c−p
‖c−p‖2

,−1
]

(18)

Appendix B: Empirical Parameter Defaults

Default value of ω1/ω2:

ω1/ω2 = 0.007σp +0.02 (19)

Default value of hblend and hsupport (both the same):

hblend = 0.74σp +0.49 (20)

Default value of dpin:

dpin = 0.75σp (21)
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Figure 16: A gallery of LSMAT results with varying levels of noise on shapes with complex topology and varying feature size. In the callout
for the octopus, notice how the MLS kernel overlaps nearby surfaces, yet the algorithm can cope by producing erroneously located medial
spheres with zero radius.
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σp = 0% σp = 0.1% σp = 1% σp = 2%

k = 10-6

k = 10-5

k = 10-4

Figure 17: Parameter sweep for QMAT. The X axis represents noise, while the Y axis shows results for different values of the parameter k. We
found that k had little effect on the noise tolerance of the algorithm. For the left two columns, the noise values are the minimum and maximum
noise levels shown in the original publication, which yield good results. However, for the higher noise values that we test against QMAT fails
to produce a useful medial representation. As noted in Section 2.1, this is a known and acknowledged limitation for this family of methods.

σp = 0% σp = 0.1% σp = 1% σp = 2%

σ = 1.1

σ = 1.3

σ = 1.5

Figure 18: Parameter sweep for Scale Axis. The X axis shows the same noise levels used in Figure 17, while the Y axis shows results for
different values of the scale parameter σ. As expected, this method performs well in areas where the local feature size is much larger than the
noise. We show the intermediate up-scaled spheres to demonstrate this more clearly. The Scale Axis Transform is in some cases able to recover
a useful medial representation even when the unfiltered MA is highly corrupted. The missing images are due to the implementation failing to
complete within the allowed time for that combination of parameters.
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