
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/11 9 8 1 2/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Tang, Keke, Son g, Pen g, Wang, Xiaofei, De n g, Bailin , F u, Chi-Wing a n d Liu, Liga n g

2 0 1 9. Co m p u t a tion al d e sig n of s t e a dy 3D diss ec tion p uzzles. Co m p u t e r Gra p hics

Fo ru m 3 8 (2) , p p . 2 9 1-3 0 3. 1 0.11 1 1/cgf.136 3 8

P u blish e r s p a g e: h t t p s://doi.o rg/10.11 1 1/c gf.13 63 8

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

EUROGRAPHICS 2019 / P. Alliez and F. Pellacini
(Guest Editors)

Volume 38 (2019), Number 2

Computational Design of Steady 3D Dissection Puzzles

Keke Tang1,2 Peng Song3† Xiaofei Wang4 Bailin Deng5 Chi-Wing Fu6 Ligang Liu4

1 Cyberspace Institute of Advanced Technology, Guangzhou University 2 University of Hong Kong 3 EPFL
4 University of Science and Technology of China 5 Cardiff University 6 The Chinese University of Hong Kong

Figure 1: (a&b) TEAPOT - SNAIL dissection puzzle designed by our method; (c) 25 3D-printed pieces; and (d&e) assembled puzzles.

Abstract

Dissection puzzles require assembling a common set of pieces into multiple distinct forms. Existing works focus on creating

2D dissection puzzles that form primitive or naturalistic shapes. Unlike 2D dissection puzzles that could be supported on a

tabletop surface, 3D dissection puzzles are preferable to be steady by themselves for each assembly form. In this work, we aim at

computationally designing steady 3D dissection puzzles. We address this challenging problem with three key contributions. First,

we take two voxelized shapes as inputs and dissect them into a common set of puzzle pieces, during which we allow slightly

modifying the input shapes, preferably on their internal volume, to preserve the external appearance. Second, we formulate a

formal model of generalized interlocking for connecting pieces into a steady assembly using both their geometric arrangements

and friction. Third, we modify the geometry of each dissected puzzle piece based on the formal model such that each assembly

form is steady accordingly. We demonstrate the effectiveness of our approach on a wide variety of shapes, compare it with the

state-of-the-art on 2D and 3D examples, and fabricate some of our designed puzzles to validate their steadiness.

CCS Concepts

• Computing methodologies → Shape modeling; • Applied computing → Computer-aided manufacturing;

1. Introduction

Dissection puzzles require assembling a common set of pieces in
different ways to produce two or more distinct shapes (i.e., forms).
A typical example is a dissection of a triangle to a square in only
four pieces, also known as the Haberdasher’s problem [Dud07].
Another example is a visual proof of the Pythagorean theorem with
Perigal’s dissection [Per72], where a large square is dissected into
two smaller squares. Different from conventional puzzles that have
a single form when assembled, dissection puzzles have multiple
(typically two) forms and can be reconfigured among these forms
by transforming and reassembling the pieces, making them more
intriguing for playing.

Designing dissection puzzles (i.e., the dissection problem) is an
interesting problem studied in recreational math and computational
geometry [LF72]. In its basic form, geometric dissection partitions a
2D figure into a finite number of pieces that can be rearranged into a

† The corresponding author, email: songpenghit@gmail.com

new figure of equal area. In practice, it is usually required that the dis-
section uses just a few pieces, such that the puzzle is manageable for
playing. Early research works [Coh75, KKU00, AAC∗12] focus on
analytic approaches to dissect 2D primitive shapes such as triangles,
squares and other regular polygons into congruent polygonal pieces.
Until recently, a few computational methods have been developed to
dissect general 2D shapes represented as discrete squares [ZW12]
or dissect naturalistic 2D shapes approximately [DYYT17].

The dissection problem becomes considerably more challeng-
ing when moving from two dimensions to three dimensions. For
3D dissection, we aim at finding a common set of pieces that
can be assembled into two different 3D shapes of equal volume.
It is more challenging due to representing more complex 3D
shapes with a few common pieces and requiring higher degrees
of freedom (DOF) to reconfigure the pieces into different assem-
bly forms. Therefore, very few 3D dissection results have been
reported [The18, Fre09, HN06, Fre97], which are elegant primitive
3D shapes, such as tetrahedrons, cubes and prisms, and were cre-
ated by solving intricate math problems with analytic approaches;

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

This is the accepted version of the following article: Keke Tang, Peng Song, Xiaofei Wang, Bailin Deng, Chi-Wing Fu, Ligang Liu: Computational Design of Steady 3D Dissection Puzzles,
Comput. Graph. Forum 38(2), 2019, which has been published in final form at http://onlinelibrary.wiley.com. This article may be used for non-commercial purposes in accordance with the
Wiley Self-Archiving Policy [http://olabout.wiley.com/WileyCDA/Section/id-820227.html].

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 2: CUBOID-CUBE dissection puzzle with six pieces, de-

signed by Anton Hanegraaf in 1989. [Copyright figure: Hunger-

bühler and Nüsken [HN06]]

see Figure 2 for an example. Unlike 2D dissection puzzles that
are simply placed on a tabletop surface, 3D dissection puzzles are
preferable to be steady for each assembly form; e.g., every puzzle
piece is supported by its neighboring pieces and no puzzle piece
should fall apart due to gravity.

In this work, we aim at computational design of steady 3D dis-

section puzzles from user-specified 3D shapes, motivated by the
use of 3D printing for making personalized toys [BCMP18]; see
Figure 1 for an example result. We explore steady structures based
on mechanical interlocking [SFCO12] by immobilizing component
parts through their geometric arrangements. Both dissection and
interlocking are very strong constraints on the geometry of the puz-
zle pieces: dissection requires the pieces to be reconfigurable into
different target shapes, while interlocking requires the pieces to
connect with one another in a steady assembly form. Finding pieces
that satisfy both constraints is an extremely challenging task. To
make the problem tractable, we take a pair of voxelized shapes as
inputs, and allow small modifications on them, preferably on the
internal volume, to preserve their external appearance.

To meet the above challenges, we make the following contribu-
tions:

• First, we dissect the input shapes into a common set of puzzle
pieces, during which the piece orientation in each form is com-
puted automatically. Small modifications on the input shapes are
allowed to facilitate the search of valid dissection solutions.

• Second, we present a generalized interlocking formal model that
relaxes the geometric constraints in conventional interlocking
methods [SFCO12] by allowing connecting puzzle pieces into a
steady assembly using not just their geometric arrangements but
also the friction among them.

• Third, we make steady each assembly form of the dissection
puzzle by modifying the geometry of each dissected puzzle piece
according to the generalized interlocking formal model, without
violating the dissection requirement that is already satisfied.

We demonstrate the effectiveness of our approach on a variety of
3D shapes, and fabricate some of our designed puzzles to validate
their steadiness. We compare our dissection method with a state-
of-the-art method [ZW12] on both 2D and 3D examples, and show
that our 3D puzzles are more steady due to mechanical interlocking
employed to connect the pieces. We also compare our generalized
interlocking model with the recursive interlocking model [SFCO12]
to demonstrate its flexibility for designing interlocking assemblies.

2. Related Work

Geometric Dissections. In the 1830s, Bolyai [Bol32] and Ger-
wien [Ger33] already proved that whenever two 2D polygons have

the same area, one of them can be dissected using a finite number
of pieces to form the other. This is known as the Bolyai-Gerwien
Theorem. Nonetheless, the number of required pieces by the theo-
rem generally far exceeds the minimum number of pieces needed
to form a dissection. Hence, a number of analytic approaches have
been developed to find geometric dissections with the fewest number
of pieces. However, they mainly focus on 2D primitive shapes such
as triangles and squares [Coh75, KKU00, CKU07].

On the other hand, geometric dissections have been studied sub-
ject to various special constraints, such as hinged dissections that
connect all the pieces into a chain at “hinged” points and convert a
figure to another by swinging the chain continuously. A famous ex-
ample was introduced by Dudeney [Dud07] which dissects a square
into an equilateral triangle. Frederickson studied other types of
“hinges” such as twisting-hinges and piano-hinges [Fre02, Fre07b].
Abbott et al. [AAC∗12] proved that a hinged dissection always exists
when two polygons have equal area.

Only very recently, computational tools were developed to cre-
ate dissection puzzles. Zhou et al. [ZW12] proposed a stochastic
search approach to create dissection puzzles on general 2D shapes
represented on a discrete grid, and extended it to create a few 3D
dissection puzzles. Duncan et al. [DYYT17] created approximate
dissections between 2D naturalistic shapes with minimized modi-
fications while Li et al. [LMaH∗18] further constructed a special
hinged dissection that requires a reversible inside-out transform to
switch between two 2D shapes. The 3D dissection puzzles designed
by [ZW12] use primitive shapes. In contrast, we design 3D dis-
section results with significantly higher complexity at the cost of
introducing slight modifications on the inputs. Moreover, our work
stabilizes each assembly form with interlocking.

Transformable Objects. Recently, there is an emerging interest
in the computer graphics community on fabricating 3D assemblies
that can be transformed into different forms, such as articulated
models [BBJP12, CCA∗12], foldable furniture [LHAZ15, Fre07a,
Fre08], twisty puzzles [SZ15], transformables [YZC18, HCLC16],
and reconfigurables [GJG16]. In particular, Zhou et al. [ZSMS14]
designed transformable objects that can be folded into a box by
addressing a hinged 3D dissection problem. In contrast, our work
addresses a different 3D dissection problem, in which the target
object models can have arbitrary shapes and the component pieces
are disjoint before the assembly. Very recently, Song et al. [SFJ∗17]
developed a computational approach for designing reconfigurable
interlocking furniture by co-decomposing cage-based input models
into a common set of parts and co-constructing compatible joints
among the parts. Compared with this work, we focus on general
voxelized 3D shapes rather than furniture, and allow modifying
the interior of the input shapes to relax the constraints in creating
dissected puzzle pieces.

Interlocking Assembly. Mechanical interlocking is an intriguing
method for assembling component parts, while avoiding the use
of additional connectors among them. Conventional interlocking
methods immobilize every single piece, as well as every subset of
pieces, except for a single key which is the only movable piece in the
entire assembly. A few computational methods have been developed
to construct interlocking assemblies with this single-key property,
including puzzles [XLF∗11, SFCO12], 3D-printed object assem-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 3: Overview: (a) two voxelized models KITTEN and SQUIRREL as inputs; iteratively construct (b) the first piece P1, (c) the second

piece P2, and (d) the other pieces; (e) post-process all puzzle pieces to preserve the models’ appearance; and (f) 3D-printed dissection puzzle.

blies [SFLF15,YCXW17], furniture assemblies [FSY∗15], laser-cut
polyhedrons [SDW∗16], and frame/plate structures [WSP18].

Later, this single-key interlocking is relaxed to multi-key inter-
locking. Zhang and Balkcom [ZB16] presented a set of voxel-like
interlocking parts whose instances can be connected layer-by-layer
to form various interlocking voxelized shapes with multiple keys.
Song et al. [SFJ∗17] explicitly formulated the multi-key interlocking
model for connecting parts in reconfigurable furniture assemblies.

All the above works require immobilizing every single piece and
every subset of pieces, except for the key(s), inducing very strong
geometric constraints on the pieces and making it overly challenging
to construct pieces of 3D dissection puzzles. This work presents
a new generalized interlocking model that immobilizes the pieces
with the assistance of friction. Although the resulting assemblies
can be less steady than conventional interlocking assemblies, our
new model provides more flexibility for constructing interlocking
assemblies that are sufficiently steady for practical usage.

3. Overview

Given two 3D shapes represented as mesh models, we first voxelize
them such that the number of voxels in the two models, denoted as
M1 and M2, are roughly the same; see Figure 3(a). This is achieved
by scaling the mesh models such that they have exactly the same
volume and then voxelizing the mesh models using the same voxel
size. Taking M1, M2 and a user-desired number of pieces m (m ≥ 2)
as inputs, our goal is to generate a common set of puzzle pieces P1,
..., Pm that satisfy the following requirements:

• Dissection. The common set of pieces can form each target shape
via different arrangements.

• Assemblability. The pieces can be physically assembled into each
target shape.

• Steadiness. Each assembled shape should form a steady assembly,
where no piece would fall off easily due to gravity and/or external
forces.

• Aesthetics. Modifications on the input shapes’ appearance should
be as small as possible.

• Avoiding tiny pieces. Pieces consisting of a small number of
voxels should be avoided since such pieces are difficult to identify
and handle for physical assembly.

Besides the geometry of the common set of puzzle pieces, our prob-
lem also requires computing a rigid transformation Ti (translation
and rotation) for reconfiguring each puzzle piece Pi across the two
forms, i.e., from P1

i in M1 to P2
i in M2, where P1

i and P2
i are in-

stances of Pi in the two models.

Overview of Our Approach. We construct 3D dissection puzzle
pieces by iteratively co-extracting the pieces from M1 and M2 one
by one, until reaching the desired number of pieces m. We denote
the extracted puzzle pieces as Pk

1 , Pk
2 , ..., Pk

i , with Rk
i being the

remaining volume in Mk, where 1 ≤ i ≤ m−1 and k ∈ {1,2}. Here
P1

i and P2
i (1 ≤ i ≤ m−1), as well as R1

m−1 and R2
m−1, should

have exactly the same shape to ensure a successful dissection. To
facilitate the understanding, we use a consistent color scheme on
the following puzzle pieces: red for Pk

1 , blue for Pk
2 , and gray for Rk

i ;
see Figure 3.

Directly generating puzzle pieces that satisfy all the above require-
ments simultaneously is challenging. Thus, we first construct each
puzzle piece subject to the dissection and assemblability require-
ments, while relaxing the aesthetics requirement, and then modify
it to satisfy the steadiness requirement based on our generalized
interlocking formal model. After generating all puzzle pieces, we
post-process them to improve the aesthetics of final assemblies as
much as possible. During all the above procedures, we ensure that
each puzzle piece has at least a certain amount of voxels to avoid

tiny pieces. The key steps of our approach are detailed as follows:

1. Dissect Pi. To construct an initial Pi, we identify similar geomet-
ric features between the two models and make them correspond-
ing to form a common piece Pi under a certain transform Ti. This
is achieved by a co-seeding procedure to find corresponding seed
voxels, a co-expanding procedure to grow Pk

i from the seeds, and
a co-cleaning procedure to include fragmental voxels in Pk

i ; see
Figure 3(b-d) and Subsection 5.2.

2. Stabilize Pi with generalized interlocking. To make Pi steady, we
propose a new generalized interlocking model that immobilizes
parts using their geometric arrangements and friction (see Sec-
tion 4). Our formal model ensures generalized interlocking of the
assembly by enforcing local constraints when constructing each
Pi. Guided by this model, we modify the geometry of Pi such that

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

[Pk
1 ,P

k
2 , ...,P

k
i ,R

k
i] form a generalized interlocking intermediate

assembly for each k (i.e., form); see Subsection 5.3.

3. Post-process all puzzle pieces. The generated puzzle’s appear-
ance could be different from that of the input models (i.e., in-
troducing holes) since we allow deleting voxels to facilitate the
puzzle piece construction. We alleviate modifications on the input
models’ appearance by adding back some of the deleted exterior
voxels to the puzzle pieces while maintaining the dissection and
interlocking requirements; see Figure 3(e) and Subsection 5.5.

4. Generalized Interlocking Formal Model

Interlocking adopted by existing works [XLF∗11,SFCO12,SFLF15,
FSY∗15,SDW∗16,ZB16,SFJ∗17,YCXW17,WSP18] for designing
steady assemblies is defined as follows:

An assembly of pieces (with at least three pieces) is said to

be interlocking if every single piece as well as every subset

of the pieces are immobilized relative to one another,
except a single or a few movable key(s).

Conventional interlocking is very restrictive since it connects
pieces with pure geometric arrangements. As a result, it can only
be achieved for input shapes that satisfy certain requirements;
e.g., [SFCO12, SFLF15] require the input object to have large in-
ternal volume while [FSY∗15, SFJ∗17] require the input furniture
model to have sufficient cyclic substructures.

In our daily life, many assemblies in which parts are connected
by integral joints can be steady without conventional interlocking,
e.g., 3D printed assemblies connected with male and female con-
nectors [LBRM12], laser-cut assemblies connected with halved
joints [CPMS14], and furniture assemblies connected with wood-
working joints [Rog02]. This is because friction is employed to
prevent the part(s) from moving along the single direction that is not
restricted by the joint; see Figure 4 for an illustration. Note that the
connection strength by friction depends on the tightness of the joint.

Inspired by this observation, we propose a new concept called
generalized interlocking:

An assembly of pieces (with at least three pieces) is said

to be generalized interlocking if every single piece as

well as every subset of the pieces are either immobilized
or movable along a single axial direction relative to one
another, except a single or a few movable key(s).

According to this definition, conventional interlocking is a subclass

Figure 4: (a) A joint connection where the green piece is movable

along a single axial direction (i.e., +x); this DOF can be removed by

considering friction. (b) A joint connection where the green piece is

movable along more than one axial direction (i.e., +x, +y); friction

cannot stabilize such a connection due to insufficient pressure.

of generalized interlocking. Yet, generalized interlocking signifi-
cantly relaxes the geometric constraints of conventional interlocking
by allowing each piece and each subset of pieces to be movable
along at most one axial direction, while retaining the steady assem-
bly property by preventing each piece (and each group of pieces)
from moving along this single axial direction using friction. In this
work, we do not explicitly model the friction but simply assume
that sufficient friction can be obtained by adjusting the fabrication
tolerance among the pieces during their manufacture.

In the following, we introduce three formal models that guarantee
generalized interlocking by enforcing geometric constraints locally
when constructing each individual piece. We first introduce a naive
formal model (Subsection 4.1) and a basic formal model (Subsec-
tion 4.2) to facilitate the understanding, and then our formal model
(Subsection 4.3) that will be used in our puzzle design approach.

4.1. Naive Formal Model

Given a voxelized model M, we iteratively extract each individual
piece from it one by one, forming a sequence of extracted pieces
P1, P2, ..., Pn, with Rn, the remaining part of M, as the last piece.
Let D be the set of six axial directions (i.e., +x,−x,+y,−y,+z,−z)
aligned with the voxelization. We denote the extraction direction of
each piece Pi as di ∈ D.

To construct pieces from M that can form a generalized inter-
locking assembly, a straightforward way is to ensure that each piece
Pi is immobilized by the last piece Rn such that Pi is only mov-
able along di relative to Rn. The inset figure shows an example,
where each piece is movable along a single
direction (see arrows) relative to the gray
piece. However, although this naive formal
model can guarantee generalized interlock-
ing, the resulting Rn usually has very irreg-
ular shape and is much larger than the other
pieces since it needs to immobilize them. Hence, this naive formal
model is not suitable for our 3D dissection problem.

4.2. Basic Formal Model

Rather than relying on the last piece (i.e., Rn) to immobilize all the
other pieces, we can immobilize each piece Pi using Ri together with
Pi−1 when constructing Pi, thus relaxing the geometric constraint on
Rn. This leads to the following requirements when constructing Pi,
which are proved to guarantee the resulting pieces to be generalized
interlocking (see the supplementary material for the proof).

Requirements for P1. When constructing P1, it should be immo-
bilized by R1 such that it is only movable along d1.

Requirements for Pi (2 ≤ i ≤ n). When constructing Pi, it should
satisfy the following requirements, where Si denotes the set of all
neighboring pieces of Pi that have been extracted before Pi:

1. Pi should be immobilized by Pi−1 and Ri such that it is movable
only along di.

2. Ri should block Pi from moving along di−1, if di−1 6= di.

3. For each Pj ∈ Si and each direction d
′

∈ D\{di,d j}, if Ri does

not block Pj while Pi blocks Pj from moving along d
′

, then Ri

should block Pi from moving along d
′

.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 5: Top row: constructing pieces following (a-c) the basic formal model and (d-f) our formal model, in which the extraction direction of

each piece is highlighted with a small arrow. Bottom row: the corresponding dependency graphs.

Figure 6: (a&c) {Pi−1,Pi} are movable together along more than

one axial direction, violating the definition of generalized inter-

locking. (b&d) By modifying Pi (see green circles) following the

basic formal model, {Pi−1,Pi,Ri} form a generalized interlocking

assembly. The movable direction(s) of Pi−1, Pi, and {Pi−1,Pi} are

indicated with red, blue, and black arrows respectively.

Note that when constructing Pi, simply applying the first requirement
is not sufficient since Pi and Pj ∈ Si might be movable together
along more than one axial direction. For example, when di−1 6= di,
{Pi−1,Pi} could be movable along both di−1 and di; see Figure 6(a).
For this case, we enforce the second requirement on Pi and Ri to
avoid this; see Figure 6(b). Also, {Pj,Pi} could be movable along
the contacting direction(s) between Pj and Pi; see Figure 6(c). For
this case, we enforce the third requirement on Pi and Ri to prevent
the undesired movement; see Figure 6(d).

Dependency Graph. By iteratively extracting a new piece from
Ri following the above requirements, we can draw a dependency
graph for each intermediate step, where each node represents a piece
and each directed edge represents the “immobilization dependency”
between associated nodes; see Figure 5(a-c). In other words, if Pi

links to both Pi−1 and Ri with a directed edge, it means Pi−1 and Ri

are selected to immobilize Pi when constructing Pi. Sometimes, it is
sufficient to immobilize Pi by Ri only (see Figure 5(a)), and we show
two directed edges from Pi to Ri. During the extraction process, the
immobilization dependency between Pi and Ri can be inherited in

the successive extraction steps even if Ri has been partitioned into
multiple pieces. To highlight this, we draw large circles in the graphs
to indicate previous Ri’s in the current step; see again Figure 5. As
we assume all the part movements are relative to Ri, there is no
directed edge from Ri to any other node in the graphs.

4.3. Our Formal Model

In the basic formal model, we always choose Pi−1 and Ri to immo-
bilize Pi; see again Figure 5(a-c). We generalize this constraint by
choosing an arbitrary Pt ∈ Si (1 ≤ t ≤ i−1) and Ri to immobilize
Pi; see Figure 5(d&f). In this formal model, each piece Pi (2 ≤ i ≤ n)
should be constructed with the following requirements.

1. Pi should be immobilized by Pt and Ri such that it is movable
only along di.

2. For each Pj ∈ {P1, ...,Pi−1} \ {Pt}, Ri should block Pi from
moving along d j, if Ri does not block Pj or Pt from moving
along di and di 6= d j.

3. For each Pj ∈ Si and each direction d
′

∈ D\{di,d j}, if Ri does

not block Pj while Pi blocks Pj from moving along d
′

, then Ri

should block Pi from moving along d
′

.

In case we could not find any Pt that satisfies the above requirements,
we allow Pi to be immobilized by Ri only such that it is movable
only along di; see Figure 5(e) for an example. It can be proved that
the pieces constructed following these requirements are guaranteed
to be generalized interlocking (see the supplementary material).

5. Our Approach

Given two voxelized shapes M1 and M2, and a user-desired num-
ber of pieces m, we first compute several heuristic measures on
the shapes to guide the piece construction process (Subsection 5.1).
Next, we dissect a piece from the two shapes (Subsection 5.2),
and modify its geometry to satisfy the requirements of our formal
model for stabilizing it (Subsection 5.3). We iterate this processes
for each piece until the number of dissected pieces reaches m (Sub-
section 5.4). Lastly, we post-process all the generated puzzle pieces
to improve appearance of the final assemblies (Subsection 5.5).

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 7: Identify overlapping volume of (a) KITTEN and (c)

SQUIRREL, where overlapping (non-overlapping) voxels are ren-

dered in solid (wireframe). The coordinate axes beside each model

indicate the rigid transform to align the models. (b&d) Visualize

compatibility of each voxel in the two models, where orange (green)

indicates low (high) compatibility.

5.1. Solution Metrics

We compute four measures for the input models: compatibility be-
tween the two models, compactness, accessibility and noticeability
for each model. The measure of noticeability is computed only once
for each model, while the other measures need to be recomputed for
the remaining volume Ri after extracting each piece Pi.

Compatibility. We observe that the more similar two input models
are, the easier it is to perform dissection between them. In the ex-
treme case, two models with exactly the same shape can be trivially
dissected by partitioning them in the same way. Therefore, we first
identify the largest overlapping volume between the two models by
aligning their centroids and principal directions followed by small
axis-aligned translations. Based on this overlapping volume, we
introduce a measure of compatibility for each voxel v:

O(v) =
1

1+ exp(SDF(v))
, (1)

where SDF is the signed distance function to the boundary of the
overlapping volume, with positive values for voxels outside the
volume (see Figure 7). When dissecting a piece, we prefer to extract
voxels with low compatibility first while leaving voxels with high
compatibility in the remaining volume, to facilitate dissection of the
successive pieces.

Compactness. When constructing a new piece, we prefer to select
a seed voxel that is near the previously extracted pieces, to make
the remaining volume as compact as possible (see Figure 8). We
introduce a compactness measure C for each boundary voxel v on
the remaining volume, which has a larger value for a voxel closer to
the previous pieces:

C(v) = δ− min
vb∈{vb}

dist(v,vb), (2)

where δ is the diagonal length of the model’s bounding box, {vb}
denotes the set of voxels on the boundary of the remaining volume

Figure 8: The remaining volume (in gray) in (b) is more compact

than that in (c) after extracting a new piece (in blue) since the piece

in (b) is closer to {vb} (voxels with a green outline) in (a).

but not on the boundary of the model, and dist(v,vb) is the Euclidean
distance between the centroids of voxels v and vb.

Accessibility. After extracting a puzzle piece, the remaining vol-
ume Ri has to be connected. Hence, we compute an accessibility
value A j(v) for each voxel v in Ri, and use it later as a heuristic to
alleviate fragmentation. Following [SFCO12], A j(v) is computed
by recursively counting the (weighted) number of voxel neighbors:

A j(v) =

{
number of neighbors of v, for j = 0
A j−1(v)+α j

∑i A j−1(yi(v)) for j > 0 ,

where {yi(v)} are neighboring voxels of v in the remaining vol-
ume, α is set to 0.1, and j is set to 3 in our implementation. In
the following, we abbreviate A3(v) as A(v). Since voxels with low
accessibility are likely to be fragmented, we prioritize to include
them when constructing a puzzle piece.

Noticeability. As we allow modifications on the input models,
we prefer to delete voxels that cannot be easily noticed rather than
adding extra (exterior) voxels, since our inputs are voxelized mod-
els with solid interior. A voxel completely inside the input model
(internal voxel; see green-bounded voxels
in the inset) can be deleted without affect-
ing the external appearance (i.e., unnotice-
able). On the contrary, deleting voxels that
intersect with the original model surface
(boundary voxels; see black-bounded vox-
els in the inset) might remove important
shape features. Thus, we measure the no-
ticeability of each voxel v as:

N(v) =

{
0, if v is an internal voxel
a(v) otherwise

where a(v) is the volume of original model shape contained in the
boundary voxel v normalized by the total volume of the voxel. The
inset figure visualizes the noticeability of a few voxels, where dark
(light) red colors indicate high (low) noticeability.

5.2. Dissect a Piece

In this subsection, we dissect a puzzle piece Pi (1 ≤ i ≤ n) from
R1

i−1 and R2
i−1, with Rk

0 = Mk (k = 1,2) for consistency. We first
find a pair of corresponding seed voxels, along with the transform Ti

that reconfigures Pi from M1 to M2. Next, we apply a co-expanding
process to grow Pi simultaneously in the two models from each seed
voxel. Lastly, we perform a co-cleaning process to let Pi include
fragmental voxels that are near Pi in both models, to prevent the
remaining volumes from being disconnected.

Co-seeding. This procedure has the following three steps:

1. Select Seed Candidates. As voxels with low compatibility (e.g.,
non-overlapping voxels in Figure 7) are the major challenge for
3D dissection, we prefer to construct Pi from such voxels first,
to improve compatibility of the remaining volumes Rk

i (k = 1,2).
We also prefer to start from voxels with low accessibility to avoid
fragmental voxels in the remaining volumes. Thus we evaluate
the suitability of each boundary voxel v of Rk

i−1 as a seed via:

S(v) =
1

O(v)A(v)γA
(3)

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 9: Constructing a few pieces on a 2D example. (a) Co-seed, (b) co-expand, (c) co-clean, and (d) stabilize the first piece; (e) co-seed, (f)

co-expand, (g) co-clean, and (h) stabilize the second piece; (i) construct the third piece. Fragmental voxels that are avoided by the co-cleaning

process are highlighted in yellow in (b&f), and the co-blocking structures are highlighted in green in (d&h).

where γA is a weighting factor for accessibility (γA = 3.0 in our
experiments). We choose L (L = 15 in our experiments) voxels
with the highest S(v) as candidates of our seed voxels.

2. Generate Corresponding Seeds. To generate corresponding seeds
from the candidates, we need to consider their compactness (i.e.,
C(v)) since we want the seeds (and thus Pi) to be closer to the
previously extracted pieces (i.e., P1, ..., Pi−1) such that the re-
maining volumes can be compact. Moreover, we prefer a pair of
seeds with similar local shapes around them to facilitate the con-
struction of Pi. To achieve this, we first identify the local shape
around each seed candidate and extract the centroids of these
voxels. Next, we perform eigendecomposition on the covariance
matrix of these centroids and obtain the three principal axes and
the eigenvalues λ1,λ2,λ3. For each pair of candidates v1,v2 from
M1,M2, we evaluate

S(v1,v2) =
C(v1)C(v2)

dist(F1,F2)
(4)

where Fk = [λk
1,λ

k
2,λ

k
3]. We then select K (K = 10 in all our

experiments) pairs with the highest S(v1,v2) as the final set of
corresponding seeds. For each pair, we randomly select one
axial direction that vk(k = 1,2) can be directly taken out, as the
extraction direction of Pk

i in Mk, denoted as dk
i ; see Figure 9

(a&e) for two examples.

3. Determine Piece Transform. For each pair of corresponding
seeds, we obtain Ti by computing the transform that aligns the
three principal axes associated with the seeds, and snapping it
to the closest axis-to-axis transform. Due to ambiguity of the
principal axis directions obtained from the eigendecomposition,
we may have four possible Ti.

Co-expanding. Given a pair of corresponding seed voxels (v1,v2),
their associated extraction directions (d1

i ,d
2
i), and the piece trans-

form matrix Ti, we iteratively augment each seed voxel with more
voxels to increase the size of P1

i and P2
i , while ensuring they have

exactly the same shape.

1. Identify Candidate Voxel Pairs. We first identify all neighboring
voxels of P1

i , and transform them into M2 using Ti. Afterwards,
we only keep the neighboring voxels in M1 that have correspond-

ing voxels in M2, and consider them as the candidate voxel pairs
for co-expanding Pi.

2. Evaluate Candidate Voxel Pairs. For each pair of candidate
voxels (u1,u2), we identify all voxels above uk (k = 1,2) along
the extraction direction dk

i , and denote the set of these voxels
together with uk as Uk. Note that all voxels in Uk will eventually
be assigned to Pk

i to ensure its mobility along dk
i . Specifically,

the furthest voxel along direction dk
i is denoted as uk′ (i.e., a

boundary voxel of Rk
i−1). A good candidate pair should facilitate

3D dissection (e.g., lower accessibility and lower compatibility),
and at the same time preserve appearance of input models. Thus
we evaluate each candidate pair using:

E(u1,u2) = ∑
k=1,2

∑
u∈Uk

A(u)O(u)+ω(‖U2‖−‖U1‖)N(u2′), (5)

where the second term represents the amount of modification
on the input models’ appearance, and ω is a weight (ω = 0.5 in
all our experiments). Here, we assume U2 has a larger number
of voxels than U1, and thus we need to delete ‖U2‖− ‖U1‖

voxels from P2
i (including u2′) to ensure P1

i and P2
i have exactly

the same shape. Moreover, since u2′ will be deleted while u1′

will be kept, only the appearance of M2 could be changed (see

Figure 10(b) bottom). We penalize this by multiplying N(u2′) in
the second term. In particular, the second term is equal to zero if

u2′ is not a boundary voxel of M2 since N(u2′) = 0.

Figure 10: (a) A green piece with an upward extraction direction.

(b&c) Two possible solutions to co-expand the piece, where (b) is

a worse choice since it needs to delete two voxels (i.e., u2′ and the

one below it) in M2.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 11: Stabilize a dissected piece in the two models. (a) The dissected blue piece; (b) identify blockee voxel candidates separately (in

light blue); (c) identify blockee voxel pairs (in light blue); (d) select a blockee voxel (Be) pair as well as associated blocking voxels (Bi’s), and

identify the shortest path from Be to the blue piece; (e) connect Be to the blue piece and ensure its mobility; (f) one voxel (marked with a cross)

in M2 needs to be deleted to ensure compatibility of the piece; (g) another better choice of the blockee voxel pair and (h) the resulting piece.

3. Iterate Co-expanding Process. We keep randomly selecting a
pair of voxels from the candidates with probability inversely
proportional to E(u1,u2), and include the voxels to P1

i and P2
i

respectively. We iterate the process of identifying candidates,
evaluating candidates, and adding voxels to expand Pi, until the
number of voxels in Pi is around 0.6M, where M is the desired
number of voxels for each piece; see Figure 9 (b&f).

Co-cleaning. The co-expanding process may leave the remaining
volumes with fragmented voxels, which need to be included into Pi

such that the remaining volumes are still connected. In particular,
all voxels above the fragmented voxels along extraction direction dk

i

should also be included into Pk
i to ensure its movement along dk

i . In
addition, for each identified voxel in one model, its corresponding
voxel in the other model should also be included in Pi; compare
Figure 9 (b&c) for an example. For each fragmented voxel without
a corresponding voxel in the other model, we delete it from the
remaining volume; compare Figure 9 (f&g) for an example.

The co-cleaning process may fail due to two reasons. First, too
many voxels may need to be included in Pi to resolve the fragmented
voxels, resulting in a too large piece. In our experiments, Pi with
more than 1.4M voxels will be discarded. Second, a number of
model boundary voxels could be deleted by the co-cleaning process.
We discard Pi if the total noticeability of all the deleted voxels is
larger than a threshold (set as 0.05M in our experiments).

This dissection process outputs a number of (less than K) can-
didates of Pi that have exactly the same shape in M1 and M2. For
each candidate of Pi, we know its extraction direction in each model,
as well as the transform Ti to reconfigure it across the two models.

5.3. Stabilize a Piece

The dissection process simply ensures that each Pk
i (k = 1,2) is

movable along its extraction direction dk
i . However, it is possible

that Pk
i is movable along more than one axial directions, e.g., the

blue piece in M1 in Figure 11(a) is movable along −x and −y. It
is also possible that Pk

i together with some previously extracted
piece(s) are movable along more than one axial directions, e.g., the
red and blue pieces in M1 in Figure 11(a) are movable together
along −x, −y, and +y. To stabilize Pi (as well as groups that contain
Pi) in both models, we modify the geometry of Pi according to our
formal model in Section 4.3, with the following steps:

Check Satisfaction of Our Formal Model. For the dissected Pk
i

in Mk, we identify the set of axial directions Dk
i along which Rk

i

blocks Pk
i . If both D1

i and D2
i contain five directions (there are at

most five directions in Dk
i , since Pk

i is movable along dk
i), then P1

i

and P2
i are already steady according to our formal model (see again

Subsection 4.3), and the following steps can be skipped.

Otherwise, recall that our formal model allows a piece Pk
i to be sta-

bilized by Rk
i together with a piece that has been previously extracted.

Thus, we identify all the previously extracted pieces Pk
j (1 ≤ j < i)

that are neighbours of Pk
i , and check for each of them whether

the three requirements in the formal model are satisfied. If we can
find such a piece for P1

i and P2
i respectively, then Pi is also steady

according to our formal model and we can skip the following steps.

Identify Missing Blocking Directions. If none of the neighboring
pieces Pk

j (1 ≤ j < i) of Pk
i satisfy all the requirements, we identify

for each Pk
j the missing directions along which Rk

i should block Pk
i to

satisfy the requirements. We first compute the required directions D̂k
i

along which Rk
i should block Pk

i according to the three requirements
of the formal model. Then the set of missing blocking directions of
Pk

i is D̂k
i \Dk

i . Consider the blue piece (i.e., P1
2) in M1 in Figure 11(a)

as an example. The set D̂1
2 is computed as follows (we remove the

superscript for simplicity as all the computations are done in M1):
• P2 should be immobilized by P1 and R2 and only movable along

d2 (i.e., −x). As P1 blocks P2 in {+x,+y}, R2 should block P1 in
{+x,+y,−y}\{+x,+y} = {−y}.

• R2 should block P2 from moving along d1, if d1 6= d2. In the
current example, d1 =+y, d2 =−x. Thus R2 should block P2 in
{+y}.

• For each direction d
′

∈ {−x,+x,−y,+y} \ {d1,d2} (i.e., d
′

∈

{+x,−y}), if P2 blocks P1 from moving along d
′

but R2 does not,

then R2 should block P2 from moving along d
′

. As P2 blocks P1 in
{−x,−y} while R2 does not, R2 should block P2 in {+x,−y}∩
{−x,−y}= {−y}.

To summarize, we have D̂1
2 = {−y,+y}. As D1

2 = {+x}, the missing
blocking directions are {−y,+y}.

For each Pk
j , we compute the missing blocking directions of

Pk
i following the above procedure. We then choose a Pk

j with the
smallest number of missing blocking directions, and employ these
directions to guide the following steps.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Find Blockee Voxels Separately. Given the identified missing
blocking directions of Pk

i (k = 1,2), we next modify its geometry
so that it can be blocked by Rk

i along these directions. Inspired
by [SFCO12], we find additional blockee and blocking voxels and
restrict the movement of Pk

i by assigning blockee voxel (Bk
e) to

Pk
i and leaving blocking voxel(s) (Bk

i ’s) in Rk
i , and vice versa; see

Figure 9(d&h) for two examples.

In detail, we do breadth-first traversal for the nearby voxels of Pk
i

that belong to Rk
i , and choose those voxels that have neighboring

voxels along each of the missing blocking directions as blockee
voxel candidates; see Figure 11(b) for an example. When the set
of missing blocking directions of Pk

i is empty, we consider all the
nearby voxel of Pk

i that belong to Rk
i as the blockee voxel candidates.

Identify Blockee Voxel Pairs. Among all the blockee voxel can-
didates identified separately in M1 and M2, we consider the corre-
sponding blockee voxel candidates across the two models as “bloc-
kee voxel pairs"; see Figure 11(c). We select N (N = 10 in all our
experiments) blockee voxel pairs as the candidates and rank them
according to their distance to Pi.

Construct Co-blocking Structure. For each blockee voxel pair
candidate Bk

e (k = 1,2), we try to connect it with Pk
i using a co-

blocking structure while keeping the blocking voxels Bk
i ’s in Rk

i ;
see Figure 11(d). Specifically, we identify a set of shortest path
candidates from Pk

i to Bk
e within Rk

i , without crossing the related
blocking voxels and the voxels below them along dk

i . Since we need
to guarantee that the modified piece Pk

i is still movable along dk
i ,

not only voxels on a shortest path but also voxels above the path
along dk

i should be assigned from Rk
i to Pk

i ; see Figure 11(e). For
these identified voxels in one model, we need to delete some of
them from the model if we cannot find a corresponding voxel in the
other model; see Figure 11(f). Finally, we choose the co-blocking
structure candidate that has the least total value of E(u1,u2), and
assign all voxels in the structure from Rk

i to Pk
i for each model; see

Figure 11(h).

The output of this stabilization process is a number of (less than K)
candidates of Pi that satisfy the requirements of both 3D dissection
and generalized interlocking.

5.4. Iterate Piece Construction

Our system iteratively constructs pieces from P1 to Pn, where
n = m−1, following the procedures of dissecting and stabilizing a
piece as described above. When constructing a piece Pi, we maintain
at most K candidates. In this way, our approach keeps expanding
a construction tree, where the root represents the input models
(Figure 3(a)), the leaves represent different 3D dissection results
(Figure 3(d)), and the other nodes represent the intermediate piece
construction configurations (Figure 3(b&c)). In case no valid can-
didate of Pi can be found, a backtracking to siblings of the parent
node in the tree is required. Since most chains in the tree stop before
reaching a depth of n, our algorithm requires a manageable amount
of memory.

A candidate of Pi is considered valid if it satisfies all of the
following requirements:

• The number of voxels in Pi is within [0.6M,1.4M];

• The total noticeability of voxels in D(P1
i) and in D(P2

i) is lower
than a threshold α, where D(Pk

i) denotes the set of deleted model
boundary voxels when constructing Pk

i ;

• The set of blocking voxels of each Pk
j (1 ≤ j ≤ i−1) along each

blocking direction should not become empty after deleting voxels
in D(Pk

i), to maintain the interlocking property.

We evaluate all the valid candidates using the following measure,
and select the one with the smallest measure as Pi:

F = ω1F1 +ω2F2 −ω3F3 (6)

Here F1 = ∑k=1,2 ∑u∈D(Pk
i)

N(u) avoids excessive modification on
the input models’ appearance by penalizing the total noticeabil-
ity of all the deleted model boundary voxels; F2 and F3 facili-
tate further dissection of the two remaining volumes R1

i and R2
i :

F2 =
∣∣∣‖R1

i ‖−‖R2
i ‖
∣∣∣ penalizes the difference between the numbers

of their voxels, while F3 = ∑k=1,2 ∑v∈Rk
i
A(v)O(v)/‖Rk

i ‖ encour-
ages them to be less fragmented and more compatible; the weights
ω1, ω2 and ω3 are set to 1.0, 0.5 and 2.5 in all our experiments.

After constructing a valid Pn, we have two remaining pieces R1
n

and R2
n that are unlikely to have exactly the same shape by default.

Hence, we identify all corresponding voxels in R1
n and R2

n to form
the last piece Rn, and delete the remaining voxels. We check the
validity of Rn using the same requirements as Pi, and terminate the
dissection if Rn is valid.

5.5. Post-process Puzzle Pieces

As the piece construction process allows deleting voxels, the con-
structed puzzle may have quite different appearance compared to the
input models. To alleviate this issue, we post-process the pieces and
add back some deleted model boundary voxels, while still satisfying
the dissection and interlocking requirements. Our approach is based
on the observation that deleting internal voxels or unnoticeable
boundary voxels results in fewer modifications on the appearance
than deleting noticeable boundary voxels (see again Section 5.1). It
consists of the following steps.

Rank the Deleted Voxels. We only add back deleted voxels on
the model boundary to restore the local appearance. We evaluate the
priority of such a deleted voxel according to its largest distance to
the generated puzzle along the six axial directions in both forms. A
voxel with a larger distance indicates a deeper and/or wider hole on
the puzzle surface, and is given higher priority. Candidates with the
same distance are ranked according to their noticeability.

Add back the Deleted Voxels. For each ranked voxel v1
s in M1,

we first identify its neighboring puzzle pieces and assign v1
s to a ran-

domly selected neighboring piece P1
j . Afterwards, the corresponding

voxel v2
s on M2 is processed as follows:

• v2
s is directly added to P2

j if the voxel has been deleted (see
Figure 12(b));

• If v2
s is occupied by another piece P2

j′ , then we delete this voxel

from P2
j′ and add it to P2

j (see Figure 12(d)). To satisfy the dissec-

tion requirement, after deleting the voxel from P2
j′ , the correspond-

ing voxel in M1 should be deleted from P1
j′ (see Figure 12(e)). If

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 12: (a&b) Add back deleted model boundary voxels (marked as “D"), with the added voxels marked as “A". (c-f) Perform voxel

adding back twice to fix a deleted boundary voxel in (c). (g&h) A failure case where the cyan piece becomes disconnected.

this deleted voxel is still a model boundary voxel, we need to add
it back using the same strategy on v1

s (see Figure 12(f)).

Validate the Results. After adding back a voxel, we check validity
of the resulting pieces (see Figure 12(h)) and the puzzle piece mo-
bility, as well as test the interlocking property of the whole puzzle
based on our formal model. If any of the above checks fails, we
undo the operation. For each ranked voxel, we add back deleted
voxels and validate the result iteratively until finding a valid solution
or the number of iterations reaches 10.

We iterate the above three steps and count the number of deleted
model boundary voxels before and afterwards, denoted as Nbe f ore

and Na f ter. We terminate the process when Na f ter/Nbe f ore is close to
1; i.e., when the appearance cannot be improved by post-processing.
For further improvement, it is also possible to add back a deleted
voxel in one model while introducing an extra voxel in the other
model, as long as users do not feel the introduced voxel is distracting.

6. Experiment Results

Implementation. We implement our method in C++ and run it
on a laptop computer with a 2.8GHz CPU and 16GB memory. We
allow users to specify the resolution of the input voxelized models,
usually within a range between 8×8×8 and 35×35×35. This is
because lower resolution models may result in difficult-to-recognize
shapes while higher resolution models require an excessive use of
computing resources. We also allow users to specify the number (m)
of pieces to be generated, usually between 10 and 30. A larger m

could result in failure of interlocking since each piece has too few
voxels while a smaller m could lead to failure of 3D dissection since
two different shapes is hardly to be represented with a too small
set of common pieces. In general, two input models with larger
difference in their shapes require a larger m. Our results are also
affected by other parameters. For example, a larger noticeability
threshold makes it easier to find a valid solution, yet allows larger
modifications on the input models’ appearance.

Results and Statistics. Our method can create 3D dissection puz-
zles from 3D models of various shapes and topologies (see Fig-
ures 1, 3, 13), e.g., TEAPOT and SNAIL in Figure 1 with different
topologies (genus one vs zero), ANGRY BIRD and SHUTTLE in
Figure 13 with very different shape (spherical vs elongated), and
BUNNY and CUBE in Figure 13 that dissects an organic model into
a primitive shape. Figure 14 shows the sequence of re-assembling

Table 1: Statistics of the 3D dissection results shown in this paper.

DUCK into TEAPOT. Please refer to the supplementary video for the
animated results.

Table 1 presents the statistics of our results, including the reso-
lution of input voxelized models, the number of pieces, the time
of constructing the puzzle pieces (T-o-C) and the time of the post-
processing (T-o-P). In practice, the timing is affected by multiple
factors. It usually takes longer time to generate results from higher
resolution models (e.g., MARIO - TREASURE CHEST in Figure 13)
as well as input models with very different shapes (e.g., ANGRY

BIRD - SHUTTLE in Figure 13).

Due to the strong constraints induced by 3D dissection and inter-
locking, we cannot always avoid noticeable holes in the results; see
the CUBE and PEAR in Figure 13. This strategy of modifying shape
appearance to find valid dissection results also has been explored in
a recent work [DYYT17].

Comparison with [Zhou et al. 2012]. Our method can be easily
applied to handle 2D input models. The inset figure compares our
approach with [ZW12] on designing a 2D dissection puzzle SQUARE

- RECTANGLE. Our result has a larger number of pieces (12 vs 6),
and our pieces have more ir-
regular shapes due to the inter-
locking requirement. As this
is a 2D example, our approach
only considers the outermost
voxels as boundary voxels,
and allows deleting some inter-
nal voxels, resulting in holes
in the puzzle. These holes may
make it difficult to assemble
the puzzle pieces without a manual since the users cannot foresee
where the holes are located in the puzzle.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 13: Our generated dissection puzzles (top, middle) and the pieces (bottom). From left to right: ANGRY BIRD - SHUTTLE, BUNNY

- CUBE, PEAR - BANANA, BOWL - COKE, WOLF HEAD - RHINO HEAD, and MARIO - TREASURE CHEST. Some undesired holes are

highlighted with red circles.

Figure 14: Snapshots of reconfiguring DUCK into TEAPOT; the black arrow shows the moving direction of the associated part for (dis)assembly.

Figure 15: 3D dissection puzzles BUNNY - CUBOID designed by

our approach (top) and by [ZW12] (bottom).

We further compare our approach with [ZW12] on a 3D dissection
puzzle BUNNY - CUBOID in Figure 15. Our result still has a larger
number of pieces (14 vs 8), and our pieces have more similar sizes.
More importantly, our puzzle can be manipulated in the hand without
falling apart, thanks to the interlocking property, which is not the
case for the puzzle by [ZW12].

Comparison with [Song et al. 2012]. We also compare our gen-
eralized interlocking model with the recursive interlocking model

in [SFCO12]. Generally speaking, our formal model is less restric-
tive since it takes advantage of friction to immobilize pieces and
does not require the puzzle to be interlocking for each (dis)assembly
state. Although this makes the resulting puzzles less steady than
those from [SFCO12], it provides more flexibility for designing
interlocking assemblies.

To evaluate the flexibility of our formal model, we conduct a
quantitative comparison on designing 43 interlocking CUBEs with
m (6 ≤ m ≤ 10) pieces and require all the pieces to have exactly
the same number of voxels or at most one voxel difference. If a
result cannot be generated within 48 hours, we consider no result
can be found for this case. Figure 16 shows the results from each
formal model, where recursive interlocking CUBE can at most have
8 pieces while generalized interlocking CUBE can reach 10 pieces.
Moreover, for puzzles with the same m, our formal model can find a
result within a much shorter time.

Fabrication. We 3D print some of our dissection results, as shown
in Figures 1, 3, 15, 17. Among them, BUNNY-CUBOID, RING-CUBE

and SOFA-CHAIR are printed using an Ultimaker 2+ FDM printer
with PLA plastic material, while all the others are printed using
a Stratasys SLA printer. In practice, we select a small tolerance
for 3D printing the puzzle pieces, to ensure sufficient friction for

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Figure 16: Designing 43 interlocking CUBEs with different m using our generalized interlocking model and recursive interlocking

model [SFCO12]. The corresponding computation time for each result is shown at the lower right corner.

Figure 17: 3D-printed puzzle pieces and the two assembled forms: (a) STOOL - DINOSAUR, (b) RING - CUBE, (c) SOFA - CHAIR, (d)

BARREL - ELEPHANT.

immobilizing the pieces. It typically took 10 to 30 mins for a novice
user to assemble the puzzle with the guidance of a manual, for which
the actual assembly time depends on the number of component
pieces as well as their shapes.

To evaluate steadiness of our puzzles subject to external forces, we
conducted two experiments. In the first one, we shake the assembled
puzzles and find the puzzles remain steady upon shaking. The second
experiment is to drop the puzzles from a height of 80cm. To avoid
breaking the puzzle pieces, we drop the puzzle onto a blanket rather
than a hard ground. We find that our puzzles remain well connected
after the dropping test, validating the effectiveness of our formal
model. Please refer to the supplementary video for more details.

7. Conclusion

This paper presents a computational method for designing steady 3D
dissection puzzles. For this purpose, we develop a novel approach
to dissect two voxelized models into a common set of puzzle pieces
while allowing small modifications on the input models’ appear-
ance. We also propose a generalized interlocking formal model for
connecting puzzle pieces with the help of friction. Guided by this
formal model, our approach can automatically modify each puzzle
piece such that the resulting puzzle is steady. We demonstrate the

effectiveness of our approach on 3D models of various shapes and
topologies, show advantages of our approach and formal model
over existing works, and validate the steadiness of our designed
dissection puzzles on a few 3D printed examples.

Limitations and Future Work. First, our approach takes vox-
elized models as inputs, and the results may be less appealing (or
even unrecognizable) for low-resolution models. In the future, we
may extend our approach to handle 3D models with smooth appear-
ance [Fre97,Fre02]. Second, our approach needs to modify the input
model appearance and/or its interior volume to find valid dissection
results. Minimizing such modification, especially on salient shape
features, would be an interesting problem to explore. Third, we re-
quire the number of puzzle pieces to be within a certain range. Find-
ing the minimum number of pieces for 2D/3D dissection remains
a challenging open problem [LF72, Fre17]. Fourth, our current ap-
proach only handles two input models. Extending it to support three
or more input models [Fre09] would be an interesting future work.
Fifth, we plan to conduct a formal stability analysis [YKGA17]
on our resulting puzzles, and employ our interlocking model for
constructing larger-scale steady assemblies such as furniture or
timber structures. Lastly, we consider making 3D puzzles steady
by using some alternative approaches (e.g., form-fitting boxes or
magnets [Fre97]) as an exciting research topic.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Keke Tang et al. / Computational Design of Steady 3D Dissection Puzzles

Acknowledgments
This work was partially supported by the National Key R&D Pro-
gram of China (2018YEB1004003), China Grant (U1636215), the
Research Grants Council of the Hong Kong Special Administrative
Region (Project no. CUHK 14203416 and 14201717), National Nat-
ural Science Foundation of China (61672482) and the One Hundred
Talent Project of the Chinese Academy of Sciences.

References

[AAC∗12] ABBOTT T. G., ABEL Z., CHARLTON D., DEMAINE E. D.,
DEMAINE M. L., KOMINERS S. D.: Hinged dissections exist. Discrete

& Comp. Geom. 47, 1 (2012), 150–186. 1, 2

[BBJP12] BÄCHER M., BICKEL B., JAMES D. L., PFISTER H.: Fabri-
cating articulated characters from skinned meshes. ACM Trans. Graph.

(SIGGRAPH) 31, 4 (2012), 47:1–47:9. 2

[BCMP18] BICKEL B., CIGNONI P., MALOMO L., PIETRONI N.: State
of the art on stylized fabrication. Comp. Graph. Forum 37 (2018). 2

[Bol32] BOLYAI F.: Tentamen juventutem. Typis Collegii Refomatorum

per Josephum et Simeonem Kali. Maros Vásárhely, 1832. 2

[CCA∗12] CALÌ J., CALIAN D. A., AMATI C., KLEINBERGER R.,
STEED A., KAUTZ J., WEYRICH T.: 3D-printing of non-assembly,
articulated models. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (2012),
130:1–130:8. 2

[CKU07] CZYZOWICZ J., KRANAKIS E., URRUTIA J.: Rectilinear glass-
cut dissections of rectangles to squares. Applied Mathematical Sciences

1, 52 (2007), 2593–2600. 2

[Coh75] COHN M. J.: Economical triangle-square dissection. Geometriae

Dedicata 3, 4 (1975), 447–467. 1, 2

[CPMS14] CIGNONI P., PIETRONI N., MALOMO L., SCOPIGNO R.:
Field-aligned mesh joinery. ACM Trans. on Graph. 33, 1 (2014), 11:1–
11:12. 4

[Dud07] DUDENEY H. E.: The Canterbury Puzzles, and Other Curious

Problems. Thomas Nelson and Sons, 1907. 1, 2

[DYYT17] DUNCAN N., YU L.-F., YEUNG S.-K., TERZOPOULOS D.:
Approximate dissections. ACM Trans. on Graph. (SIGGRAPH Asia) 36,
6 (2017), 182:1–182:14. 1, 2, 10

[Fre97] FREDERICKSON G. N.: Dissections: Plane and Fancy. Cam-
bridge University Press, 1997. 1, 12

[Fre02] FREDERICKSON G. N.: Hinged Dissections: Swinging and Twist-

ing. Cambridge University Press, 2002. 2, 12

[Fre07a] FREDERICKSON G. N.: Symmetry and structure in twist-hinged
dissections of polygonal rings and polygonal anti-rings. Proc. Bridges

Donostia: Mathematics, Music, Art, Architecture, Culture (2007), 21–28.
2

[Fre07b] FREDERICKSON G. N.: Unexpected twists in geometric dissec-
tions. Graphs and Combinatorics 23, 1 (2007), 245–258. 2

[Fre08] FREDERICKSON G. N.: Designing a table both swinging and
stable. The College Mathematics Journal 39, 4 (2008), 258–266. 2

[Fre09] FREDERICKSON G. N.: Casting light on cube dissections. Math-

ematics Magazine 82, 5 (2009), 323–331. 1, 12

[Fre17] FREDERICKSON G. N.: Ernest Irving Freese’s Geometric Trans-

formations: The Man, The Manuscript, The Magnificent Dissections!

World Scientific, 2017. 12

[FSY∗15] FU C.-W., SONG P., YAN X., YANG L. W., JAYARAMAN

P. K., COHEN-OR D.: Computational interlocking furniture assembly.
ACM Trans. on Graph. (SIGGRAPH) 34, 4 (2015), 91:1–91:11. 3, 4

[Ger33] GERWIEN P.: Zerschneidung jeder beliebigen anzahl von gle-
ichen geradlinigen figuren in dieselben stücke. Journal für die reine und

angewandte Mathematik (Crelle’s Journal) 10 (1833), 228–224. 2

[GJG16] GARG A., JACOBSON A., GRINSPUN E.: Computational design
of reconfigurables. ACM Trans. on Graph. (SIGGRAPH) 35, 4 (2016),
90:1–90:14. 2

[HCLC16] HUANG Y.-J., CHAN S.-Y., LIN W.-C., CHUANG S.-Y.:
Making and animating transformable 3D models. Computers & Graphics

(Proc. of CAD/Graphics) 54 (2016), 127–134. 2

[HN06] HUNGERBÜHLER N., NÜSKEN M.: Delian metamorphoses. Ele-

mente der Mathematik 61, 1 (2006), 1–19. 1, 2

[KKU00] KRANAKIS E., KRIZANC D., URRUTIA J.: Efficient regular
polygon dissections. Geometriae Dedicata 80, 1 (2000), 247–262. 1, 2

[LBRM12] LUO L., BARAN I., RUSINKIEWICZ S., MATUSIK W.: Chop-
per: Partitioning models into 3D-printable parts. ACM Trans. on Graph.

(SIGGRAPH Asia) 31, 6 (2012), 129:1–129:9. 4

[LF72] LINDGREN H., FREDERICKSON G.: Recreational Problems in

Geometric Dissections and How to Solve Them. Dover Publications, 1972.
1, 12

[LHAZ15] LI H., HU R., ALHASHIM I., ZHANG H.: Foldabilizing
furniture. ACM Trans. Graph. (SIGGRAPH) 34, 4 (2015), 90:1–90:12. 2

[LMaH∗18] LI S., MAHDAVI-AMIRI A., HU R., LIU H., ZOU C.,
KAICK O. V., LIU X., HUANG H., ZHANG H.: Construction and fabrica-
tion of reversible shape transforms. ACM Trans. on Graph. (SIGGRAPH

Asia) 37, 6 (2018), 190:1–190:14. 2

[Per72] PERIGAL H.: On geometric dissections and transformations. Mes-

senger of Mathematics (second series) 1 (1872), 103–105. 1

[Rog02] ROGOWSKI G.: The complete illustrated guide to joinery.
Taunton Press, 2002. 4

[SDW∗16] SONG P., DENG B., WANG Z., DONG Z., LI W., FU C.-W.,
LIU L.: CofiFab: Coarse-to-fine fabrication of large 3D objects. ACM

Trans. on Graph. (SIGGRAPH) 35, 4 (2016), 45:1–45:11. 3, 4

[SFCO12] SONG P., FU C.-W., COHEN-OR D.: Recursive interlocking
puzzles. ACM Trans. on Graph. (SIGGRAPH Asia) 31, 6 (2012), 128:1–
128:10. 2, 4, 6, 9, 11, 12

[SFJ∗17] SONG P., FU C.-W., JIN Y., XU H., LIU L., HENG P.-A.,
COHEN-OR D.: Reconfigurable interlocking furniture. ACM Trans. on

Graph. (SIGGRAPH Asia) 36, 6 (2017), 174:1–174:14. 2, 3, 4

[SFLF15] SONG P., FU Z., LIU L., FU C.-W.: Printing 3D objects with
interlocking parts. Comp. Aided Geom. Des. 35-36 (2015), 137–148. 3, 4

[SZ15] SUN T., ZHENG C.: Computational design of twisty joints and
puzzles. ACM Trans. Graph. (SIGGRAPH) 34, 4 (2015), 101:1–101:11.
2

[The18] THEOBALD G.: Solid dissections, 2018. http://gavin-theobald.
uk/HTML/3D.html. 1

[WSP18] WANG Z., SONG P., PAULY M.: DESIA: A general framework
for designing interlocking assemblies. ACM Trans. on Graph. (SIG-

GRAPH Asia) 37, 6 (2018), 191:1–191:14. 3, 4

[XLF∗11] XIN S.-Q., LAI C.-F., FU C.-W., WONG T.-T., HE Y.,
COHEN-OR D.: Making burr puzzles from 3D models. ACM Trans.

on Graph. (SIGGRAPH) 30, 4 (2011), 97:1–97:8. 2, 4

[YCXW17] YAO M., CHEN Z., XU W., WANG H.: Modeling, evaluation
and optimization of interlocking shell pieces. Comp. Graph. Forum

(Pacific Graphics) 36, 7 (2017), 1–13. 3, 4

[YKGA17] YAO J., KAUFMAN D. M., GINGOLD Y., AGRAWALA M.:
Interactive design and stability analysis of decorative joinery for furniture.
ACM Transactions on Graphics (TOG) 36, 2 (2017), 20:1–20:16. 12

[YZC18] YUAN Y., ZHENG C., COROS S.: Computational design of
transformables. Computer Graphics Forum (SCA) 37, 8 (2018). 2

[ZB16] ZHANG Y., BALKCOM D.: Interlocking structure assembly with
voxels. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (2016),
pp. 2173–2180. 3, 4

[ZSMS14] ZHOU Y., SUEDA S., MATUSIK W., SHAMIR A.: Boxeliza-
tion: Folding 3D objects into boxes. ACM Trans. Graph. (SIGGRAPH)

33, 4 (2014), 71:1–71:8. 2

[ZW12] ZHOU Y., WANG R.: An algorithm for creating geometric dissec-
tion puzzles. In Bridges Towson: Mathematics, Music, Art, Architecture,

Culture (2012), pp. 49–56. 1, 2, 10, 11

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

