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Abstract

Image metrics predict the perceived per-pixel differ-
ence between a reference image and its degraded (e. g., re-
rendered) version. In several important applications, the
reference image is not available and image metrics cannot
be applied. We devise a neural network architecture and
training procedure that allows predicting the MSE, SSIM
or VGG16 image difference from the distorted image alone
while the reference is not observed. This is enabled by two in-
sights: The first is to inject sufficiently many un-distorted nat-
ural image patches, which can be found in arbitrary amounts
and are known to have no perceivable difference to them-
selves. This avoids false positives. The second is to balance
the learning, where it is carefully made sure that all image er-
rors are equally likely, avoiding false negatives. Surprisingly,
we observe, that the resulting no-reference metric, subjec-
tively, can even perform better than the reference-based one,
as it had to become robust against mis-alignments. We eval-
uate the effectiveness of our approach in an image-based
rendering context, both quantitatively and qualitatively. Fi-
nally, we demonstrate two applications which reduce light
field capture time and provide guidance for interactive depth
adjustment.

1. Introduction

Computer vision or graphics experts easily recognize
image artifacts that might be highly domain-specific. An
image-based rendering (IBR) specialist will quickly notice
where depth estimation failed, where transparency was not
handled or where a highlight did not move correctly. Simi-
larly, in computer graphics, artifacts resulting from Monte
Carlo noise in image synthesis when producing a feature film,
or shadow bias [59] in a computer game are easily spotted
by domain experts.The assessment typically is not limited
to detection, but importantly includes judging magnitude as
well as spatial locality.

Image A (IBR) Image B (Reference)

           A    B (Ground truth)     A     B (Our prediction)

Figure 1. Given an imageA (top left) that is a version of a reference
B (top right) distorted by IBR artifacts, we predict their per-pixel
difference map A	B (lower left) without observing B. The lower
right shows the ground truth differenceA	B. We here show MSE,
but other metrics such as SSIM or VGG16 are also possible.

The importance of interacting with errors can be seen
from photographs with spatially annotated over- and under-
expose artifacts, as done for instance by Henri Cartier-
Bresson [11]. Remarkably, all this is not achieved by compar-
ing an image to a reference, but by experience and intuition
built from knowing what natural images look like and how
images with artifacts differ. Can we enable a machine to also
perform such a task?

More formally, we face the challenge illustrated in Fig. 1.
Given an image A that is a distorted version of a reference
B we wish to predict their difference A	 B without access
to B. The lower right image shows the ground truth metric
responseA	B. This metric could simply be the mean square
error (MSE as used in Fig. 1), a more perceptual metric like
SSIM [57] or even VGG-16 activation differences that are
effective as an image metric [48, 62]. More particularly, we
go beyond the typical mean opinion scores [50] given to
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uniform distortions such as noise or JPEG compression, and
seek to produce localized distortion visibility maps without
accessing the reference.

In this paper, we choose to study one specific form of
artifacts that arise in image-based rendering (IBR) [37, 16],
in particular, when employed for novel-view synthesis from
sparse light fields (LFs) [29]. It is important in virtual reality
and movie production where LFs are used to provide head
motion parallax and special effects. Moreover, having a
localized error prediction is also important for quality control.
In IBR, artifacts are very localized (e. g., around certain
depth edges) and creating opinion scoring or even spatio-
angular annotated dataset of LF artifacts in a size sufficient
for machine learning appears to be a daunting task. Our
method proceeds without all of this.

Addressing this challenge, we make use of convolutional
neural networks. We will show, how learning this mapping
right away will result in many false positives or false nega-
tives. Instead, two important ingredients come together in
our approach. First, as the number of images containing
artifacts is typically limited, we need to augment the training
data with natural images that are free from artifacts. Second,
we propose a way to find the right balance between natural
and distorted training data.

Not requiring a reference is useful whenever the original
is inaccessible (lost, impossible to compute, unavailable, un-
defined). Furthermore, we demonstrate one application of a
non-reference metric in light field capturing. We first capture
a sparse light field, followed of by an interpolation of the
intermediate views. If our our metric indicate those interme-
diate views have errors, they views will be recaptured. This
allows acquiring higher-quality light field in much shorter
time compared to dense LF capturing.

2. Previous Work

In this section, we discuss objective image quality met-
rics, with special emphasis on those that do not require the
undistorted reference image. Then, we briefly characterize
IBR-specific artifacts, as well as metrics specialized in their
detection, which is the key focus of this work.

Image metrics Some application and functions may re-
quire quality while others need visibility metrics [10].

Image quality metrics (IQMs) evaluate the distortion mag-
nitude and are typically trained on the mean-opinion score
(MOS) data [47, 42] that labels the entire image with as a
single quality score. The most commonly used IQMs such
as PSNR, SSIM, MS-SSIM [56], FSIM [61], and CIELAB
[63] are full-reference (FR) metrics that take as input the ref-
erence and distorted images, and compute local differences
that are pooled into a global, single quality score. Recently, it
has been demonstrated that CNN-based FR-IQMs achieved

best performance in predicting MOS data [2, 7]. Zhang
et al. [62] employed crowdsourcing and created a large
scale patch-based dataset in two perceptual experiments: (1)
two-alternative forced choice (2AFC) on distortion strength,
and (2) “same/not same” near-threshold distortion visibility.
They train different network architectures and report in each
case a much better performance than traditional FR-IQMs in
predicting their data from both experiments.

Visibility metrics (VMs) predict the distortion percepti-
bility for every pixel in the form of visibility maps. VMs are
specifically tuned for detecting near-threshold distortions,
which is required in many graphics and vision applications
that cannot tolerate any perceivable quality reduction and re-
quire local information on the distortion positions. To decide
on the visibility of such near-threshold distortions, models
of human vision are often employed, where the most promi-
nent FR-VMs examples include: VDM [34], VDP [14], and
HDR-VDP-2 [35]. In the specific task of predicting selected
rendering and compression artifacts, best performance has
been achieved using machine learning [8] and CNN-based
techniques [60, 40].

No-reference metrics In this work, we focus on the VMs
due to the locality of their prediction, but we are specifically
interested in more challenging no-reference setup, where the
reference image is not available. We discuss the most suc-
cessful and recent NR-IQMs that rely on machine learning
techniques, and we also refer the interested reader to more
comprehensive metric surveys in [10, 28]. Early machine
learning techniques employed predefined features such as
SIFT and HOG [39, 38, 44, 51], and measured their distor-
tions with respect to natural image statistics [56]. Recently,
CNN architectures are applied to such feature learning as
well as the MOS regression at the same time [5, 24, 7, 50].
To compensate for a low number of MOS-labeled images,
such solutions typically rely on patches, where they assign
the same MOS score for all patches that belong to a given
image [28]. Such practice is justified for specific classes
of distortions that affect the whole image uniformly, which
might be the case for certain types of image noise or com-
pression artifacts, but might confuse the network in case of
localized distortions such as those occurring in IBR.

To compensate for the lack of true local reference images,
Bosse et al. [7] learn the importance of local patches, but
their key motivation is not in deriving the localized VM, but
rather in estimating relative patch weights in the aggregated
MOS rating. Lin and Wang [31] employ a quality-aware gen-
erative network to hallucinate the reference image, which by
employing adversarial learning is further refined by an IQM-
discriminator that is trained on ground truth references. Their
hallucination-guided quality regression network is fed with
the difference between the hallucinated and distorted images,
as well as the distorted image itself to predict the MOS value.
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The quality-aware generative network, hallucination-guided
quality regression network, and the IQM-discriminator are
jointly optimized in an end-to-end manner. Kim and Lee [27]
apply state-of-the-art FR-IQMs such as SSIM to generate
proxy scores on patches as the ground truth to pre-train the
model and then fine-tune their target NR-IQM. At interme-
diate stages the regression network considers mean values
and the standard deviations of per-patch 100-element feature
vectors which are then pooled to a per-image quality score.

In this work, we also employ state-of-the-art FR-IQMs to
perform an initial per-patch distortion annotation, and strike
the required balance between different error magnitudes in
the training data, which is essential for meaningful training
and shift-invariant properties of our NR-VM.

The research on NR-VMs is extremely sparse, pre-
sumably due to limited access to locally labeled images
[21, 8, 60]. A notable exception is the work of Herzog et
al. [21] who employs support vector machine (SVM) to pre-
dict per-pixel distortions for selected rendering artifacts (they
do not consider IBR) and achieve performance comparable
to FR-VMs. Here, we demonstrate that time-consuming
manual per-pixel distortion labeling is not strictly required.

In cases where training data is both easy to produce–
such as uniform distortions like noise, JPEG, etc.–and no
perceptual calibration is required, supervised training has
been employed to detect aliasing artifacts [40]. Our work
differs, as we only have very limited training data available,
both because only very few ground truth images are available
for IBR and we need perceptual calibration. Learning from
little data is part of our balancing contribution.

Vogels and colleagues [54] have proposed a method to
denoise path traced images. To steer the amount of denoising,
they also trained a neural network to predict distortion in
terms of MC variance, which is as unknown as the pixel
value to be MC-estimated itself. Interestingly, in both their
work and ours, a NR metric is used to steer adaptation: for
them it is a denoising algorithm; for us, one application
is controlling capture hardware. Their task is different as
they predict SSIM error from a pair of images, where one is
noisy and the other is denoised. This restricts the distortions
to the difference between denoised and reference, which
are smaller than IBR artifacts and also does not need to be
perceptually calibrated. The fact that images with MC noise
can be generated in arbitrary amounts also underlines what
is the focus of our work: coping with limited training data.

Image-based rendering for structured or unstructured
light fields (LFs) of real-world scenes involves a number of
computational steps such as: depth reconstruction, neighbor-
ing view-image warping, warped view-image blending, and
disocclusion hole in-painting. Each of these steps is prone
to inaccuracies that manifest themselves as IBR-specific ar-
tifacts such as object shifting (incorrect depth), crumbling,

distorted edges (depth discontinuities, e. g., due to compres-
sion), popping (fluctuations in depth), ghosting (depth inac-
curacy, view blending), stretching, blurry or black regions
(in-painting) [52]. Specialized IBR quality metrics often rely
on leaving one view out as the reference [55, 12, 49, 6] or
searching for matching image blocks after their registration
[3, 17], and then employing customized FR-IQMs. NR-
IQMs typically focus on detecting selected distortion types
such as blurring and ghosting [4], ghosting and popping [18],
blurring, stretching and black holes [52], and aggregation
into one final scalar score. Perceptual experiments have been
performed to understand how the observers rate the severity
of different artifacts as a function of rendering parameters
such as the number of blended views and viewing angles
[53]. A skillful pre-processing of depth (e. g., depth blurring
in uncertain regions) and choice of particular algorithmic
solutions can substantially suppress artifacts [20, 46], even-
tually using a neural network trained to predict blending
weights to combine the warped images[19]. More objection-
able distortion types can be traded-off with those that are
more visually appealing (e. g., blurry depth that is more con-
sistent but further from the ground truth). Instead of focusing
on selected distortion types, Ling et al [32] proposes to learn
a dictionary based on manually labeled data. The features
extracted from an image allows to predict a MOS value using
support vector machine regression. As data labeling can be
time consuming, as Ling et al. [33] create artificial training
data that aims to simulate occlusion problems. A Generative
Adversarial Network (GAN) discriminator [15], targeted to
identify in-painted image regions, is used to predict a quality
score.

All the discussed work on IBR quality evaluation essen-
tially focuses on providing a single score per-image, which
then also serves as a metric for performance evaluation.
While some FR-IQMs generate viable per-pixel VMs at
intermediate stages [12, 49], their accuracy is not formally
evaluated. The same holds for the NR-IQM [32]. Our work
hence differs from all previous work by pursing the NR-
VM setup to detect local IBR distortions using CNN-based
techniques.

3. Learning a No-reference Metric
Overview Test-time input to our method is a single dis-
torted RGB image A. While our distortions are always IBR
artifacts resulting from a specific depth reconstruction and
specific IBR method, the interna of how this image is gener-
ated (e. g., the depth map) are transparent, and we only need
access to the result. Withheld is the reference RGB image
B. In the case of IBR, such a distorted-undistorted pair is
typically produced by rendering a known image from other
known views.

Output of our proposed method is a single-channel
(scalar) image that predicts a given difference metric re-
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sponse A	 B, where the 	 operator depends on the choice
of the specific metric, e. g., MSE, SSIM [57], or VGG16
[48]. High values are produced where the images are dif-
ferent and small values where they are similar. This output
is accurate, if it has little false positives or negatives. False
positives correspond to predicting a perceived difference
where there are no artifacts and false negatives correspond
to visible artifacts the metric fails to report.

Note that two forms of approximations are made here: the
first is the error that the metric itself makes when comparing
two images relative to human judgment. The second is
the error that our method has, with respect to a prediction.
Ultimately, our method is a prediction of a prediction, but
surprisingly can perform better than one prediction alone.

3.1. Training data

Our training data comprises existing metric responses
A	B to the distorted imageA and the clean reference image
B. Strictly speaking, learning does not even observe the
reference image B, but in practice, it is required to compute
the metric response A	 B.

For creating our training dataset, we used captured LF
images of 42 different scenes, which come from the Stanford
LF repository [1], the Fraunhofer IIS light field dataset [13],
Google Research work [41], and Technicolor [45] as well as
from our own captured images. All 4D LF datasets comprise
conventional 2D images in a resolution up to 2k×2k, taken
from a range of sparse view points, such as in a 3×3 camera
array with known camera positions. For each LF view point,
we first estimate the depth using a light field depth estimation
technique [13] and then warp [36] the image into all other
views. For each LF, we use the four corner views to generate
novel-view images at the positions of the remaining views.
Each warped view corresponds to one original view, and
we compute the response of a full-reference metric to this
pair. With approx. 9 views per LF and 42 LFs in total, this
amounts to only 210 unique images, i. e., a comparatively
low number for a training task.

We use six scenes for testing and the rest for training. The
same split is also applied later for the user study. Our test
scenes are totally different from the training scenes, which is
important as the number of scenes in the training set is small
and generalization across them is an additional challenge.

The natural images used in our training and test dataset
are sourced from the Inria Holidays image dataset [23] which
have a comparable resolution to our LF images.

Our method is independent of the actual underlying met-
ric 	 we predict. We will denote this response neutrally as
A	B. We explored three metrics: MSE, SSIM and VGG16.
MSE is defined as the average per-pixel RGB difference
vector length squared. The SSIM metric is using the original
implementation [57]. VGG16 [62] transforms both A and
B into the VGG16 feature space and picks the activations at

layer five, which is 512-dimensional. The L2 difference of
these two vectors is used as the metric response. For each
metric, we normalize the 95th percentile of their responses
across the training dataset to fall between 0 and 1.

3.2. Architecture

We use a simple encode P [43] that has learnable param-
eters Θ and predicts the error map P (A|Θ) by observing A
(Fig. 2).
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Figure 2. Our architecture consumes 32 × 32 patches, (yellow
left), and applies a cascade of 3 × 3 convolutions, followed by
non-linearities (ReLU). Spatial resolution is reduced (height) and
feature count increases (width) before a final prediction of the
metric response is produced (blue, right).

The network comprises 5 layers (32× 32 patch size) with
the total number of |Θ| = 175, 537 learnable parameters
and is trained on all patches of the training set in a sliding
window fashion.

The loss is the L1 error of the predicted metric response,
so ||P (A|Θ)− (A	 B)||1. Note that the loss is always L1,
while the metric can be the L-norm-like MSE as well as
SSIM or VGG16.

Balancing We have explained why, and will see from the
ablation study, that it is important to have natural patches, but
the question is how many. If we take an unlimited number,
the metric prediction simply always returns zero, because
natural patches have no error to themselves.

Our solution is to start with a half-half mix of distorted
and clean patches. Regrettably, many of the distorted patches,
which make 50 % of the total, also have small errors that are
close to zero. These patches are exactly those for which IBR
was successful, i. e., did not have any artifacts. Depending
on the metric, this imbalance can be very strong, and in
particular for MSE, it is extremely heavy-tailed (Fig. 3).
To address this, we balance the error distribution for the
distorted half when creating the training data as follows:
First, we sort all patches by their metric response into a
priority queue. Then, we uniformly random-sample the
range from zero to the 95th percentile of the metric response
distribution. For every sample i with value ξi, we find the
patch j with the most similar metric response di and remove
it from the queue and add it to the training dataset. When
the minimum difference ξi − dj is larger than a threshold
ε, we reject the sample. This is repeated until a target patch
count, such as 250 k, is reached.
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Figure 3. When sampling uniformly from IBR patches the error dis-
tribution is skewed towards low errors (blue). Our balancing (red)
adjusts the samples to have a uniform range of errors. The three
lower plots show the actual distribution before and after balancing
for different metric responses.

4. Evaluation

4.1. Methods

Training Strategies We compare three different strategies
for training. The first is ours, the other two are ablations.
FULL is our complete method involving 50 % natural patches
and a balancing of the other 50 % as described in Sec. 3.2.
NOBALANCE is realized by a similar 50/50-split, but we
train on all distorted patches without the balancing. NONAT-
URAL adapts the balancing to take 100 % of the patches
coming from IBR without adding the natural patches as
described in Sec. 3.2. All training sets, albeit processed
differently, have the same size of ca. .5 M patches.

Error As we predict metric responses, our error is the
same as the loss, the absolute difference between the ground
truth metric response and our prediction of that response.
As these errors also come in arbitrarily different scales for
different metrics, we normalize them per metric by dividing
by the global 95th percentile of the GT metric response
across the balanced training dataset.

We additionally report errors in metric prediction errors
for a split subsets to understand the false/true-positive and
false/true-negative tendency. In ALL, we compute the er-
ror for the whole test dataset. Additionally, we consider
two subsets of the test dataset. The first subset is CLEAN,
which includes only natural patches. The second one is DIS-

TORTED that contains only IBR patches, including those that
might also come out with very low or even with no error.
Please note that this is a partitioning of the test set, and not
of the training set.

4.2. Quantitative results

In this section, we discuss both the means and full error
distributions of all training strategies for different partitions
and different metrics.

Table 1. Error of the metric predictions on the test data
for different variants of our algorithms and different partitions
(ALL/CLEAN/DISTORTED) of the training data (columns) on dif-
ferent metrics (rows). Winners per-partition are marked bold.

Metric FULL NONATURAL NOBALANCE

ALL CLE. DIST. ALL CLE. DIST. ALL CLE. DIST.

MSE .098 .006 .189 .137 .092 .182 .102 .003 .201
SSIM .078 .013 .143 .143 .159 .127 .080 .012 .149
VGG .085 .006 .165 .207 .293 .121 .092 .008 .176

Means The means of all methods are compared in Tbl. 1.
We see that our method (FULL) has the smallest error across
different metrics compared to both other variants (bold in
column ALL).

In detail, when we look into the partitioning, we find
that for the DISTORTED partition, the NONATURAL strategy
performs best. This is expected as training is done with
all distorted patches which comprise the maximal variety
of distortion. This makes the resulting metric sensitive for
all kinds of distortions. As a result, the probability of false
negatives, i. e., claiming patches with an error to be fine,
becomes low.

We also find, that for the CLEAN partition, the NOBAL-
ANCE strategy performs best. This also is expected as in
the training, 50 % of data comprises natural (undistorted)
patches, and due to the NOBALANCE strategy, small errors
dominate in the distorted patches. This makes the resulting
metric particularly sensitive for near-threshold distortions.
In this case, the probability of false positives, i. e., reporting
a high metric response for no-error patches, is low.

All statements are true (significant, p < .01, t-test after
testing for Gaussianity) across all metrics, indicating that the
FULL approach is independent of the underlying metric. A
positive exception is VGG, where the FULL approach even
performs better than NOBALANCE on the CLEAN partition.

Distributions In Fig. 4, we show the distribution of er-
rors for different metric predictions (top) and the correla-
tion of the prediction error and metric response (bottom).
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In each plot, colors encode the variants of our approach
(NONATURAL, NOBALANCE, FULL).
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Figure 4. Analysis of metric prediction error, for different met-
rics and variants of our method. The top plots show sorted error
distributions. The bottom row plots show the correlation of metric
response and metric prediction error. All vertical axis are log scale.

Each plot in the first row of Fig. 4 shows the sorted error
of our metric prediction in ascending order. We see that
across the entire range, with the exception of MSE predic-
tion for low errors; the FULL approach performs better than
other variants. This indicates that the mean is a good char-
acterization of the performance. In all cases, we noticed a
sudden increase in the error that occurs around 50 % of the
population, i. e., the error for the first half of the population
seems to follow a different trend than the second half. We
hypothesize that, these are the patches where reference and
input are (partially) not aligned, which make up roughly
50 % of the population as well. Unfortunately, there is no
way to tell apart a misaligned patch that is judged by FR
metrics as different with respect to a displaced reference.
Hence, large errors are expected to become undetectable at
some error level. The exception is the regime in MSE where
the FULL approach is worse on low errors and slightly better
on high errors, while it performs best on average in (Tbl. 1).
This can be difficult to comprehend due to the log scale of
the vertical axis.

Each plot in the second row in Fig. 4 shows the error of
our prediction on the vertical axis and the metric response
on the horizontal axis as a connected scatter plot. We can
see that the plots are in accordance with Tbl. 1: The NONAT-
URAL method which performs best in predicting high metric
responses, has a high error on patches with small metric
response (false positives). Symmetrically, the NOBALANCE
method which is the best at predicting low metric responses,
produces high errors on patches with high metric response
(false negatives). FULL method is always a bit worse than
one other method in one region (except at the unique point
where both cross), but on average performs best overall.

4.3. Qualitative results

Example metric outputs Fig. 5 shows an analysis of the
response of all metrics to two different LFs from the test
set. The first column shows the distorted input A in the
top, below the hidden reference B and below this three insets
from both. The second column shows our predicted response
A	B for different metrics: MSE on top, followed by SSIM
and VGG. A false color coding, where cold colors indicate
a low response and warm colors indicate a high response,
is used. The third column shows the GT response for the
same. It is evident that there is a similarity between our
prediction and the ground truth. We slightly err towards
conservative, i. e., miss a few errors. How some of these
errors are only false findings, i. e., a limitation of the metrics,
becomes apparent from the user study to follow.

The last column shows a sanity check where we put the
hidden reference image B into our metric. The hidden refer-
ence obviously does not contain any error, and consequently
reporting one is a false positive. We see, that our image has a
responses in areas that are correct but look like IBR artifacts,
but in most areas has no response. In summary, this indicates
that we localize and scale errors to a hidden reference in
images with artifacts, while avoiding to produce a signal
when facing clean images. It might appear that MSE has
less false positives than SSIM or VGG when inspecting the
last column; simply more deep blue, very close to perfect in
the first row. However, such a trend is not supported by the
numbers in Tbl. 1 or the plots in Fig. 4. The true reason for
this impression might be that the SSIM and VGG response
simply have a larger receptive field per-se: MSE is per-pixel
while VGG is affected by up to 32 × 32 pixels. Even the
ground truth response is more dense (less deep blue). Con-
sequently the metric prediction, in case of error, also makes
spatially more extended, more dense, mistakes.

Transformation-invariance Surprisingly, results pro-
duced by our approach can turn out to be better than their
own supervision, as our method is forced to come up with
strategies to detect problems without seeing the reference.
This makes it immune to a common issue of many image
metrics: misalignment [26]. Even a simple shift in image
content will result in many false positives for classic metrics
(Fig. 6). An image that has merely been shifted is reported to
be very different from a reference by all the metrics used for
our supervision; however, it shows less differences in case
we add IBR artifacts to it. In contrast, our method does not
care about transformation, but when IBR artifacts are added,
they are detected. As our proposed method is oblivious to
the ground truth, it is not subject to such a misconception.
While not quantifiable, the result is arguably more similar to
human judgment, as indicated by the user experiment in the
next subsection.
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Figure 5. Comparing the response to a pair of an image A and its distorted version B (first column). Our response (second column) is
similar to the ground truth (third column). When executed on the clean reference (fourth column), only very few false positives are reported.

4.4. User study

We have conducted a user experiment to validate that
our predicted metric responses spatially correlate with the
visibility of artifacts to human subjects. We quantify the
human responses by means of per-pixel annotations, which
are painted on top of images showing IBR artifacts. Note
that no user responses was used for training.

Methods Naı̈ve users were asked to use a binary painting
interface to mark errors in a rendered image for each of the
six LFs of our test dataset in an open-ended session that took
15 minutes on average. We average the binary response into
a continuous fraction (percentage) of users that detected the
location of the artifacts.

Analysis Asking N = 10 users, we find the correlation
(Pearson linear correlation R, higher values are better; state-
ments highly significant as the correlation is computed on
a high number of image pixels) reported in Fig. 7-b. We
see that for many scenes as well as for the average across
scenes, our method has a higher correlation with user anno-
tation than the metric it was supervised on. We hypothesize,
that this is due to the fact that our network had learned to
become independent of a reference, a similar robustness that
the HVS employs. There is no clear trend on which of our
metric response predictions correlates the most with the user
annotations. The differences between scenes, however, seem
more pronounced.

When repeating the experiment with a non-aligned ref-
erence (shifted a mere 20 px to the right), we find the cor-
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a misaligned reference B (not shown here, 20-px shifted or 20 degrees rotated copy ofA), a common metric such as MSE will show a strong
response (first row, second and third columns). Such a response is numerically correct, but far from human assessment, which would be
more similar to our response (first row, fourth and fifth columns). Symmetrically, repeating the experiment on a distorted input, our approach
correctly localizes the distortions around the books (inset) as if the reference had been aligned.
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Figure 7. Exemplary user study result (a). Correlation (significant,
p < .001) of MSE/SSIM/VGG and user responses (red) compared
to our predictions of the three metrics (blue) for different scenes
and as an average across scenes to the right (b). We can see that in
the non-aligned conditions, these differences get stronger (c).

relations reported in Fig. 7-c. We see that our correlation
even improves in this condition(our metric shows higher
correlations for all metrics across different scenes), showing
we are more robust to alignment issues when predicting user
responses.

Perceptualization Finally, we computed a linear correla-
tion R by fitting a model xi = a · yi + b, where xi is the
user response and yi is our prediction of the metric response
for pixel i. This allows a “perceptualization” of our metrics
response. Fitting multiple models a, b in a leave-one-out
protocol to 5 of our 6 scenes produces an average error of
.05/.04/.02 for MSE/SSIM/VGG respectively, indicating
that this perceptualization generalizes to some extent.

Depth estimation
and IBR

Robot-arm capture

Initial cameras Novel views Adapted cameras

Scene

Error prediction

Figure 8. Proposed pipeline for adaptive LF sampling by bounding
the reconstruction error predicted by our no-reference metric.

4.5. Other architectures

We also explored using other architectures with or without
balancing. A simple solution would be to use a supervised
image translation network such as Pix2Pix [22] to map from
entire IBR images to the metric response. Unfortunately,
training these on our data converges to a flat response of
zero, as artifacts are too rare and subtle to be picked without
the balancing we suggest. Future work could investigate
combining our balancing with other architectures.
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4.6. Supplementary materials

Ground-truth responses of all metrics and our predictions
for all input images, for all variants of the algorithm, as well
as all user study annotations can be explored in an interactive
web application in the supplementary materials.

5. Applications
We will now demonstrate two practical applications of

a NR-IQM in light field production. The first is accelerat-
ing automated adaptive LF capture (Sec. 5.1), the second
employs our NR-IQM as a feedback in an interactive depth
manipulation system (Sec. 5.2).

5.1. Adaptive light field capturing

Capturing a dense set of input view images results in a
high-quality reconstruction but remains a time-consuming
process or may require a bulky setup. Our main observa-
tion is that not all input view images contribute equally to
the reconstruction of novel-view images. Our metric helps
identifying and capturing these.

Images from views dominated by planar diffuse surfaces
can reliably be predicted from images taken from other views
showing this very same surface. Hence, dense capturing
from these views is needed and thus not efficient.

In contrast, occlusions and specularity can be more chal-
lenging, because it must be ensured that each scene element
is visible in at least two camera views (when using multi-
view stereo, as we do) to compute depth. Sparse capturing
from these views would sacrifice the reconstruction quality.

To both of these ends, we propose an adaptive capturing
mechanism as it illustrated in Fig. 8 to capture an image for
a view only if it cannot be extrapolated from other views.

5.1.1 Setup

We study adaptive capturing by means of a large-scale trans-
lation stage equipped with a digital camera. The position of
the camera can be controlled with a precision of 80µm in
horizontal and 50µm in vertical direction. This allows for
very dense capturing of the scene. While this takes long to
capture, it serves as a unique baseline to our study where we
can compare our prediction of an error to the actual error
present.

5.1.2 Procedure

We first capture a sparse set of images and estimate the
depth maps for each view. Then, we use DIBR to render a
set of intermediate-views and compute the reconstruction
error for each rendered view. All pixels are simply averaged
in each view image, producing a single scalar value. The
capturing grid is then subdivided into smaller regions where

average predicted reconstruction errors is larger than a given
threshold. This process is repeated until a desired quality is
achieved. By this approach, the number of captured views
can be substantially reduced, and we only need to capture
images at locations where reconstruction is poor.

Ground-truth Our prediction

Figure 9. Reconstruction error of intermediate novel views. Left:
Ground truth MSE values, right: Our network MSE prediction.

Predicting the reconstruction error of novel view is the
key to make such an approach work. Classic full-reference
image quality metrics require a dense capture to provide
reference images to compute the error, which is not practical
as our goal is to reduce the number of captured images in the
first place. In contrast, our proposed no-reference metric can
measure the error in the novel view images without providing
their reference images, resulting in an efficient approach.

5.1.3 Evaluation

To evaluate effectiveness of our metric in this application,
we simulate capturing two LFs, adapted according to the
MSE metric.

Array We captured an array of 7×15 images for the scene
shown in Fig. 8 (left). In Fig. 9 we show the ground truth
MSE (left) and our network prediction (right), where each
grid element denotes a camera position. The dark blue grid
elements indicate the camera positions where actual key
frames were captured, while rendering has been performed
for all remaining intermediate positions.

As we can see, the distribution of reconstruction error as
predicted by our metric correlates well with the ground truth.
Fig. 8 (right) shows new camera locations that are required
to reduce the true average reconstruction error below .004.

Panoramic We also demonstrate the potential benefit
of our approach for an efficient panoramic (i. e., one-
dimensional, linear) light field capturing. As it is shown
in Fig. 10, depending on the scene content, not all regions
in the scene require equally dense camera placement. Our
metric successfully guides the capturing setup to take more
photos in the regions with thin structures, substantial dis-
occlusions or specularites where accurate reconstruction is
highly challenging. Overall, capturing 76 instead of 720
images – a sparsity of 10.5 % – reduces the total capture
time from 59 minutes to 4.9 minutes, i. e., by 91 %.
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Figure 10. Adaptive panoramic light field capturing: The top row shows a grid indicating the camera placement at different iterations. The
second row shows the selected rendered views based on the key frames that are captured. The insets in the third row show the marked
patches from the rendered views in the first iteration and in the iteration that a desired quality is achieved. In the fourth row, we also show
our network predictions for the corresponding patches in each iteration.

5.2. Interactive depth adjustments

Long acquisition times involved in capturing dense light
fields make it a tedious and impractical task for some appli-
cation fields. One of such fields is movie production, where
the presence of highly dynamic scenes and time pressure
discourages the use of dense light fields, and in such cases,
only sparse light field capture using video camera arrays is
seen as a convenient solution.

Unfortunately, automatic error-free light field reconstruc-
tion from a sparse capture is still an unsolved problem. To
this end, there are ongoing research efforts to address the
challenges such as the estimation of disparity in the presence
of homogeneous areas, repetitive structures, fine-grained ob-
jects, or specularities. In such cases, interactive disparity es-
timation improvement seems to be the most promising solu-
tion to achieve a high-quality view rendering [58, 25, 30, 9].
However, this requires detecting possible view rendering
artifacts as fast as possible to reduce the post-processing
time. As shown in the right-most image of the second row
in Fig. 10, spotting an artifact is not a trivial task and some-
times requires carefully scanning the view rendering result.
Our quality estimation metric can significantly simplify this
process by allowing the automatic analysis of several novel
rendered views. By observing the predicted visibility map,
which identifies the local distortions, the user can quickly
spot the problematic regions. Using a post-production soft-
ware suite 1 to perform an interactive view rendering with
only a small subset of cameras allows detecting the captured

1https://www.iis.fraunhofer.de/realception

view responsible for the error. The inspection of the corre-
sponding disparity map followed by an approach similar to
[58, 25] finally allows fixing the view rendering error. This
is achieved by manual creation of a geometry proxy in 3D
space for objects whose disparity map could not be com-
puted automatically. The proxy is then used to bound the
admissible depth values for a subsequent disparity estima-
tion.
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Figure 11. Interactive depth adjustment. The marked patches are
showing the regions in the rendered view where our method predicts
the MSE (top) and the bottom row shows the corresponding patches
after applying our manual disparity refinement.

The results of this procedure are illustrated in Fig. 11. The
contained repetitive structures are very challenging for au-
tomatic disparity estimation and consequently lead to many
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view rendering artifacts as clearly indicated by the depicted
error map. For solving these issues, a user has added proxy-
based disparity constraints for the waste basket (and the
contained figurine), the grid structure behind the flower, and
the grid structure in the upper right corner of the image. By
these means, a much better view rendering could be achieved
as shown in Fig. 11. Our metric has reduced the time re-
quired to find those reconstruction errors, leaving more time
to a user to correct them.

6. Conclusion
We have demonstrated that with properly adjusted train-

ing data (prioritization and natural supervision), a CNN can
learn how to predict the difference of an image to a hidden
reference. Our approach is independent of the metric used
and we have shown MSE, SSIM and VGG prediction. Other
metrics such as HDR-VDP-2 [35] or the CNN-based metric
of Wolski et al. [60] would likely be predictable in a similar
fashion.

Such a metric can be applied for several applications. As
demonstrated this includes adaptive light field sampling of
complex scenes and interactive depth editing. Moreover,
since in contrast to any existing non-reference metric, our
approach provides a predicted error map, this opens the
potential for many novel applications such as interactive or
automatic view rendering error correction.

In future work, we would like to overcome the limita-
tions of the paired input, eventually using an adversarial
[15] design, and learn the prediction only from pairs and
without the metric, or only from pairs of undistorted-metric
or distorted-metric.
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