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Figure 1: Starting from an input point cloud equipped with normal vectors, our approach extracts meaningful planar components describing
the geometry at multiple scales. Using persistence analysis, we offer to the user several ways to interactively explore, visualize and reconstruct
the input data. The user can for instance generate planar reconstructions at arbitrary scales, select planar components by sketching directly
on the point clouds, and/or find similar planar components.

Abstract

Modern acquisition techniques generate detailed point clouds that sample complex geometries. For instance, we are able to
produce millimeter-scale acquisition of whole buildings. Processing and exploring geometrical information within such point
clouds requires scalability, robustness to acquisition defects and the ability to model shapes at different scales. In this work, we
propose a new representation that enriches point clouds with a multi-scale planar structure graph. We define the graph nodes as
regions computed with planar segmentations at increasing scales and the graph edges connect regions that are similar across
scales. Connected components of the graph define the planar structures present in the point cloud within a scale interval. For
instance, with this information, any point is associated to one or several planar structures existing at different scales. We then
use topological data analysis to filter the graph and provide the most prominent planar structures.
Our representation naturally encodes a large range of information. We show how to efficiently extract geometrical details (e.g.
tiles of a roof), arrangements of simple shapes (e.g. steps and mean ramp of a staircase), and large-scale planar proxies (e.g.
walls of a building) and present several interactive tools to visualize, select and reconstruct planar primitives directly from raw
point clouds. The effectiveness of our approach is demonstrated by an extensive evaluation on a variety of input data, as well
as by comparing against state-of-the-art techniques and by showing applications to polygonal mesh reconstruction.

CCS Concepts
• Computing methodologies → Point-based models; Shape analysis;

1. Introduction

Recent years have seen tremendous improvements in the capabil-
ities and the accessibility of 3D point-based acquisition devices.

This enables the acquisition of large-scale 3D models of real-world
entities – from complex objects to buildings and environments –
with unprecedented quality and detail, which generates a massive
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amount of digital data that need to be processed and interpreted to
fully exploit their information.

Interpreting and understanding data content remains a very im-
portant, yet challenging and open problem. Several approaches aim
at organizing large datasets into semantically meaningful parts.
Typically, the basic assumption is that parts of the data that carry
a semantic meaning must exhibit coherent geometric properties,
such as sheer size or fitness to a certain primitive type [AP10].
Thus, many state-of-the-art pipelines detect structures of interest
in an input model according to specific rules that combine geomet-
ric properties with specific scales of observation, often defined a
priori based on the specific domain considered (e.g. urban land-
scapes [VLA15]).

When considering general scanned models, one cannot rely on
a given definition of the relevant scales of observation, simply be-
cause this would require a hierarchical ontology for all the entities
of the real-world. Nevertheless, it can be postulated that the mean-
ingful parts of real-world entities vary depending on the scale of
observation and that they exhibit a certain degree of geometric con-
sistency. The keys for capturing the informative parts of a generic
3D model is the definition of (a) a geometric consistency criterion
that faithfully describes most real-world entities and (b) the scales
of observation that highlight the meaningful structures.

Recently, Fang et al. [FLD18] propose the extraction of mean-
ingful planes at different scales by exploration of a 2D parameter
space whose representative sub-spaces are evaluated using a learn-
ing process. This method, however, requires both a greedy contrac-
tion to sample the space and an extensive set of training data to
define the set of potentially meaningful scales.

In this paper, we propose a new representation allowing the in-
teractive exploration and extraction of the meaningful parts of a
large-scale 3D model at different scales. As it is well established
that man-made objects and structures can be faithfully represented
in a piecewise-planar manner [MZL∗09, ASF∗13], we restrict our
geometric characterization to planar structures. The key element of
our approach is the definition of a graph whose nodes represent pla-
nar regions extracted at increasing scales and whose edges connect
regions that are similar across scales. By studying the topological
persistence of the graph components, we propose a new way of de-
tecting and characterizing geometrical structures at multiple scales,
such that a single point can belong to multiple planar structures de-
pending on their scale.

Using simple and intuitive visual tools, we let the user navigate
interactively among the planar components of the model, which
are highlighted for different sets of scales, as illustrated in Fig-
ure 1. Such exploration allows the user to determine the parts of the
model that are meaningful and to export them with a geometrically
compact format (e.g. fitting rectangles and polygonal boundary ap-
proximations). By doing so, we incorporate human knowledge in
the selection of the meaningful parts of a model, performing the
bulk of the computations automatically and only requiring simple
interaction to analyze and filter the results.

We have tested our approach on a number of both synthetic and
real-world models represented as 3D point clouds. The results show
that our method allows for an effective analysis of generic scanned

3D models and generates compact representations of the underly-
ing entities at different meaningful scales of observation. Compared
to previous approaches, our solution is more flexible in the defini-
tion of the scales of interest and leads to the extraction of more
informative representations, as demonstrated in a dedicated evalu-
ation. We also demonstrate that our approach remains tractable for
large-scale datasets composed of dozens of millions of points.

2. Related Work

Our approach spans several different research topics in computer
graphics and vision. We review the most relevant approaches
grouped into three main categories, with a focus on techniques ap-
plying to point-based inputs.

Simple primitives detection. Structuring a raw 3D point cloud
into patches corresponding to simple geometric primitives is a ba-
sic first step in many 3D processing pipelines [CLP10, MPM∗14,
MMBM15]. Since real-world entities (in particular, man-made ob-
jects) can be approximated in a piece-wise planar way, planes
are among the most common primitives considered. Several meth-
ods [RvdHV06,PVBP08] extract planar patches using region grow-
ing. They expand a patch from a starting point by aggregating
neighbors that have low offset and low normal deviation. To in-
crease efficiency, small planar patches can be represented as voxels
on which a similar region growing is performed [VTHLB15]. Note
that the maximum offset and normal deviation are normally spec-
ified as fixed input thresholds, making these approaches effective
only in the presence of low or known levels of noise.

Noise and other defects in the input are handled effectively by
randomized methods, which are based on randomly generating a
large set of primitive hypotheses (not restricted to planes) from the
input data. In some pipelines, inspired by the Ransac algorithm, the
primitives that best explain the input data are selected [SWK07].
Other approaches, based on the well-known Hough Transform, let
each primitive cast a vote in a discretization of the parameter space
and select the primitives corresponding to the most voted parameter
sets [BELN11]. Though robust and not restricted to planar primi-
tives, such randomized approaches require testing a high number
of primitives to ensure that all relevant features are captured.

Some approaches use the output of both region growing and ran-
domized algorithms as starting point for a more global formula-
tion [PERW16, DYHS18, GLCV19]. These approaches are mostly
based on minimizing an energy function designed to penalize the
fitting error to the underlying data while favoring the use of a re-
duced number of models to explain the data [YCS11,IB12]. Similar
techniques are used when the input is an RGB-D image [SHKF12]
or a sparse point cloud [SSS09]. However, this strategy signifi-
cantly increases the technical and computational complexity of the
processing while only partially improving the initial segmentation.

Although effective in many specific use-cases, the success of the
primitive detection techniques presented so far is highly dependent
on the correct setting of their parameters, which is often unintuitive.
In addition, fixing these parameters implicitly defines one single
scale at which the detection is performed. In our pipeline, we rather
apply a simple region growing approach with fixed parameters and
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vary the scale at which the underlying features are computed. This
leads to results that reflect different scales of observation by simply
varying an intuitive parameter like the scale of observation.

For a more in-depth review of primitive extraction approaches
we refer the reader to the recent survey by Kaiser et al. [KYZB19].

Structural segmentation. The output of the previous methods can
be used to build more structured abstractions of the input data. The
detected primitives can be arranged in a topological graph based
on spatial proximity [SWWK08]. The connectivity of this graph
combines adjacent primitives in a hierarchical way, either start-
ing from unrefined planar regions and merging them based on pla-
narity [FTK14] or by considering individual points as initial prim-
itives and aggregating them into more general shapes [AP10]. The
hierarchical nature of this graph makes it amenable for scale-aware
reasoning, though this direction is not explored in these works. In
contrast, we build a hierarchical graph that represents the planar
primitives at several scales of analysis and use their persistence
inside this graph to discover relevant structures across different
scales.

A number of more advanced approaches detect global re-
lationships between simple fitted primitives and use them to
guide an optimization-based fitting. Some approaches detect non-
planar primitives (e.g. cylinders, spheres, cones) as well as pla-
nar parts [LWC∗11], while others only focus on planes and ex-
tract both the primitive parameters and their inter-relationships in a
joint manner, maximizing robustness [MMBM15, OLA16]. These
approaches capture global regularities, but do not convey any ex-
plicit information on the scale at which the analysis is performed.
Rather than focusing on regularity relations, our goal is to discover
the relevance of the structures at different scales of observation.

In fact, the extraction of scale-aware representations of raw 3D
models has only recently emerged as a meaningful research prob-
lem. Using a data-driven approach, Hu et al. [HCL18] learn a patch-
based label assignment, extracting the patches at a single scale and
using the available labels to constrain their boundaries. During test-
ing, the segmentation into patches is performed at several geomet-
ric scales and the scale that best matches the learned patch-based
labeling is selected. This approach yields a scale-aware segmenta-
tion, but it heavily relies on the availability of labeled input data
and it does not consider the problem of how to convert the output
segmentation to a suitable representation.

Fang and colleagues [FLD18] observe that the different scales of
abstraction of a model can be obtained by exploring the 2D space
defined by the size σ and the fitting error ε of its composing parts.
Since the pairs (ε,σ) corresponding to meaningful scales are lo-
cated on the diagonal of this space, they generate a redundant set
of abstractions corresponding to samples on this diagonal, arguing
that this amounts to repeatedly applying local geometric contrac-
tions to the input model. Finally, they select a fixed number of ab-
stractions, optimally matching them to the learned preferences of
a group of users. While we move from similar motivations, we do
not rely on local simplifications to generate the meaningful abstrac-
tions and extract a large set of candidate meaningful parts at differ-
ent scales of analysis. Moreover, instead of relying on a learnt def-
inition for the meaningful scale, we automatically propose mean-

ingful parts by analyzing their persistence across different scales
of analysis and allow the user to explore and refine our proposals
interactively using a variety of intuitive tools.

Multi-scale feature estimation. The estimation of local features
such as normal vector and curvature is a fundamental preliminary
step for a number of different applications. In the context of sur-
face reconstruction, Hoppe et al. [HDD∗92] estimate normal vec-
tors in unstructured point clouds by performing the principal com-
ponent analysis (PCA) of the k-neighborhood of each point. In their
work, a fixed neighborhood size is used, resulting in features that
correspond to a single scale. However, varying the value of k al-
lows to perform the analysis at different scales. This approach has
been used for the extraction of feature lines by Pauly and col-
leagues [PKG03]. In their work, they also describe how treating
the neighborhood size as a discrete parameter allows to translate
the concept of scale-space representations [Wit87] from the func-
tional case to the discrete setting of point-sampled geometry. A
similar definition of multi-scale neighborhoods has been also used
for feature-based semantic classification [HWS16b, TGDM18].

More recently, Mellado et al. [MGB∗12] combine varying scales
of analysis with the Moving Least Squares (MLS) representation.
In particular, they fit algebraic sphere surfaces [GG07] to neigh-
borhoods of continuously increasing size and define a compact ge-
ometric descriptor. This descriptor captures the geometric proper-
ties of a surface, including normal and curvature, for any contin-
uous choice of scale and location on the surface. In our work, we
use this approach to robustly estimate the local geometric features
of the input model in a multi-scale manner and use them to guide
the extraction of candidate planar components at each scale. Com-
pared to the original formulation, we replace the standard algebraic
sphere fitting by a more robust approach [ÖGG09] that helps pre-
serve sharp features and further decrease the influence of outliers.

3. Key observation

Our approach is based on the key observation that smoothing a
surface at increasing scale generates stable areas on the surface,
i.e. surface areas characterized by similar differential properties at
different locations and scales. In Figure 2, we illustrate this con-
cept on a 2D parametric curve (Figure 2(a)). The curvature scale-
space [Wit87] of this curve is plotted in Figure 2(b), where the color
represents the curvature value (blue positive, orange negative and
white null), the abscissa is the curve parameter, and the ordinate is
the scale of analysis.

Areas of similar curvature values are revealed by this plot and
Figure 2(c) illustrates these stable curvature areas in space and
scale with as color a representative curvature value. Figure 2(d)
finally shows the shape components of corresponding curvature
value for each of the stable areas. As we can see, these shape com-
ponents, living in a range of scales, are particularly meaningful for
interpreting the curve shape, depending on the scale it is observed
(large scale in Figure 2(d-top), medium scale in Figure 2(d-middle)
and low scale in Figure 2(d-bottom)). Our goal is to extract such
structures in 3D point clouds.

The parametrization of the 2D curve used in this example en-
ables an easy computation of the curvature scale-space which
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(a)

(c)

(d)

(b)

Figure 2: Illustration of the curvature scale-space of a curve and
its application to meaningful components detection. (a) Plot of a
parametrized 2D curve. (b) Curvature scale-space of the curve,
where the color represents the curvature value (blue-white-orange
for positive-null-negative). The abscissa is the curve parametriza-
tion, and the ordinate is the scale of analysis. (c) We define compo-
nents as stable areas in scale-space. (d) Components represent the
geometrical structures at different scales, and any part of the curve
can belong to several components at different scales.

greatly simplifies the detection of stable areas. However, the 3D na-
ture of point clouds and their lack of 2D parametrization prevent the
direct transfer of this multi-scale analysis. In addition, constructing
a robust parametric space from a massive acquired point cloud is
still an open challenging problem, and we rather propose a differ-
ent approach.

4. Overview

We wish to extract meaningful planar components at different
scales from unstructured point clouds following a procedure in-
spired from the multi-scale analysis presented in the previous sec-
tion. We propose a two-step process.

First, we compute for each point a set of per-scale normal vectors
from local surface reconstructions performed at each different scale
(Sections 5.1 and 5.2). This differential information parametrizes
a region growing algorithm that groups points in planar regions
at each scale (Section 5.3). Points in abscissa of Figure 3(a) are
grouped in regions (different colors) by scale in ordinate.

Second, we store regions as nodes of a graph and create edges
between regions extracted at successive scales if they share points.
We then define components as stable regions linked in the graph,
i.e. stable regions over scale (Section 5.4). Figure 3(b) shows with
different colors the components obtained from the per-scale region
segmentations illustrated in Figure 3(a).

(a) Per-scale segmentation

(b) Component extraction

Figure 3: (a) Visualization of the segmentation result per scale.
The abscissa represents the points of the point cloud, the ordinate
is the scale, and colors denote the different segmented regions. (b)
Following the concept presented in Section 3, the colors show the
resulting components defined by stable regions over scales.

To summarize, a component is defined as a set of regions com-
puted at multiple scales and consistently covering the same part of
the point cloud. We characterize a component by its scale of birth,
its scale of death, and the geometrical properties of its regions. We
illustrate the usefulness of our component characterization on sev-
eral applications in Section 6.

5. Automatic extraction of multi-scale structures

5.1. Surface reconstruction at multiple scales

Our first requirement is the computation of a scale-space in which
we can reconstruct a surface at different scales. As suggested by
Pauly et al. [PKG03], the smoothing step used to build a scale-
space from a parametrized signal can be adapted to point clouds
by studying, per-point, the geometrical properties of neighborhood
balls of increasing radii. Pauly et al. proposed to fit a plane to these
neighborhoods and estimate curvature using PCA. More recently,
Mellado et al. [MGB∗12] demonstrated that algebraic sphere fitting
provides a more stable description at higher scales.

We propose to push this idea further and study the properties of a
surface reconstructed at multiple scales. The Moving Least Squares
surface reconstruction scheme [Lev98] allows to evaluate continu-
ous surfaces at multiple scales by varying the neighborhood fitting
size. In this family of surface definition from point-sets, as sug-
gested by Mellado et al. [MGB∗12], we use the Algebraic Point Set
Surface (APSS) [GG07,GGG08]. By construction, APSS generates
smooth surfaces, which at high scales might lead to over-rounded
objects with no planar regions (see Figure 4(a)). To overcome this
limitation, we use the APSS formulation with non-linear regression
kernel, proposed by Oztireli et al. [ÖGG09] and denoted RIMLS
(see Figure 4(b)).

5.2. Scale-space sampling

The computation of segmentations at different scales and the ef-
ficient detection of the stable regions require an adequate dis-
cretization of the scale-space. Similarly to previous work [PKG03,
MGB∗12], we consider m scale values sampled from an interval
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Figure 4: Comparison between APSS (left) and RIMLS (right) re-
construction at 3 increasing scales with equal scale spacing in log-
arithmic scale. Surface normal coordinates (x,y,z) are mapped as
RGB colors.

[tmin, tmax] ⊂ R of the whole scale-space (we use m = 50 for all
our experiments). In order to have enough samples to reconstruct
the surface at small scales, we define the minimal scale tmin as the
average distance of the input points to their kth nearest neighbors.
This smallest neighbor size is set empirically to k = 10 so that the
RIMLS fitting remains sufficiently stable to be representative of the
local geometry. Small changes in this value have a negligible effect.
The choice of tmax is done conservatively and it is set as the size of
the point cloud axis-aligned bounding box, as no planar structure
can be bigger than the point cloud itself.

With these choices of tmin and tmax, we select m values equally
spaced in logarithmic scale, as this sampling strategy has been
shown to allow for scale-invariant multi-scale signatures [BK10,
MDS15]. Each scale sample t j is thus computed according to the
following equation:

t j = tmin ·
(

tmax

tmin

) j−1
m−1

j = 1, . . . ,m , (1)

with t1 = tmin and tm = tmax.

5.3. Planar segmentation at multiple scales

We compute the normal vector of a point as the normalized gradient
of the scalar field reconstructed with RIMLS and, as commonly
done for analyzing point clouds [CLP10,MPM∗14], we use normal
vectors as main features to steer the segmentation and provide the
per-scale planar regions. Figure 5(a) illustrates the reconstructed
surface with RIMLS at four different scales. Our expectation is that
the segmentation at two successive scales generates similar regions
where the underlying scale-space is stable. We thus seek a simple,
yet stable region segmentation algorithm.

By construction, seedless region growing offers strong stability
as the segmentation result is uniquely defined for a given local
threshold criterion: two neighbor points are in the same region if
they satisfy the local criterion, e.g. if the angle between their nor-
mal vectors is below a given threshold. In practice however, a seed-
less scheme does not provide control over the global property of a
region, and thus the planarity of a region cannot be guaranteed. For
instance, a sphere can be detected as a single region, as long as the
angular distance between nearby vertices is small enough.

For these reasons, we rather employ a seed-based region grow-
ing tailored to enforce stability over scale variation. We define the
planarity of a point pi at scale t j as ((κ1

j
i )

2 +(κ2
j
i )

2)−1, where κ
j
1

and κ
j
2 are the principal curvatures of the RIMLS surface recon-

structed at the jth scale. For each scale, we rank the points of the
input cloud based on their planarity and start the region extraction
from the most planar points. Seeds at different scales are thus points
of the same planar region with similar planarity when the region is
stable over scales.

In practice, considering the seed with the highest planarity p j
seed

at jth scale, and with normal vector η
j
seed, we define an initial re-

gionR j
seed, associated to the plane that passes through p j

seed and has
normal vector η

j
seed. The region is then expanded by including the

spatially close points that belong to its plane and have not yet been
assigned to any region, i.e. a point pi not already assigned is added
toR j

seed if (1) it is part of the k nearest neighbors of any p ∈R j
seed

and (2) the angle between its normal η
j
i and the seed’s normal η

j
seed

is lower than an angle θ. This process is repeated on the non as-
signed points until all points of the cloud belong to a region. We
set θ = 5◦ and k = 10 for all scales. Note that the same value of k
is used to select the minimum scale tmin (Section 5.2). This value
is also a good compromise as using a smaller value might sepa-
rate points that are in practice similar to the reconstructed surface
and a higher value might lead to unwanted jumps during the region
growing, where distant points are assigned to the same region even
though they are separated by another thin region.

Each region obtained with this process represents a spatial ag-
gregation of points reconstructed as a planar structure at a given
scale t j. As we use neighborhoods of size t j, regions can only be
representative of structures whose spatial extent is at least compa-
rable to t j. For this reason, we discard all regions R j

i that have a
surface area ai

j < 2 · t j , with ai
j being the area of the alpha-shape of

R j
i [EKS83], computed using α = 2 · t j.

For a given scale t j, the planar segmentation yields a set of re-
gions S j = {R j

1, . . . ,R
j
N j
}. These regions form by construction a

partition of the input point cloud P at scale t j. By repeating the
region growing at each t j, we obtain a set of output segmentations
S = {S1, . . . ,Sm}, which corresponds to collection of regions sam-
pling the scale-space of the input point cloud.

5.4. Multi-scale region graph and components extraction

Our goal is now to extract the planar components from the evolu-
tion of regions of S along scales. To do so, we structure the seg-
mentation set S in a multi-scale region graph G = (V,E) in which

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.



T. Lejemble, C. Mura, L. Barthe and N. Mellado / Persistence Analysis of Multi-scale Planar Structure Graph

(b) Graph nodes(a) Smoothed input (d) Persistence diagram(c) Component extraction

Figure 5: Our approach starts by (a) reconstructing the point cloud at different scales with RIMLS. (b) The reconstructed surfaces provide
parameters for segmenting the point cloud in planar regions at multiple scales; these regions are stored as nodes in a hierarchical graph here
illustrated by line of identical scale, from the lowest scale (bottom) to the higher scale (top). (c) Edges in the graph link the stable regions
at successive scales and the colors show the different corresponding components. (d) The persistence analysis of the extracted components
enables the characterization of planar structures at multiple scales.

each region R j
i is associated to exactly one node in V , denoted v j

i .
As each node v j

i holds at a specific scale value, we treat G as a hi-
erarchical structure in which all nodes corresponding to the same
scale t j form the jth level of the graph and levels are ordered by in-
creasing scale. Figure 5(b) shows the nodes of a multi-scale region
graph sorted by level. Once regions are organized by levels in the
graph, we connect by an edge all pairs of similar regions computed
at successive scales. Each set of connected nodes then defines a
component in the topological sense, and represents the stable pla-
nar area we are looking for in scale-space.

As we designed our segmentation to give similar results at con-
secutive scales in stable areas of the scale-space, we expect that
regions in stable areas share a sufficient number of points. To mea-
sure the overlap between two regions v j

i and v j+1
k , we use the Jac-

card index J(v j
i ,v

j+1
k ) defined as:

J(v j
i ,v

j+1
k ) =

|R j
i ∩R

j+1
k |

|R j
i ∪R

j+1
k |

. (2)

The Jaccard index J(v j
i ,v

j+1
k ) is symmetric, and equals to 1 when

two regions share exactly the same set of points, and drops to 0 for
non-overlapping regions. In our settings, two regions at the same
level t j+1 cannot overlap; as such, one node at level t j has at most
one node at level t j+1 for which J(v j

i ,v
j+1
k )> 0.5.

According to this observation, we connect in the graph all pairs
of nodes laying at consecutive scales and having a Jaccard index
strictly higher than 0.5 (Figure 5(c)). As illustrated in Figure 6,
this simple rule allows the connection of nodes corresponding to
regions with similar coverage, while preventing the connection of
nodes having an ambiguous relation. One could consider using a
stricter threshold, e.g., in range [0.5 : 1]; however, from our exper-
iments this does not improve the component extraction. Each set
of connected nodes in the graph finally define a planar component,
as illustrated in Figure 5(c). Each component is characterized by a
birth level lb and a death level ld (respectively, the lowest and high-

0.7 0.7 0.20.4 0.5 0.5

Figure 6: Examples of relations between nodes. We connect nodes
when their Jaccard index is strictly superior to 0.5. Connected
nodes are colored with the same color, and belong to the same com-
ponent.

est levels of its regions), as well as the regions it contains. Note that
isolated regions have no stability over scales and they are discarded
rather than being considered as components.

6. Interactive analysis of multi-scale structures

With this new representation, we propose new interactive tools for
user-guided multi-scale exploration of point clouds. As our graph is
organized as a collection of components with birth and death scales,
we directly benefit from the toolbox developed in the domain of
Topological Data Analysis (TDA) [CM17]. More specifically, we
consider the concept of persistence (inspired by the more formal-
ized notion of topological persistence [ELZ02]) and define it for a
component C as the difference between its death and birth scales:
pers(C) = ld − lb. The persistence of components can be analyzed
using a persistence diagram, i.e. a 2D diagram in which each com-
ponent is a point with as abscissa its birth scale and as ordinate its
death scale. In such diagrams, as illustrated in Figure 7-(a), com-
ponents of equal persistence pers(C) are on the same diagonal line,
with those having the lowest scale of birth on the left side and those
with the highest scale of birth on the right side. The diagonal in
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the middle of the plot would represent components of null persis-
tence, while the bottom-right part below it would represent those
with negative persistence, which do not exist in practice. The com-
ponents of lower persistence (pers(C) = 11 in the figure) are those
on the first diagonal line above the middle one and those with the
highest possible persistence are on the top-left corner.

Birth scale

Death scale

(a) (b)

pers=11

pers=13
pers=21

Figure 7: (a) Persistence diagram breakdown for the tri scene
(see Figure 5). (b) Comparison between two components with equal
persistence on the lans scene. As shown in supplementary mate-
rial, the surface covered by the orange component is noisy at small
scales, which delays its date of birth.

Following these observations, we can see in Figure 5-(d) that we
have three sets of components grouped by equal persistence. All
of them have a birth scale at the lowest scale and those having the
lowest death scale are those with the lowest persistence (the closest
to diagonal in the diagram). These components have a large enough
persistence, meaning that they are stable over scales and they define
meaningful planes explaining the data for the scales they cover. The
slightly higher ones have a larger scale of death; they are also repre-
sentative and define planes explaining the data up to higher scales.
Finally, a single component exhibits a high scale of death with a
very large persistence. These components explain data from small
to large scales: at a very high scale, the single component of the
overall plane is prominent, while at lower scales, the components
of the parts of this plane that have no detail are more representative.

Figure 7-(b) shows two components of identical persistence. The
blue one is representative up to the lowest scales because the point
cloud is very clean in this part. The orange one has a higher birth
scale. This is due to the noise slightly degrading this part of the
point cloud.

Thus, according to TDA, components with larger persistence are
more likely to represent prominent structures in the graph. In par-
ticular, as illustrated in Figure 5-(d), the persistence diagram of the
components of a graph G allows to easily discriminate between the
relevant geometric structures associated to persistent components.
In Figure 8, we show how the persistence diagrams are affected by
noise with increasing variance.

In the rest of this section we present a set of intuitive tools that
allow to filter components based on their persistence, their scale
interval, and/or the properties of their regions. All our tools per-
form interactively by exploiting the multi-scale region graph com-
puted in pre-processing and let the user rapidly select a richer set

a)

b)

c)

a)

b)

c)

a)

b)

c)

a)

b)

c)

a)

b)

c)

Figure 8: Impact of positional gaussian noise on the component
extraction for the cubes scene. The standard variation of the noise
is a factor of the bounding box diagonal and is set to 1, 5, 10 and
25 times 10−5 from left to right.

of planar parts that facilitates the interpretation of urban, CAD or
indoor point clouds, in the same vein as previous well-established
approaches for 3D modeling from point clouds [NSZ∗10,ASF∗13].
In the following, we say that a component holds a point if this point
is part of any of the regions included in the component. We denote
PC the set of points held by a component C.

During the exploration, we propose several ways to display a
component in the 3D space using the points held by the component:

• by coloring points of PC with a given color;
• by projecting the points on a plane approximating the compo-

nent; we compute this representative plane by fitting the points
held by the component in the least squares sense;
• by reconstructing the 2D alpha-shape of the projected point and

displaying the resulting mesh or its contours.

6.1. Persistence-based thresholding

In TDA, persistent structures are considered as meaningful, and
non-persistent structures as noise. We propose a simple tool where
the user selects a minimum persistence value and the system vi-
sualizes on the input point cloud the components C for which the
persistence pers(C) is greater than this minimal value. As shown in
Figure 9, this approach is effective for point clouds whose compo-
nents are distinctly clustered in the persistence diagram.

6.2. Scale-based point cloud segmentation

This tool performs a segmentation of the whole input point cloud
with respect to a scale value t given by the user as illustrated in
Figures 15 and 16. For every point p, this tool selects the most
persistent component among all the components including a region
at the given scale t and holding the point p. Points that are not
associated to any component are kept unlabeled.
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6.3. Interactive brush-based component selection

Using the aforementioned tools, we provide a unique controller act-
ing globally on the point cloud. In order to let the user focus on a
sub-part of the point cloud, we propose a brush-based interface to
select specific planar components. With this tool, the user defines a
set of query pointsPQ by directly painting on the point cloud. Inter-
actively, our system returns a set of components that “best match”
the selected points in terms of overlapping and persistence (see Fig-
ure 10). More formally, we list all the components that hold any of
the selected points, and rank them using the following score:

s(C) = αpoints(C) ·αpers(C) , (3)

with αpoints(C) = |PQ ∩PC | and αpers(C) = pers(C)/m . The
score function s(C) accounts both for the fraction of selected points
that are held by the component C and for the persistence of C nor-
malized over the range of sampled scales. As the persistence score
αpers(C) is normalized, it acts as a penalty factor modulating the
overlap ratio between the query and the component. Once a com-
ponent is selected, the user can either colorize the point cloud ac-
cordingly or keep its alpha-shape for further use.

6.4. Interactive similarity search

Another interesting aspect of the components C is that they offer
a high level descriptor that can be used for similarity queries. We
propose an interactive search where components are matched with
respect to a query and presented to the user as shown in Figure 17.

The tool performs as follows. The user selects a component using
the brush-based selection tool. Then, she uses a second brush to
select a set of points defining the search area. As for the selection
tool, all the components that hold a point belonging to the search
area are considered as similarity candidate. In order to verify if
a candidate component Cc matches the query component Cq, we
propose to combine multiple criteria depending on the usage case
(any criterion can be adjusted interactively):

1. the birth and death levels of Cc coincide with those of Cq, plus
or minus a given threshold.;

2. the planes approximating the components Cc and Cq are parallel
at an angular threshold;

3. the ratio between the surface area of the alpha-shapes recon-
structing the components Cc and Cq is lower than a given thresh-
old, expressed as a percentage of the area of the query’s alpha-
shape.

7. Results

Implementation details. We have developed the prototype of our
pipeline in C++, using Eigen [GJ∗10] for linear algebra operations
and CGAL [The19] for specific computational geometry routines,
including alpha-shapes computation.

Datasets. Our test scenes, presented in Table 1, consist of 10 point
cloud datasets of varying complexity. In these models, 4 were ob-
tained by Multi-View Stereo (MVS), 3 by LiDAR scans of indoor
and outdoor scenes, and 4 are synthetic point clouds generated by
sampling hand-modeled meshes. These synthetic models represent

relatively simple arrangements of geometric shapes and can be eas-
ily corrupted with controlled levels of noise; hence, they are per-
fect test cases to analyze specific properties of our method. The
real-world point clouds represent large-scale building structures
(loudun, lans, pisa [MDS15]), groups of buildings and their
surroundings (church, munich [HWS16a]), and indoor environ-
ments (euler, room [ASZ∗16]). We applied our different tools
to all of our datasets, and we present a subset of our experiments in
the following section. The remaining results are given in the sup-
plementary material.

Processing time. Our experiments were run on an Intel(R)
Xeon(R) CPU E5-2640 v4 clocked at 2.40GHz with 40 cores and
128G of RAM. The recorded timings for all test models are pre-
sented in Table 1, which provides a detailed breakdown of the indi-
vidual steps. The total processing time ranges from about 110 sec-
onds for our simplest synthetic model tri (0.5M points) to about
3.6 hours for loudun (35.5M points). It is worth noticing that all
these steps need to be completed once only to generate the com-
ponents, which are stored and simply loaded at the beginning of
each interactive exploration stage. The step that requires the most
computational power is the surface reconstruction. We recall that
we compute, at each scale t j and for each point of the input point
cloud, the differential properties (normal vector and principal cur-
vatures) of an implicit surface obtained using the RIMLS. To speed-
up the computations, we sub-sample the neighborhood ball used to
reconstruct the RIMLS using poisson-disk sampling, with a disk ra-
dius set as r j = 0.1t j . Note that the method by Fang et al. [FLD18]
and Rapter require respectively 12 minutes and a couple of hours to
process 1M points. In contrast, our approach requires around 6 min-
utes for 1M points, and processes a 35M point cloud in 3.6 hours.
In addition, more than 90% of the processing time is spent on the
RIMLS pre-computations, which could be locally recomputed in
case of local editing.

Extraction of prominent structures. The persistence-base
thresholding (Section 6.1) and the scale-based segmentation
(Section 6.2) tools provide an immediate insight into the most
relevant structures of a model at different scales.
We show in Figure 9 the extracted components for all our test
models, filtered by increasing minimum persistence. The pisa
model is a particularly good example to showcase the capabilities
of our method. At the lowest persistence level, all the main roof
sections and all the alcoves of the facade are captured. When
increasing the persistence threshold, only the larger alcoves persist,
until reaching the highest level, at which the largest roof sections
are the only highlighted structures. A similar, yet even clearer
trend is shown by cubes, a synthetic model consisting of four
nested levels of planar structures. At the lowest persistence value,
all planar faces of the boxes appear. As the threshold is increased,
the smaller faces progressively disappear, as their features are
more and more smoothed out due to the influence of the larger
surrounding planes at higher scales of observation.
In Figure 15 and 16, the structures of the test models are
highlighted through the segmentation induced by the persistent
components that include a given scale. Note in particular how, at
low scale, the individual tiles on the roof of lans are selected as
individual segments, while for larger scales of interest they are
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Model #Points Data source Surf. Reconstruction Segmentation Filtering Graph Components Total
tri 0.5M Synthetic 77.78 1.59 27.19 3.42 0.00 109.98
stairs 1M Synthetic 194.62 4.22 22.51 5.41 0.00 226.76
cubes 10M Synthetic 1884.62 47.87 922.09 67.85 0.00 2922.43
lans 1.2M LiDAR 310.85 6.31 15.87 4.37 0.01 337.41
pisa 2.5M MVS 719.91 6.84 33.96 6.25 0.02 766.98
church 4.3M MVS 1490.85 15.29 92.02 14.65 0.03 1612.84
loudun 35.5M MVS 12299.40 147.15 606.82 126.43 0.84 13180.64
room 1.1M MVS 372.93 2.31 20.90 5.77 0.00 401.91
euler 3.9M LiDAR 1052.24 10.14 62.48 33.74 0.09 1158.69
munich 6.5M LiDAR 1664.66 33.00 260.93 50.63 0.07 2009.29
empire 1M Synthetic 383.72 2.21 15.87 4.24 0.00 406.04

Table 1: Description of our test datasets and of the computing time required in preprocess for each subroutine. All timings are given in
seconds.

merged into larger individual roof segments and eventually into a
single one. Likewise, the alcoves in the lower part of pisa, which
appear as single entities at low and medium scales, are fused into a
single structure at the highest scale value considered.

Interactive reconstruction and similarity search. Further in-
sights into specific parts of the model can be obtained using
the brush-based reconstruction (Section 6.3) and similarity search
(Section 6.4) tools. Using the first tool on the lans model (Fig-
ure 17(a)), one can select individual structures on a facade with
very rough sketches and replace them with low-complexity polyg-
onal proxies, built based on their most representative associated
components. Thanks to the specific score function used in this pro-
cess (see Equation 3), the proxies approximate well the geometry of
the selected structures. Figure 10(b) presents a similar reconstruc-
tion for loudun: remarkably, the reconstructed polygons correctly
represent the underlying structures despite the high amount of clut-
ter and outliers.

Alternatively, instead of reconstructing a surface, a selection can
be used as a template in the search for matching structures. In Fig-
ure 17 we show a typical result of this workflow. On the model
lans, the similarity search tool allows to sketch a first selection on
a single roof tile (which becomes the query of our search) and then
a second one roughly covering the whole roof segment (which rep-
resents the domain of the search). By matching the most persistent
component underlying the query with the best matching component
of the domain, the tool extracts the components representing all the
other tiles in the roof (Figure 17(a)), without requiring that the user
engages in a tedious and error-prone selection process. Proceeding
in a similar way one can easily extract the individual steps from the
staircase of stairs (Figure 17(b)) or the individual arches in an
arcade of pisa (Figure 17(c)).

Point cloud coverage. With our technique, large portions of points
may not be labeled. This is due to the segmentation of the RIMLS
that tends to shrink at higher scales as the edges get rounded. The
regions may be extended to the points that are close to the plane that
best fits a region and that has a compatible normal. Figure 11 illus-
trates the coverage obtained with a distance threshold set to 20% of
the bounding box diagonal length and an orientation threshold set
to 45 degrees.

# scale % aabb coverage RMS error planes
[SWK07] - - 0.808 0.034 128
[MMBM15] - - 0.817 0.042 163
[FLD18] 1 - 0.816 0.017 239
[FLD18] 2 - 0.816 0.29 40
[FLD18] 3 - 0.816 1.03 9
Ours 1 0.452 0.767 0.0001 128
Ours 2 0.890 0.753 0.0002 92
Ours 3 1.018 0.688 0.0006 49
Ours 4 5.88 0.434 0.0060 4

Table 2: Comparison of our method with Ransac [SWK07],
Rapter [MMBM15] and Fang et al. [FLD18] on the empire
scene. For our method, stable regions are extracted at four scales,
set to different percentages of the axis aligned bounding box (aabb)
(see Figure 12). The two last columns give the corresponding Root
Mean Square (RMS) error and the number of extracted planes.
The coverage, RMS error and number of planes values for Ransac,
Rapter and Fang et al. come from [FLD18]-Table 3.

Comparisons. The fundamental difference between our approach
and the multi-scale plane fitting proposed by Fang et al. [FLD18],
Ransac [SWK07] and Rapter [MMBM15] is that we do not fit the
“best” planes considering tolerance, coverage and eventually scale
as parameters. We rather find planes faithfully representing the data
at different scales. With our approach, one point belongs to zero,
one or several planes identified at different range of scales, and at a
fixed range of scales, the coverage of our planes significantly varies
depending on the data and the considered scales. We ran a compar-
ison on the empire scene, as done by Fang et al. [FLD18]-Table 3
with Ransac and Rapter. To avoid a corrupted RIMLS reconstruc-
tion at higher scales, we filtered outliers, computing for each point
the covariance matrix with a neighborhood ball of radius = 1% of
the aabb diagonal and keeping only points with planar neighbor-
hood using standard heuristics (points kept: 79.3%). We have ex-
tracted planes (our stable regions) at four different scales: 0.452%,
0.890%, 1.018% and 5.88% of the axis aligned bounding box di-
agonal. Figure 12, as well as the coverage, root mean square error
and number of planes presented in Table 2 at each scale highlight
the difference of our approach: it aims at finding planes that explain
the surface at different scales, rather than fitting planes that approx-
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Figure 9: Persistent components for five scenes (from top to bottom: cubes, stairs, lans, church, pisa) with three different persis-
tence thresholds, illustrated on the persistence diagrams (Sec. 6.1).

imate the points. As such, our tool produces planes with lower cov-
erage and very low geometric error (several orders of magnitude
lower than previous work), even at high scales.

Application to polygonal reconstruction. We considered the
sets of planes obtained with our method at three different scales
and used them as input for a polygonal reconstruction algo-
rithm [NW17] (PolyFit). This algorithm reconstructs a watertight
polygonal surface from a set of input planes, optimizing three en-
ergy terms related to data fidelity, reconstruction complexity and
coverage, under hard constraints that ensure that the resulting mesh
is manifold and closed. The resulting meshes for the lans and
empire models are shown in Figures 13 and 14, respectively. We
used the Polyfit implementation provided by the authors with de-

fault parameters, adding an extra plane at the bottom side of the
bounding box to obtain a closed surface. We compare our results
against those obtained by extracting the input planes using the
CGAL implementation of Ransac [SWK07] with default param-
eters. Compared to this baseline, using our approach for the input
planes selection allows to naturally generate a sequence of meshes
at different levels of detail. This is possible thanks to our unique
definition of scale, which is not accounted for by Ransac.

Effect of noise on components extraction. We evaluated how
noise affects our results by corrupting the synthetic model cubes
with increasing noise and analyzing the corresponding changes in
the persistence diagram. In particular, we consider 4 levels of in-
creasing Gaussian additive noise, corresponding to a standard de-
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(a)

(b)

Figure 10: Interactive reconstruction tool on models lans (a) and
loudun (b): with just a few rough sketches, the user selects some
structures (left) and the tool automatically reconstructs their low-
complexity polygonal proxies (right).

Figure 11: Effect of extending the initial regions. Bottom: medium
scale; top: high scale; left: initial regions; right: extended regions.

viation σnoise equal to 0.001%, 0.005%, 0.01% and 0.025% of
the diagonal of the axis-aligned bounding box. As shown in Fig-
ure 8, at low levels of noise the main planar structures emerge al-
ready early in the scale-space, since even at the lowest scales the
RIMLS reconstruction (Section 5.1) is not affected. For this rea-
son, the corresponding components appear on the left of the dia-

Figure 12: Planes (stable regions) extracted at the four scales pre-
sented in Table 2. From left to right, scale 1, 2, 3 and 4.

gram. As noise is increased, the point-wise surface reconstruction
at low scales becomes unreliable. Hence, there is no region that
can be detected as associated to those components at those scales,
resulting in higher birth levels. Overall, as noise increases, the di-
agrams become more cluttered with new points (corresponding to
noisy structures), which also appear more spread out and generally
shifted towards the right. Nevertheless, the main planes can still be
recognized as fairly localized clusters in each diagram.

Failure cases. Our tests on cubes and tri reveal that the pres-
ence of a single large planar structure spanning the whole input
model leads to a component that persists across all the m scales
considered. In that specific case, the scale-based segmentation tool
does not yield meaningful results as all points are associated with
the unique component of this structure. In practice however, such
situation can easily be detected and fixed by ignoring this largest-
scale structure during the search.

8. Conclusions, limitations and future work

This paper introduces a novel method for the extraction of the
meaningful structures of a 3D model at multiple scales and for
their interactive analysis and exploration. Our approach is based
on computing planar regions with similar differential properties at
individual scales and on analyzing their stability across the scale-
space, which we achieve by studying the topological persistence of
a hierarchical graph that stores the regions at different scales. Fur-
thermore, we provide intuitive tools for visualizing the most stable
structures discovered, as well as to segment, reconstruct and per-
form part-based queries on the input model based on these struc-
tures. The resulting pipeline is effective and can be applied effi-
ciently to inputs consisting of several millions of points.

Limitations. As many related methods, our approach is restricted
to planar structures, since these are ubiquitous in man-made entities
and since other smooth objects can be well represented using first-
order approximations. Nevertheless, it would be interesting to con-
sider more general types of primitives to define the initial regions,
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(a) (b)

Figure 13: Polygonal reconstruction of lans using PolyFit with our planes detected at 3 different scales (a) and with those detected by
Ransac (b). Top row: planar segmentation; bottom row: reconstructed mesh.

(a) (b)

Figure 14: Polygonal reconstruction of empire using PolyFit with
our planes detected at 3 different scales (a) and with those detected
by Ransac (b). The planar segmentation obtained with Ransac is
shown next to the reconstructed mesh (b); the planar segmentations
corresponding to the meshes in (a) are given in Figure 12 (scales
2, 3 and 4, respectively).

using curvature (which we compute together with the normal) as
an additional feature to drive their extraction. In addition, while we
illustrate the behaviour of our pipeline under both synthetic and
realistic real-world noise, we did not estimate specifically the max-
imum levels of noise and outliers that our approach can tolerate.
Together with further improving the expressiveness and usability
of our interactive tools, these two aspects represent interesting di-
rections for future work.

In addition, while we illustrate the raw information directly pro-
vided by our method, eventually filtered with very simple geomet-

ric constraints (plane orientation and area), a dedicated UI could in-
clude the graph visualization to allow the user to navigate between
components. Additional geometric constraints related to points dis-
tribution within components, component shape, and component re-
lations (neighbors, orientation deviation, etc.) could also be studied.
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Figure 15: Segmentation of models church (a), lans (b), loudun (c) and pisa (d) based on the most persistent components that include
scales 5, 15, 20 and 25 out of the 50. (Sec. 6.2).
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Figure 16: Segmentation of models room (a), euler (b) and munich (c) based on the most persistent components that include a given
scale (with increasing given scale from left to right) (Sec. 6.2).
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Figure 17: Interactive similarity search tool on models lans (a), stairs (b) and pisa (c): with two simple sketches, the user selects
a query part (left) and a larger domain part (middle) and the tool automatically extracts all the components of the domain that match the
query. Corresponding diagrams highlight matching components in color.
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