
Eurographics Conference on Visualization (EuroVis) 2020
M. Gleicher, T. Landesberger von Antburg, and I. Viola
(Guest Editors)

Volume 39 (2020), Number 3

LOCALIS: Locally-adaptive Line Simplification
for GPU-based Geographic Vector Data Visualization

Alireza Amiraghdam† , Alexandra Diehl , Renato Pajarola

Department of Informatics, University of Zürich, Switzerland

Figure 1: Street network visualized over a textured terrain model using LOCALIS. Left zoom-in inset highlights the distance based simpli-
fication of lines. Red circle on the right demonstrates the flexibility of the approach using a line-refinement lens that can simplify or refine
lines inside a region interactively controlled by the user.

Abstract
Visualization of large vector line data is a core task in geographic and cartographic systems. Vector maps are often displayed
at different cartographic generalization levels, traditionally by using several discrete levels-of-detail (LODs). This limits the
generalization levels to a fixed and predefined set of LODs, and generally does not support smooth LOD transitions. How-
ever, fast GPUs and novel line rendering techniques can be exploited to integrate dynamic vector map LOD management into
GPU-based algorithms for locally-adaptive line simplification and real-time rendering. We propose a new technique that inter-
actively visualizes large line vector datasets at variable LODs. It is based on the Douglas-Peucker line simplification principle,
generating an exhaustive set of line segments whose specific subsets represent the lines at any variable LOD. At run time, an
appropriate and view-dependent error metric supports screen-space adaptive LOD levels and the display of the correct subset
of line segments accordingly. Our implementation shows that we can simplify and display large line datasets interactively. We
can successfully apply line style patterns, dynamic LOD selection lenses, and anti-aliasing techniques to our line rendering.

CCS Concepts
• Human-centered computing → Geographic visualization; Visualization techniques; • Theory of computation → Compu-
tational geometry; • Computing methodologies → Rendering; Rasterization;

1. Introduction

Interactive visualization of large geographic vector map data is
a challenging problem, in particular in combination with real-
time adaptive level-of-detail (LOD) methods. LOD-based simpli-
fication and rendering techniques offer well-proven solutions for

† Authors emails: {amiraghdam,diehl,pajarola}@ifi.uzh.ch

dynamically adjusting the amount and resolution of the data to
be displayed. In the context of scientific visualization and com-
puter graphics, the development of multiresolution LOD methods
has been an active research area that resulted in many algorithms
and data structures to facilitate real-time rendering of very large
amounts of 3D data, e.g. such as polygonal meshes, volumes or
point cloud data.

For 2D textures, 3D meshes or volumetric data, different LOD

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-4690-1595
https://orcid.org/0000-0002-2943-4051
https://orcid.org/0000-0002-6724-526X

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

simplification algorithms for both off-line preprocessing and real-
time visualization have been proposed. In contrast, online LOD
management and LOD-based interactive visualization of vector
map line data has not received the same amount of attention. In 3D
rendering engines, polyline data is commonly dealt with by being
transformed into other formats such as textures or meshes, and the
corresponding LOD techniques for these formats are then applied.
In geographic information systems (GIS), besides terrain elevation
models and texture maps, large parts of the particularly important
cartographic data is given in vector format.

Cartographic generalization techniques for vector data have been
studied for decades. However, vector map data processing and in-
teractive visualization have typically been handled independently,
thus no efficient and fully integrated solutions have been proposed
until now. Furthermore, the performance of prior online methods
is still insufficient for real-time line simplification and display of
larger datasets, and therefore, past approaches do not easily trans-
late to dynamic interactive visualizations. In particular, the outcome
of the polyline generalization has not been tailored towards interac-
tive 3D visualization. As a consequence, there is a lack of real-time
adaptive LOD techniques for vector polyline data.

We tackle the lack of specific techniques for visualizing vec-
tor polylines. Moreover, we consider line features to be displayed
not only in 2D but in an interactive 3D geographic visualiza-
tion. Following recent achievements for fast vector map render-
ing in 3D [TBP16, TBP18, FEP18], we propose a novel algo-
rithm, locally-adaptive line simplification (LOCALIS), for GPU-
based geographic polyline data visualization. Our main contribu-
tions are (1) a GPU-based view-dependent Douglas-Peucker style
polyline simplification approach, that exploits (2) a novel LOD
line-segments data structure, and (3) an efficient GPU-based de-
ferred line rendering algorithm. Furthermore, in the experimental
results, we not only demonstrate the interactive LOD simplification
and rendering performance of our approach but also its line-styling
as well as screen-space LOD and data filtering features. We focus
on simple static line data, i.e. polylines that only intersect at joints
and which do not have further temporal attributes such as e.g. tra-
jectories. Our technique may work with other lines or trajectories
but does not take their specific error metrics into account.

2. Related Work

2.1. Geographical Vector Data Visualization

In 3D, vector line data is most commonly displayed as an overlay
over a terrain model, which can be a simple flat plane with a texture
resembling the terrain as a 2D image, or it can be a digital 3D eleva-
tion model. In this context, we can categorize the methods for ren-
dering geographic vector data into four major groups: (1) texture-
based overlays, (2) geometry-based methods, (3) shadow-volume-
based techniques, and (4) deferred direct vector rendering.

In texture-based methods [KD02, WKW∗03, SLL08, WLB09],
vector data is rasterized and stored as a texture which is then pro-
jected over the terrain during rendering. These methods are fast and
easy to implement but suffer from an insufficient resolution in areas
closer to the camera, aliasing artifacts in far areas as well as pro-
jective distortions. To overcome these problems, higher or multi-

resolution textures are used at the expense of larger texture mem-
ory usage. Furthermore, view-dependent and dynamically adapting
vector maps require the textures to be updated each frame.

Geometry-based approaches, transform the vector data into
auxiliary meshes modifying them to match the underlying ter-
rain [QWS∗11, WSFL10]. While not suffering from resolution
problems, other drawbacks arise. First, creating meshes from large-
scale vector maps results in an even larger amount of geometry
to be rendered as each line primitive gives rise to several polygon
primitives. Another issue is matching the meshes to the 3D ter-
rain, especially in connection with multiresolution view-dependent
LOD visualization approaches in which the terrain mesh as well
as the vector maps continuously change as the camera moves. Fur-
thermore, like texture based solutions, these auxiliary meshes have
to be recreated whenever the vector maps change, in the worst case
before each frame. In general, unpredictable scene configurations
are problematic for geometry-based line rendering methods.

In shadow-volume techniques, the vector map polylines are con-
sidered floating above the terrain and orthogonal shadow polygons
are created intersecting the terrain [DZY08, YZK∗10]. The advan-
tage of this method is the independence of vector data from the
terrain model. However, it does not scale well and requires mul-
tiple geometry rendering passes. For large vector datasets, a high
number of shadow volumes must be created resulting in expen-
sive shadow computations. In case of dynamically changing vector
maps, shadow volumes must be updated every frame.

We based our approach on the deferred vector map render-
ing [TBP16, TBP18, FEP18]. In this technique, the vector line data
is maintained on the GPU in a data structure that allows fast screen-
space (pixel) to object-space (line) search and mapping. Moreover,
the search for lines close to a given pixel can be done efficiently
by using this GPU-based vector map data structure, and the pixel
can be colored based on the distance from the line. The advantage
of this approach is that there is no loss of precision or distortion of
the vector map since there is no intermediate transformation into
textures, meshes or shadow volumes. Therefore, the accuracy of
the final result is as high as the resolution of the output allows. A
more comprehensive list of the drawbacks and advantages of the
different group of methods can also be found in [TBP18].

2.2. Cartographic Generalization

Generalization is a key concept in cartography and has been used
for displaying maps at different scales, with the goal of adjust-
ing the amount and visual complexity of cartographic elements to
match a specific use case and spatial resolution. Such generalized
maps are supposed to simplify a given task and increase the effi-
ciency of the users [WBW10]. Generalization is done by applying
different operations to cartographic elements which are classified
into several categories such as elimination, simplification, aggrega-
tion, and collapse [MS92, FSK07, RBS11].

Automated line simplification and feature selection methods
help to reduce time-consuming manual work and maintain consis-
tency [BW88]. Early batch processing [HW07] methods worked by
chaining several operations sequentially and providing the neces-
sary control parameters. Subsequent improvements included rule-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

based expert systems which modeled cartographic generalization
knowledge as a set of rules [BM91]. Due to the complexity of the
generalization process, a high number of rules were needed. In ad-
dition, as the number of rules increased, new problems emerged
such as conflicts and competitions between rules [FM87]. Eventu-
ally, expert systems can be used for specific problems such as label
placement, but are getting too complex for the whole process of
generalization [Zor91].

The constraints concept [Bea91] defines the desired output
by constraints, and an algorithm optimizes the combination of
generalization operations in order to produce the best output
based on the defined constraints. Among the optimization tech-
niques that have been developed for this purpose, the agent-based
method [LRD∗99] has successfully been used in map produc-
tion [RRB11]. However, this approach is still not effective enough
for on-demand map generalization because defining constraints for
every possible situation that users could demand is not possible.
To try to overcome this shortcoming, ontology-based approaches
were proposed for road line simplification [KDE05] and road acci-
dent visualization [GM16]. Still, a comprehensive ontology has not
been created to cover the whole generalization process.

Early interactive map visualization systems used a set of maps at
different discrete cartographic scales which can be selected based
on the user interaction and display resolution. To avoid the lim-
itations of using only a given set of discrete LODs, on-the-fly
generalization approaches keep the vector map in data structures
that can be used to extract maps at a desired detail level on de-
mand [WB08]. With respect to linear vector map features, the bi-
nary line generalization (BLG) tree [VOVDB89] is an important
basic line simplification data structure based on Douglas-Peucker
(DP) algorithm. Reactive-trees [VO92] as well as generalized area
partitioning trees [VO95] were designed for on-the-fly line simpli-
fication, as well as the Multi-VMap [VMPR06].

Despite these advances, cartographic vector map line generaliza-
tions are still far away from real-time performance on larger scales
and are not considering interactive 3D visualization scenarios. Our
method, while being limited to line features, is to the best of our
knowledge the first real-time locally-adaptive line simplification
and visualization solution.

2.3. LOD Simplification and Error Metrics

Simplification and multiresolution modeling techniques are widely
known for various 3D geometry data types [LRC∗03]. Specifi-
cally, the general concept of multiresolution hierarchy for view-
dependent LOD rendering with a dynamically adapting rendering
front (see e.g. also [PD04,HSH10,DVS03]) is also followed in this
work, but nevertheless realized in a very different and novel way.

While a variety of error metrics are available for line simplifica-
tion [ZDY∗18,vKLW18], due to its excellent accuracy [SC06] and
simplicity, we based our approach on the DP technique and the er-
ror metric specific to this technique. For efficient view-dependent
and screen-space adaptive LOD selection, we adopt the concept
of error saturation known from terrain rendering [LP01, BPS04,
PG07]. This allows us to define a BLG-tree supporting view-
dependent line-refinement operations as described in Section 3.2.

3. Locally Adaptive Line Simplification

3.1. Douglas-Peucker Line Refinement Trees

Our line simplification approach is based on the DP technique and
the BLG-tree [VOVDB89]. Fig. 2 illustrates the DP line refinement
principle and the corresponding BLG-tree. The process is defined
by incrementally refining the current line version, initially starting
with a straight connection between the endpoints. In each step, one
line segment acts as a baseline which is subdivided by adding a
refinement point, and this next point is chosen as the one having
the largest distance from its baseline.

The distance e of a point pi to its baseline is considered to be the
error that this point introduces when leaving it out for represent-
ing the line. Adding a pi thus causes dividing the corresponding
baseline plpr and hence also splitting the remaining unused points
belonging to the same baseline into two groups Li = {p j|l < j < i}
and Ri = {p j|i < j < r}. The two sets L,R define the two sub-
trees in the BLG-tree of node pi. In Fig. 2, starting with the initial
baseline pBpE , inserting p2 splits the remaining unused points into
the sets L= {p1} andR= {p3, . . .p6}. Subsequently, the two new
baselines pBp2 and p2pE with their respective unused points L and
R are processed. At any moment, there is thus a set of baselines,
each with its refinement points, and for the next refinement step
the baseline with the refinement point with the largest distance is
subdivided, until the desired or the full LOD is reached.

As can be seen in Fig. 2, a binary BLG-tree is built according
to the above outlined process. We use this tree to simplify a line
adaptively based on a given error threshold. In Fig. 2 for example,
if a recursive tree traversal stops when the error e of a node becomes
less than 10, the so far traversed tree and selected nodes with e> 10
would result in the line pBp2p3pE . If instead we use e > 5 then the
resulting refined line is pBp1p2p3p5pE .

Fig. 3(a) illustrates the situation in which the error threshold is
adaptively defined based on the distance from a camera. A function
ε(d) translates the distance d from the camera to an error threshold
that is used to compare the error ei of each point pi in the BLG-
tree. While traversing the BLG line-refinement tree we thus check
for the inequality

ei > ε(di), (1)

given the function ε() which corresponds to a screen-space error
threshold. In this equation, ei denotes the error of the node and di
its distance to the camera. Each pi for which this inequality is true
is included and refines its baseline, and the recursive traversal stops
when the test fails. If the test fails, e.g. at node p5 in Fig. 3(b), the
entire subtree is not included for line refinement, and the final result
is pBp1p2p3pE as shown in Fig. 3(c).

3.2. GPU-based Line Simplification

The deferred line rendering algorithm described below in Sec-
tion 3.6 requires efficient pixel-on-line evaluations. To avoid many
expensive BLG-tree traversals for all pixels, we thus propose a
novel approach that converts the line refinement trees into an ex-
haustive set of attributed line segments, and indexes them.

These attributed line segments include all possible line config-
urations, e.g. as illustrated in Fig. 2, that could be needed for any

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

(l0)

(t0)

(l1)

(t1)

(l2)

(t2)

(l3)

(t3)

(l4)

(t4)

(l5)

(t5)

(l6)

(t6)

 e = 12.4

 e = 18.9

 e = 7.5

e =
 6.

1

e =
 4.

3
 e = 2.8

pB

p1 p2

p3
p4

p5 p6 pE

p2

p3

p6p4

p1

e = 12.4

e = 2.8e = 4.3

e = 6.1
e = 18.9

p5 e = 7.5

pB

p1 p2

p3
p4

p5 pEpB

p1 p2

p3

p5
pEpB

p2

p3

p5
pEpB

p2

p3

pEpB

p2

pEpB pE

p2

p3

p4

p1

e = 12.4

e = 4.3

e = 6.1
e = 18.9

p5 e = 7.5

p2

p3
p1

e = 12.4

e = 6.1
e = 18.9

p5 e = 7.5

p2

p3

e = 12.4

e = 18.9
p5 e = 7.5

p2

p3

e = 12.4

e = 18.9

p2 e = 12.4

Figure 2: Different steps of the DP algorithm when refining a line (top) and the corresponding tree structure (bottom). (l0) Shows the
most simplified and (l6) the fully refined line version. (l1-l5) Indicate the steps where the most impactful point is added each time, with the
distances to the subdivided baseline also illustrated. (t0-t6) Show the nodes corresponding to the inserted refinement points being added to
an incrementally growing binary tree.

th=28.9

th=20.3

th=14.0
th=10.8

th=5.4

p1 p2

p6
p5

p4
p3

pB

pE

(a) (c)

p1 p2

p3

pB
pE

(b)

p1
p2

p6

p5
p4

p3
th=10.8e=12.4

th=14.0e=18.9

th=5.4
e=6.1

th=20.3e=7.5

th=28.9
e=2.8

th=19.7
e=4.3

Figure 3: Example with line refinement error dependent on the dis-
tance to the camera. (a) For each point pi an error threshold th
is calculated using the given function ε(di). (b) While performing
an in-order tree traversal, the error of each node is tested against
the calculated threshold. At p5, e < th, thus p5 and its children are
discarded. (c) The final refined line, with parts closer to the camera
having more detail.

LOD refinement situation. Furthermore, they are constructed such
that their LOD visibility can be determined individually according
to a given error threshold. To achieve this, for each BLG-tree we
generate the set T of all possible line segments that can occur by
traversing the tree. T can be extracted from a BLG-tree using the
following three rules which are illustrated in Fig. 4, along with an
example. Rule 1: connecting pB and pE to the root node and treat
the root as the right child of pB and left child of pE . For the next
rules, we denote the descendants of a node by their relative paths
in the subscript such that the left child of the node pi is pil and the
right child of the right child of the left child of pi is pilr2 . Rule 2:
connecting each descendant pilrt with t > 0 to pi. Rule 3: Symmetry
of Rule 2 by swapping l and r.

In order to determine the LOD visibility of each individual line
segment in T , we need to check the inclusion of its two endpoints.
Let us consider the line segment pBp2 in Fig. 2 which appears for
the first time in Fig. 2(l1) where p2 is used to refine the line. We can

Rule 1

Root

pB pE

Rule 2 Rule 3

Ex
am

pl
e

pi
pil
pilr
pilr2
pilrn

pi
pir

pirl
pirl2

pirln

Figure 4: Three rules for extracting the set T of all possible line
segments from a BLG-tree that could be drawn regardless of how
the ε() function is defined. Black (BLG-tree), blue (Rule 1), orange
(Rule 2) and green (Rule 3) connections form T in the example.

observe that pBp2 will continue to be a part of the simplified line
until p1 is included in Fig. 2(l4). The visibility of the line segment
pBp2 is thus not affected by any other point. Therefore, we call p2
the generator and p1 the splitter. Since the generator pg is always
one of the two endpoints, the other being pl , we additionally only
need to know the splitter ps of a line segment. Thus three points
pl ,pg,ps and their errors el ,eg,es need to be known and compared
to the LOD error threshold to determine the visibility of a specific
line segment in T . Therefore, a line segment is visible when its
generator is included and its splitter is not, i.e. iff

eg > ε(dg)∧ es 6> ε(ds). (2)

3.3. View-dependent Line Simplification

Note, however, that Eq. (2) is only correct if it has a monotonic
behavior w.r.t. traversing the BLG-tree top-down, as a node can-
not be included in a refined line version without all its ancestors
already being included. Furthermore, since we are not in fact ex-
plicitly traversing the BLG-trees, but testing individual points, we
must enforce this condition in the representation of our attributed
line segments.

Based on Eqs. 1 and 2, a point could be included without its
ancestors if (i) its error is larger than the one of its ancestors or
(ii) ε() returns a lower threshold than for one of its ancestors. To
resolve (i) we conservatively set each node’s error to the maximum

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

ê of its subtree. In Fig. 2, the error ê2 of node p2 thus becomes
18.9, the largest of its descendants. Case (ii) depends on the cam-
era and is solved by adopting a view-independent error saturation
technique [LP01, BPS04, PG07].

Considering p2 and its descendant p3 in Fig. 5(a), the worst case
camera position is aligned with the two points, not between them
and on the side of the descendant (i.e. p3). In this configuration, it
could be that ê2 6> ε(d2) but ê3 > ε(d3) thus causing the ancestor
p2 not to be included. To arrive at a view-independent metric, we
store for each node the maximal distance dmax to any of its descen-
dants in the line-refinement tree, as illustrated in Fig. 5(b) for p2.
Therefore, we replace Eq. (1) by

êi > ε(di−dmaxi). (3)

However, since dmax of a descendant node may still be larger,
see also Fig. 5(c), we assign the maximum d̂max of each subtree to
its root. Given the so saturated and maximized errors and distance
values, a line segment is visible iff for its generator and splitter
points pg and ps

êg > ε(dg− d̂maxg)∧ ês 6> ε(ds− d̂maxs). (4)

Using Eq. (4) we may conservatively display more details than
needed since we consider the worst case configurations. However, it
allows us to guarantee a view-dependent LOD approximation error
in screen-space.

p1 p2
p6

p5

p4
p3

pB pE

p1 p2
p6p5

p4
p3

pB pE

d3

(a) (c)

(b)

p1 p2
p6

p5
p4

p3

pB pE

Figure 5: (a) The maximum difference between distances of two
points to a camera occurs when the points and the camera are in
a line. (b) Calculating the maximum distance dmax to descendant
nodes for p2. (c) Non saturated dmax of descendant p3 being larger
than that of ancestor p2.

3.4. Avoiding Line Intersections

Arbitrary line simplifications can cause unwanted intersections of
line segments. In Fig. 6, removing p1 and p2 will cause the sim-
plified line p0p3 to intersect another polyline p4p5p6. This can in
fact be predicted by testing wether any other visible point lies in-
side the triangle formed by the removed point and its baseline,
or equivalently the 4s(pl ,pg,ps) of line endpoint, generator and
splitter points. We call such points, e.g. p5 inside the4(p0,p1,p3)

in Fig. 6, dependees. Recall the basic exclusion rule of a point pi
being

êi 6> ε(di− d̂maxi). (5)

Given a refinement or splitter point pi and its dependees Pi =
{p j|p jinside4i}, we must make sure that pi is excluded only if all
points in Pi are also excluded. Assuming Pi implicitly includes pi
itself, then we can reformulate Eq. (5) to exclude pi from refining a
line segment to

max
p j∈Pi

ê j 6> min
p j∈Pi

ε(d j− d̂max j). (6)

Given the distances di,d j to the camera for the dependent and
dependee points pi,p j as well as the distance di, j between them, we
know that d j ≥ di−di, j. If we plug this into Eq. (6) and reorganize
it given that ε() is a monotonically increasing function, we get

max
p j∈Pi

ê j 6> ε

(
di− max

p j∈Pi
(di, j + d̂max j)

)
. (7)

As there is only one term, di, that varies at run-time in Eq. (7),
we can pre-evaluate the remaining terms e∗i = maxp j∈Pi ê j and

d∗i = maxp j∈Pi(di, j + d̂max j), and store these two pre-evaluated

terms instead of êi and d̂maxi with the point pi.

p2

(a) (b) (c) (d)

p1

p2

p3

p5

p7

p9

p8

p10 p12

p11p0
p4 p6

p1

p0

p5
p3

p2
p6p4

p1

p0

p5
p3

p6p4

p2

p1

p0

p5
p3

p6p4

Figure 6: (a, b) An example of two lines that intersect when only
one of them is simplified. (c) The intersection happens when p1 is
excluded and p5, its dependee, is not excluded. (d) Exclusion of a
point can depend on several dependees and their dependees.

Eventually, points can have multiple nested dependencies, like
in Fig. 6(d), p1 being dependent on p5 and p8 which in turn depends
on p11. While these linear dependencies can be solved by the sat-
uration mechanism, potential cycles are not. We handle cyclic de-
pendencies by enforcing simultaneous selection of all points in the
cycle through the introduction of a proxy point. This proxy point
has maximized attributes and an average spatial position and it is
used for the evaluation of the exclusion criterion. Though the origi-
nal point coordinates are still used for drawing. Overlapping cycles
are merged and have a single proxy for all their points.

3.5. Line Preprocessing Summary

An overview of the preprocess is illustrated in Fig. 7. From the vec-
tor map data all points are extracted and stored in a global array. All
polylines are transformed into BLG-trees and their nodes’ error and
distance attributes are saturated as outlined above and are assigned
to their respective points. From the BLG-trees a global list of line

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

segments is extracted, each containing four point references: two
endpoints, the generator, and the splitter. Now each line segment
can independently be evaluated w.r.t. being visible, by evaluating
the generator and splitter exclusion, for a given camera position
and screen-space error threshold function ε().

LS1
Line Segmetns

Quad Tree

p1
Points

BLG-TreesLines Saturated
BLG-Trees

Simplifiable Line
Segments

GridQuad Tree Node

Pr
e-

Pr
oc

es
s

M
ai

n
D

at
a

R
un

-ti
m

e
Se

ar
ch

A

cc
el

er
at

or

p2 p3 p4 LSn

LSI1 LSIk

A
dd

iti
on

al
 D

at
a

Line
Dataset

Satellite
Image

Line
Style
Image

Color Image
Sattelite Image

Data
Mipmap of Line

Styles

Color Image

Height
Map Height Data

Height Image
Transform

Populate

Reference

Load

File

Legend

Figure 7: The point attribute and line segment data arrays gener-
ated in the preprocess are mapped to a combined grid and quadtree
spatial search acceleration data structure on the GPU. Addition-
ally, line styles (see Section 4.2), terrain height and terrain color
are loaded for rendering the scene.

3.6. GPU-based Line Visualization

Our interactive line visualization is based on the deferred vec-
tor map rendering proposed in [TBP16, TBP18] and extended
in [FEP18]. Similar to deferred shading techniques, the actual
drawing takes place in a fragment shader that performs pixel-on-
line evaluations after the 3D terrain has been rendered in a standard
geometry and texturing pass. Through inverse view-projection,
each pixel is mapped back into the coordinate system of the vector
map data and tested against the relevant and visible line segments.
If the pixel is determined to be covered by a line, it is colored and
styled accordingly.

This last step, as it is performed for all fragments in the frame-
buffer in parallel on the GPU, requires a very efficient spatial search
index over all line segments. Different spatial search data structures
can be used, in [TBP18] a two-level bounding volume hierarchy
and in [FEP18] a spatial hash with nested quadtrees is used. We
follow a similar two-level principle where a coarse global grid al-
lows quick constant-time access to a cell, see also Fig. 7. In each
cell, we use a quadtree for locally refining the search by a branch-
and-bound based traversal. We evaluate the visibility of each line
segment in the search result using the exclusion criteria of its gen-
erator and splitter. If it is visible and its distance to the fragment is

less than half the width of the line, as it should appear in screen-
space, the corresponding pixel will be colored as indicated by the
lines style and pattern.

Where lines meet, consistent joints must be displayed as shown
in Fig. 8. Round joints can be achieved by drawing a half-circle
at each endpoint using the screen-space distance of the pixel to
the line’s endpoint. For uniformly colored lines no further spe-
cial treatment is needed. For styled lines, the minimum distance
to both lines’ endpoints is used to determine the final color. Pixel
P in Fig. 8(g) is located on the black outline of the righthand line
and within the grey area of the lefthand line. Since P is closer to
the left line, it will be colored in grey. As both lines are needed for
coloring pixels near joints, we continue the search after hitting the
first line to find the second line.

(a)

(b)

(c)

(d)

(e)

(f) (g)

p

Figure 8: (a) Separate line segments disconnected at a joint. (b) A
simple solution draws a half-circle at each end. (c) Uniformly
colored line segments appear continuous with overlapping half-
circles. (d, e) For styled lines, half-circles do not solve the problem
completely. In order for joints to look correct (f), we must use the
color of the line that is closer to the pixel (g).

4. Implementation

4.1. Deferred Line Rendering

We have implemented our approach in C++ using OpenGL4.1
to limit dependency on advanced graphics features and thus sup-
port a wider range of possible applications. In the preprocess, a
line dataset in shapefile format is transformed into three data tex-
tures for the rendering application, containing the points, line seg-
ments and the spatial search grid and line segment quadtrees, see
also Fig. 7. The renderer uses these three data textures along with
a terrain heigh-field mesh, an image texture for the terrain, and a
style-texture for the line categories. During rendering, the terrain
elevation model with its texture(s) is processed by a regular tex-
tured geometry rendering pass, exploiting multiresolution terrain
rendering techniques. The vector map line rendering actually takes
place solely in the fragment shader, which not only performs the
normal terrain shading and texturing after vertex transformation,
but also executes the per-pixel line evaluations.

From the world coordinates provided by the vertex shader, sim-
ilar to [TBP18], OpenGL generates the exact world coordinates
for all fragments. Using per-pixel world coordinates, the fragment
shader finds the grid cell in which the fragment is located and tra-
verses the corresponding line segment quadtree, calculating the dis-
tance between the fragment and each line segment that it encoun-
ters. Given the distance, line width and pixel size, a percentage area

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

coverage is computed, used for antialiased blending as detailed be-
low. For any non-zero overlap, the pixel’s color is set to the line
type’s style texture based on its distance to the line segment. Fur-
ther overlapping line segments go through the same process if they
have the same or higher line type priority, while lower priorities
will be dropped. In case of higher priority, the fragment color will
be replaced, in case of equal priority the color of the closer line
segment is kept. The latter case also includes handling joints as de-
scribed in Section 3.6. Alg. 1 describes the process in more details.

The number of texture lookups strongly affects the performance
of the fragment shader. Since each access can return a RGBA color
value or XYZW homogeneous coordinate 4-tuple, we structured
our textures in a way to reduce the number of lookups. The first
two values of each tuple in the points texture hold the x,y world
coordinates of the point, the other two are the saturated error e∗

and distance d∗ values. For each line segment, we need the indices
of three different points, i.e. two endpoints and the splitter, which
are stored in the first three values. Additionally, the first bit of the
last value indicates which endpoint is the line’s generator, and the
remaining bits are used for storing the type of the line. The line
segment quadtree texture contains two types of tuples: address and
data tuples. An address tuple holds the indices of the four child
nodes. Multiple consecutive data tuples store the indices of the line
segments inside a node.

4.2. Antialiasing

We use two techniques to overcome staircase and minification
aliasing artifacts that appear when perspectively projecting and dis-
cretizing lines onto a fixed resolution screen. Note that magnifica-
tion artifacts do not occur in our deferred line rendering method as
we are basically doing a pixel-precise rasterization in the fragment
shader which never causes a magnification.

Staircase aliasing at the outer edges of lines is prevented by using
the per-pixel area coverage of the pixel-line overlap as the alpha
value of the selected line color. In order to avoid aliasing inside the
lines that have style patterns, we exploit the OpenGL mipmapping
functionality. Fig. 9 shows a line style texture that stores nine types
of styles at several different mipmap levels. At the top mipmap level
(0), each style type covers a 512×256 pixel matrix which results in
a 512×2304 texture in total. Since the style block is 256= 28 wide,
a mipmap pyramid of nine levels can be created without mixing the
colors of adjacent styles.

Furthermore, given the alpha-blending based antialiasing we can
further exploit this for adjusting the line thickness dynamically. Our
approach allows to increase or decrease the line thickness adap-
tively based on distance, as well as other spatial or even tempo-
ral functions. In our current implementation, we progressively in-
crease the thickness of important lines and reduce it for others by
distance. Therefore, small lines smoothly become invisible at far
distances due to becoming subpixel in size while other important
ones remain visible. As the camera gets closer, this distance based
adjustment is cancelled out and all lines are gradually adjusted to
their actual thickness. We need to assign the line segments to the
quadtree nodes that they cover at their largest thickness. We multi-
plied the base thickness of each line type by a factor that we deter-

Algorithm 1 Fragment Shader
Input f ragmentWorldCoordinate(fWCoord), pixelSize,

lineStyle, points, lines,quadTrees, terrainColor
Output f ragmentColor

1: function CALCULATEFRAGMENTCOLOR

2: currentNode← root of quadTree containing fWCoord
3: coverage← 0
4: currentPriority←lowest priority
5: currentDistance←∞
6: while currentNode is not empty do
7: for all lines in currentNode do
8: if line is generated and is not split then
9: coverage←CoveredByLine(fWCoord,

line, pixelSize)
10: distance← distance(fWCoord, line)
11: if coverage > 0 and

priority of line > currentPriority or
(priority of line = currentPriority and
distance < currentDistance) then

12: f ragmentColor← readLineStyleColor(
type of line,distance)

13: alpha of f ragmentColor← coverage
14: currentPriority←priority of line
15: currentDistance← distance
16: end if
17: end if
18: end for
19: currentNode← child node of currentNode that

contains fWCoord
20: end while
21: f ragmentColor← blend(terrainColor, f ragmentColor)
22: return f ragmentColor
23: end function

mined practically. This effect is applied in Fig. 10, resulting in a
much less cluttered view of far areas as in the top image.

5. Results

We tested our system on two different computers: a 4GHz In-
tel Core i7-6700K, 16GB RAM, AMD Radeon R9 M395x run-
ning MacOS (SYS1) and a 3.5GHz Core i7-3770K, 16GB RAM,
GeForce GTX 1080Ti running Windows (SYS2). We used three
different data layers for our experiments: (1) a heightmap for cre-
ating the terrain mesh, (2) a terrain texture provided by Swisstopo,
and (3) a street dataset. We used two street datasets: Open Street
Map (DS1) and Swisstopo VECTOR25 (DS2). Tab. 1 contains
more information about these datasets. Due to being hardly dis-
tinguishable visually, only screenshots of DS1 are depicted in this
section. The resolution of the frame buffer was 1920×1080 on both
systems in all experiments. In this section, we discuss our results
from three view points: rendering, simplification, and performance.

5.1. Pixel-Precise Line Rendering

Our software can successfully load a large-scale vector map dataset
and project it on a large terrain. It can deliver pixel-precise line

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

unk
now

n
mot

orw
ay

trun
k

prim
ary

sec
ond

ary
Road Type

tert
iary

unc
lass

ified

resi
den

tial

livin
g_s

tree
t

M
ip

m
ap

 L
ev

el 0

1

2

3
4

8

7

6

5

Figure 9: Mipmap pyramid of line style texture. The texture con-
tains nine line styles. In the magnified section, the pixels can be
distinguished by their white borders. In level eight, each row of the
texture containing two pixels represent a line style.

#
points

Mem. for
points

#
segs

#
ap-segs

Mem. for
ap-segs

#
qt-segs

Mem. for
qt-segs

#
dt-qt-segs

Mem. for
dt-qt-segs

DS1 7.7M 235.7MB 6.9M 13M 198.6MB 47.4M 1.3GB 83.3M 1.8GB

DS2 12.4M 380.8MB 11.1M 21M 320.2MB 75.1M 2.1GB 125.1M 2.9GB

Table 1: Information of datasets DS1 (Open Street Map) and DS2
(Swisstopo VECTOR25) including the number of points, segments
(segs), all-possible segments (ap-segs), segments assigned to the
quadtrees (qt-segs), segments assigned to the quadtrees when dy-
namic thickness is enabled (dt-qt-segs), and the memory they need.

rendering without any pixelation artifacts irrespective of the zoom
factor and without any recognizable aliasing artifacts. Although we
used a simple technique with no LOD management for rendering
the 3D terrain, our implementation is independent of the terrain ren-
dering itself and proves that it is capable of blending the lines with
the textured terrain seamlessly. Fig. 10 presents multiple screen-
shots at various zoom levels, displaying the whole street network
of Switzerland at highest LOD. As we zoom in, the lines become
less cluttered and their style becomes clearly recognizable as soon
as the line width covers several pixels.

5.2. Adaptive Line Simplification

Our locally-adaptive line simplification technique, LOCALIS,
demonstrates that real-time line simplification can be applied to
interactive vector map visualization applications. The approach in-
cludes a pre-processing effort, which is performed once offline, and
a line data storage cost for managing all line segments that can
possibly appear when refining the lines. The impact of this cost
is twofold. First, it requires some extra memory to store the line
segments which, however, has not been a bottleneck in our current
implementation. Second, handling large-scale vector map line data
has only recently been made possible, and doubling the number of
line segments may thus have a limiting effect on the performance of
such techniques. Performance is discussed in the following section.

The real-time adaptive line simplification of LOCALIS is shown
in Fig. 11 by highlighting areas of line-refinement. Using a lens

tool, outlined by the red circle, the polylines are interactively re-
fined inside and simplified outside. A recorded interactive demon-
stration is supplied in the accompanying supplemental video.

5.3. Performance

We identified four parts of LOCALIS that chiefly affect the per-
formance: the dynamic line thickness, the visibility evaluation and
the increase in the number of lines as a result of creating all pos-
sible lines. We designed four experiments to demonstrate the in-
fluence of each part: (1) AVD: All possible lines, Visibility check,
and Dynamic line thickness. (2) AVS: All possible lines, Visibil-
ity check, and Static line thickness. (3) ANVS: All possible lines,
No Visibility check, and Static line thickness. (4) ONVS: Original
line segments, No Visibility check, and Static line thickness. AVD
has all features of LOCALIS while ONVS is equivalent to just ren-
dering the lines. This supports a performance comparison of the
LOCALIS specific features to a base-line configuration.

We ran our performance tests on datasets DS1 and DS2. A de-
tailed information about these datasets is given in Tab. 1. We used
the datasets without preprocessing since they did not have connec-
tions at middle points of the lines. In the left column of Fig. 12,
four snapshots at different zoom levels are depicted. In the right
column, the corresponding heatmaps show the number of distance-
to-line tests per fragment. In Fig. 13, the amount of time needed
to render the terrain and the street lines are shown in milliseconds
as bar charts. For each zoom level, four experiments are done with
two datasets on two machines creating 16 bars.

In our case, run-time performance depends on three factors:
(1) number of lines inspected per fragment and in total each frame,
(2) memory locality of the data on the GPU, and (3) LOD threshold.
The performance is higher when the majority of the fragments are
covered by less populated nodes of the quadtrees, a limited part of
the memory is accessed (e.g., in close-up views), and lower LODs
are used. The first factor is the most influential. In Fig. 13, we can
see the effect of the second factor at Zoom 8, where most of the
fragments are covered by dense nodes but the performance is higher
than in Zoom 2. The effect of the third factor is not as significant
as the other two since all relevant line segments are queried re-
gardless of the LOD threshold and only the number of immediately
discarded line segments increases in lower LODs (see Section 3).

Based on the results of ONVS, our base vector line renderer per-
forms at the level of a state-of-the-art technique [TBP16, TBP18]
and scales as expected when comparing to ANVS, which deals
with twice the number of line segments. The effect of the visibility
check is negligible according to AVS. The results of AVD show that
the effect of dynamic line thickness on performance is significant.
This is due to the widened line segments overlapping extensively at
curves, resulting in dense quadtree nodes. This negative impact is
subtle in Zoom 6 where no highways or major roads are visible.

To overcome aliasing artifacts we employed two techniques as
outlined in Section 4. Fig. 14 shows a view with different types of
roads. The magnified insets demonstrate that both techniques suc-
cessfully smooth the outer edge as well as the inner part of the
styled lines and prevent any aliasing artifacts. The smoothed stair-
case on the outer edge is achieved by precise calculation of the pix-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

Figure 10: Screenshots of our system visualizing the whole street network of Switzerland over a terrain mesh at full detail. The LOD is set to
the highest for demonstration purpose.

Figure 11: Left: Full detail lines without any simplification are drawn. Top row: Sequential snapshots of a line-refinement lens moving
interactively over the terrain, with all lines outside the lens being heavily simplified. Bottom row: Close-up of the lens in each snapshot,
magnifying the refined and simplified lines in- and outside of the lens respectively.

els’ area-coverage, and the smooth interior is obtained by querying
the line style texture at an appropriate mipmap level. The antialias-
ing is consistent in lines with different angles and types.

6. Conclusions

In this paper we have presented LOCALIS, our new locally-
adaptive line simplification technique for simple polylines based
on the DP algorithm. Our technique creates every possible line
segment that can emerge during line refinement using BLG-trees
and makes them individually processable by attributing them. LO-
CALIS exploits the direct access to line data on the GPU as used by
deferred vector map rendering and decides whether a line segment

should be displayed based on a given LOD threshold in the last
step of the rendering pipeline. Our implementation shows that LO-
CALIS can always produce and display a pixel-precise and valid
simplified representation of the lines regardless of the distribution
of the required LOD over the screen. It can simplify any part of a
line while keeping the details of the other part.

We integrated LOCALIS with a state-of-the-art deferred vector
map rendering algorithm using data structures that serve both algo-
rithms. We have tested our prototype on the whole street network
of Switzerland rendered on top of a 3D terrain mesh. In this pro-
totype, the user can manipulate the LOD by moving the camera
closer to or farther from the terrain in an arbitrary perspective or

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification
Zo

om
 2

Zo
om

 6
Zo

om
 4

Zo
om

 8

Figure 12: Snapshots at different zoom levels: Left shows the ren-
dered lines at the highest LOD, the right shows the heatmaps indi-
cating the number of distance-to-line tests per pixel.

by activating a moving virtual line-refinement lens over the terrain.
Our implementation shows that line simplification can be done in-
teractively at the cost of an increased number of line segments to
be maintained in our data structure.

In our line simplification approach, we took the characteristics
of the target 3D visualization system into account. Knowing that
the lines will be displayed in an interactive 3D environment, im-
plies that the lines must be processed in real-time such that the
camera can move freely. Our Technique enables applications to dy-
namically manage the LOD of polylines interactively based on the
situation and user demands without needing other proxy data struc-
tures such as auxiliary geometry, image textures, or pre-calculated
datasets with discrete LODs.

Regarding the scalability, the bottleneck is the amount of avail-
able memory. For larger datasets, it would not be possible to load
the whole data structures, and further measures are required for
loading the parts that are needed based on the viewing angle and
LOD. Additionally, the hierarchical data structures can potentially
limit the run-time search for lines that cover a pixel, if the depth in
which a line is stored is chosen based on the LODs that contain that
line. These two points and designing locally-adaptive LOD man-
agement algorithms for other types of vector data such as closed
polygons and meshes can be done in future work.

Acknowledgements

The authors want to thank the Swiss Federal Office of Topog-
raphy Swisstopo for providing the Swiss VECTOR25 and Swis-
sTLM data sets as well as the OpenStreetMap Foundation for ac-

22.4
52.555.2

137

Table 1

AVD AVS ANVS ONVS AVD AVS ANVS ONVS

77.6 15.2 16.5 8.5 69.8 15.3 18.7 9.8

160 41.6 42 21 152 44.8 45.2 23.6

79.6 28.8 30 16 86.4 33 34.2 18.2

57.1 20 21.5 12 58.2 22.1 23.8 13.5

52 14.7 17 10 48.9 15 17.2 10.6

28 12.5 14.5 9.3 39.2 13 14.8 9.8

61.6 17.3 20.2 12 57.6 13.1 14.8 10.3

81.4 13.4 15.2 10.5 74 11.9 13.3 9.8

SYS2 DS1 SYS2 DS2

AVD AVS ANVS ONVS AVD AVS ANVS ONVS

62.2 22 21.6 8.7 47.3 11.8 12.7 5.7

137 55.2 52.5 22.4 61.8 21.2 21.8 11.1

51.7 22.6 21.8 10.3 33.3 14 15.1 8

28.6 10.7 11 5.7 23.7 9.2 10.2 5.6

23.5 5.9 7.2 4.1 21.5 6.1 7.3 4.4

12.2 5.2 6.4 3.9 17.8 5.4 6.5 4.1

28.9 7.3 9.2 5.2 25 5.5 6.4 4.4

45.2 6.1 7.7 4.9 40.9 5.4 6.5 4.4

21
4241.6

160

12.021.520.0

57.1

9.314.512.5
28

10.515.213.4

81.4

5.711.010.7
28.6

3.96.45.212.2

4.97.76.1

45.2

23.6
45.244.8

152

13.523.822.1

58.2

9.814.813.0
39.2

9.813.311.9

74

11.121.821.2

61.8

5.610.29.2
23.7

4.16.55.4
17.8

4.46.55.4

40.9

Zo
om

 2
Zo

om
 4

Zo
om

 6
SYS 1 SYS 2

DS1

DS2
DS1

DS2

AVD: All possible lines, Visibility check, Dynamic line thickness
AVS: All possible lines, Visibility check, Static line thickness
ANVS: All possible lines, No Visibility check, Static line thickness
ONVS: Original lines, No Visibility check, Static line thickness

Zo
om

 8

DS1 DS2 DS1 DS2

�1

Figure 13: Results of four Experiments with LOCALIS (AVD, AVS,
ANVS, and ONVS) rendering two datasets (DS1 and DS2) on two
machines (SYS1 and SYS2) at four zoom levels in milliseconds.

Figure 14: Two regions of the output image (left) are magnified
(right). The smooth borders are visible around, and the smoothed
out interior within the styled lines.

cess to their data. This project was partially supported by a Swiss
National Science Foundation (SNSF) research grant (project no.
200021_169628).

References
[Bea91] BEARD K.: Constraints on rule formation. Map Generalization:

Making Rules for Knowledge Representation (1991), 121–135. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

Amiraghdam et al. / LOCALIS: Locally-adaptive Line Simplification

[BM91] BUTTENFIELD B. P., MCMASTER R. B.: Map Generalization:
Making Rules for Knowledge Representation. Longman Scientific &
Technical New York, 1991. 3

[BPS04] BAO X., PAJAROLA R., SHAFAE M.: SMART: An efficient
technique for massive terrain visualization from out-of-core. In Pro-
ceedings Vision, Modeling and Visualization (2004), pp. 413–420. 3, 5

[BW88] BRASSEL K. E., WEIBEL R.: A review and conceptual frame-
work of automated map generalization. International Journal of Geo-
graphical Information System 2, 3 (1988), 229–244. 2

[DVS03] DACHSBACHER C., VOGELGSANG C., STAMMINGER M.: Se-
quential point trees. ACM Trans. Graph. 22, 3 (July 2003), 657–662. 3

[DZY08] DAI C., ZHANG Y., YANG J.: Rendering 3D vector data using
the theory of stencil shadow volumes. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 37
(2008), 643–647. 2

[FEP18] FRASSON A., ENGEL T. A., POZZER C. T.: Efficient screen-
space rendering of vector features on virtual terrains. In Proceedings
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(2018), pp. 7:1–10. 2, 6

[FM87] FISHER P. F., MACKANESS W. A.: Are cartographic expert
systems possible. In Proceedings AutoCarto (1987), vol. 8, Citeseer,
pp. 530–534. 3

[FSK07] FOERSTER T., STOTER J., KÖBBEN B.: Towards a formal clas-
sification of generalization operators. In Proceedings International Car-
tographic Conference (2007). 2

[GM16] GOULD N., MACKANESS W.: From taxonomies to ontologies:
Formalizing generalization knowledge for on-demand mapping. Cartog-
raphy and Geographic Information Science 43, 3 (2016), 208–222. 3

[HSH10] HU L., SANDER P. V., HOPPE H.: Parallel view-dependent
level-of-detail control. IEEE Transactions on Visualization and Com-
puter Graphics 16, 5 (September 2010), 718–728. 3

[HW07] HARRIE L., WEIBEL R.: Modelling the overall process of gen-
eralisation. In Generalisation of Geographic Information (2007), Else-
vier, pp. 67–87. 2

[KD02] KERSTING O., DÖLLNER J.: Interactive 3D visualization of vec-
tor data in GIS. In Proceedings ACM SIGSPATIAL International Con-
ference on Advances in GIS (2002), pp. 107–112. 2

[KDE05] KULIK L., DUCKHAM M., EGENHOFER M.: Ontology-driven
map generalization. Journal of Visual Languages & Computing 16, 3
(2005), 245–267. 3

[LP01] LINDSTROM P., PASCUCCI V.: Visualization of large terrains
made easy. In Proceedings IEEE Visualization (2001), Computer Society
Press, pp. 363–370. 3, 5

[LRC∗03] LUEBKE D., REDDY M., COHEN J. D., VARSHNEY A.,
WATSON B., HUEBNER R.: Level of Detail for 3D Graphics. Morgan
Kaufmann Publishers, San Francisco, California, 2003. 3

[LRD∗99] LAMY S., RUAS A., DEMAZEAU Y., JACKSON M., MACK-
ANESS W., WEIBEL R.: The application of agents in automated map
generalisation. In Proceedings Conference International Cartographic
Association (1999), pp. 14–27. 3

[MS92] MCMASTER R. B., SHEA K. S.: Generalization in Digital Car-
tography. Association of American Geographers, 1992. 2

[PD04] PAJAROLA R., DECORO C.: Efficient implementation of real-
time view-dependent multiresolution meshing. IEEE Transactions on
Visualization and Computer Graphics 10, 3 (May/June 2004), 353–368.
3

[PG07] PAJAROLA R., GOBBETTI E.: Survey on semi-regular multireso-
lution models for interactive terrain rendering. The Visual Computer 23,
8 (2007), 583–605. 3, 5

[QWS∗11] QIAO Z., WENG J., SUI Z., CAI H., ZHANG X.: A rapid
visualization method of vector data over 3D terrain. In Geoinformatics
(2011), IEEE, pp. 1–5. 2

[RBS11] ROTH R. E., BREWER C. A., STRYKER M. S.: A typology of
operators for maintaining legible map designs at multiple scales. Carto-
graphic Perspectives, 68 (2011), 29–64. 2

[RRB11] REVELL P., REGNAULD N., BULBROOKE G.: OS vectormap
district: Automated generalisation, text placement and conflation in sup-
port of making public data public. In International Cartographic Con-
ference (2011), pp. 3–8. 3

[SC06] SHI W., CHEUNG C.: Performance evaluation of line simplifica-
tion algorithms for vector generalization. The Cartographic Journal 43,
1 (March 2006), 27–44. 3

[SLL08] SUN M., LV G., LEI C.: Large-scale vector data displaying
for interactive manipulation in 3D landscape map. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences 37 (2008), 507–511. 2

[TBP16] THÖNY M., BILLETER M., PAJAROLA R.: Deferred vector
map visualization. In Proceedings ACM SIGGRAPH ASIA Symposium
on Visualization (2016), pp. 16:1–8. 2, 6, 8

[TBP18] THÖNY M., BILLETER M., PAJAROLA R.: Large-scale pixel-
precise deferred vector maps. Computer Graphics Forum 37, 1 (February
2018), 338–349. 2, 6, 8

[vKLW18] VAN KREVELD M., LÖFFLER M., WIRATMA L.: On Optimal
Polyline Simplification using the Hausdorff and Fréchet Distance. arXiv
preprint arXiv:1803.03550 (2018). 3

[VMPR06] VIAÑA R., MAGILLO P., PUPPO E., RAMOS P. A.: Multi-
VMap: A multi-scale model for vector maps. Geoinformatica 10, 3
(September 2006), 359–394. 3

[VO92] VAN OOSTEROM P.: A storage structure for a multi-scale
database: The reactive-tree. Computers, environment and urban systems
16, 3 (1992), 239–247. 3

[VO95] VAN OOSTEROM P.: The GAP-tree, an approach to ‘on-the-
fly’ map generalization of an area partitioning. GIS and Generalization,
Methodology and Practice (1995), 120–132. 3

[VOVDB89] VAN OOSTEROM P., VAN DEN BOS J.: An object-oriented
approach to the design of geographic information systems. In Design and
Implementation of Large Spatial Databases (1989), vol. 409 of Lecture
Notes in Computer Science, Springer, pp. 253–269. 3

[WB08] WEIBEL R., BURGHARDT D.: On-the-fly generalization. In
Encyclopedia of GIS (2008), Shekhar S., Xiong H., (Eds.), Springer,
pp. 339–344. 3

[WBW10] WILSON D., BERTOLOTTO M., WEAKLIAM J.: Personaliz-
ing map content to improve task completion efficiency. International
Journal of Geographical Information Science 24, 5 (2010), 741–760. 2

[WKW∗03] WARTELL Z., KANG E., WASILEWSKI T., RIBARSKY W.,
FAUST N.: Rendering vector data over global, multi-resolution 3D ter-
rain. In Proceedings Eurographics Symposium on Data Visualization
(2003), pp. 213–222. 2

[WLB09] WANG X., LIU J., BI J.: Rendering of vector data on 3D vir-
tual landscapes. In Proceedings IEEE International Conference on In-
formation Science and Engineering (2009), pp. 2125–2128. 2

[WSFL10] WENBIN S., SHIGANG S., FENG C., LICHAO Z.: Geometry-
based mapping of vector data and DEM based on hierarchical longi-
tude/latitude grids. In Geoscience and Remote Sensing (IITA-GRS)
(2010), vol. 1, IEEE, pp. 215–218. 2

[YZK∗10] YANG L., ZHANG L., KANG Z., XIAO Z., PENG J., ZHANG
X., LIU L.: An efficient rendering method for large vector data on large
terrain models. Science China Information Sciences 53, 6 (2010), 1122–
1129. 2

[ZDY∗18] ZHANG D., DING M., YANG D., LIU Y., FAN J., SHEN
H. T.: Trajectory simplification: an experimental study and quality anal-
ysis. Proceedings International Conference on Very Large Data Bases
11, 9 (2018), 934–946. 3

[Zor91] ZORASTER S.: Expert systems and the map label placement
problem. Cartographica: The International Journal for Geographic In-
formation and Geovisualization 28, 1 (1991), 1–9. 3

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

