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Figure 1: SeqDynamics facilitates the evaluation of learners’ problem-solving dynamics via levels of analysis: (a) Ranking View displays
the overall performance (macro level), (b) Projection View plots a subset of learners with key learning attributes (meso level), (c) Evolution
View and (e) Comparison/Cooperation View magnify the details of a problem-solving sequence unfolded over time (micro level). Correlation
View (d) displays the correlation of different learning attributes with the performance ranking and enables users to customize the weights.

Abstract
Problem-solving dynamics refers to the process of solving a series of problems over time, from which a student’s cognitive
skills and non-cognitive traits and behaviors can be inferred. For example, we can derive a student’s learning curve (an
indicator of cognitive skill) from the changes in the difficulty level of problems solved, or derive a student’s self-regulation
patterns (an example of non-cognitive traits and behaviors) based on the problem-solving frequency over time. Few studies
provide an integrated overview of both aspects by unfolding the problem-solving process. In this paper, we present a visual
analytics system named SeqDynamics that evaluates students’ problem-solving dynamics from both cognitive and non-cognitive
perspectives. The system visualizes the chronological sequence of learners’ problem-solving behavior through a set of novel
visual designs and coordinated contextual views, enabling users to compare and evaluate problem-solving dynamics on
multiple scales. We present three scenarios to demonstrate the usefulness of SeqDynamics on a real-world dataset which
consists of thousands of problem-solving traces. We also conduct five expert interviews to show that SeqDynamics enhances
domain experts’ understanding of learning behavior sequences and assists them in completing evaluation tasks efficiently.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → E-learning;



1. Introduction

The evaluation of students’ cognitive skills and non-cognitive

traits and behaviors provide critical implications for designing

student recruitment policies and personalizing tutorial instruc-

tions [Far03, Ber17, MHB19, JGP∗19, SQG∗19]. Cognitive skills

refer to the core skills which the brain uses to think, read, learn,

remember, reason, and pay attention, while noncognitive traits

and behaviors refer to specific characteristics such as motiva-

tion, conscientiousness, perseverance, self-regulation, and collab-

oration [Far03]. We can derive people’s cognitive skills from their

problem-solving outcomes [May92], which is why entrance exams

and case tests are widely used in education and job recruitment

processes [Ber17]. In contrast, noncognitive traits and behaviors

(e.g., self-regulation), deeply valued in recruitment, are difficult to

identify by an exam [Far03]. For example, perseverance or self-

regulation can only be determined after monitoring students’ prac-

tices (e.g., frequency, number of attempts, levels of difficulty at-

tempted, etc.) for an extended period. In this paper, we define the

process and progress of solving a series of problems over time as

problem-solving dynamics, from which students’ cognitive skills

and noncognitive traits and behaviors can be inferred [PL04].

Existing established educational platforms such as Khan

Academy and concurrent online learning platforms including on-

line question pools (e.g., LeetCode [Lee19]) and intelligent tutor-

ing systems (e.g., SimStudent [Sim19]) have collected substantial

fine-grained data regarding how students approach and perform in

quizzes and assignments [PBH∗15], thus providing an opportunity

to evaluate learners’ cognitive and noncognitive behaviors.

However, evaluating learners’ problem-solving dynamics is

challenging. First, each learner’s problem-solving dynamics is ulti-

mately multi-dimensional time-series data and how to represent and

interpret such data with meaningful semantics to reflect both cogni-

tive and noncognitive traits and behaviors is non-trivial. Second, the

evaluation process usually involves the comparison among numer-

ous learners’ problem-solving sequences. Summarizing students’

problem-solving dynamics in different levels of detail to facilitate

convenient comparison may be difficult. Third, the absence of a

standard definition of “good” problem-solving dynamics hinders

the automatic measurement of students’ learning behavior [Ber17].

Different instructors perceive the value of various problem-solving

behaviors differently. Most studies on problem-solving analysis fo-

cus on modeling the process from the cognitive perspective (e.g.,

Bayesian Knowledge Tracing [CA94] and Deep Knowledge Trac-

ing [PBH∗15]). Few studies take the learners’ problem choices and

attempts along the way into consideration.

In this paper, we introduce SeqDynamics, an interactive vi-

sual analytics system for instructors to inspect and evaluate learn-

ers’ problem-solving dynamics comprehensively. SeqDynamics au-

tomatically summarizes and analyzes problem-solving dynam-

ics from three levels of detail: the learner ranking, the synoptic

problem-solving features (the number of problems solved, the per-

centage of hard problems solved, the variety of problem type, the

number of submissions, the time starting to try hard problems, and

the percentage of active days), and the changes to these features

over time. Multiple views are provided to represent the analysis re-

sults for instructors to assess and compare at three scales: ranking

view (the macro level), showing the overall problem-solving per-

formance distribution to facilitate instructors in easily distinguish-

ing the threshold of promising and unpromising candidates; projec-

tion view (the meso level), projecting the focused range of learners

on 2D coordinates to compare their major problem-solving features

and identify the outstanding learners; evolution view and com-

parison/cooperation view (the micro level), inspecting the detailed

problem-solving dynamics, comparing learners with similar synop-

tic features or grouping learners with complementary features. Se-
qDynamics is equipped with rich and flexible interactions to enable

customized and responsive exploration. In particular, we propose

two novel visual designs to represent problem-solving dynamics

with semantics: a glyph to show the learners’ synoptic problem-

solving skills from both cognitive and non-cognitive perspectives;

a bi-lateral stacked graph with a heatmap-like view to magnify the

details of a problem-solving sequence unfolding over time. The

main contributions of this work are summarized as follows:

• Interactive System - An interactive visual analytics system for

instructors to evaluate learners’ problem-solving dynamics and

select candidates on multiples scales (macro-meso-micro).

• Visualization Designs - A set of novel visual designs to rep-

resent problem-solving dynamics from both cognitive and non-

cognitive facets to facilitate understanding and comparison of

problem-solving sequences.

• Evaluation - Three scenarios demonstrating the usefulness of

SeqDynamics on a real-world dataset and five expert interviews

showing that SeqDynamics enhances their evaluation processes.

2. Related Work

This section reviews the prior literature on problem-solving behav-

ior analysis, visual analytics of learning sequences, and time-series

visualizations and comparisons.

2.1. Problem-Solving Behavior Analysis

Past analyses of problem-solving behaviors are usually conducted

on cognitive skills [LK17]. Bayesian knowledge tracing was first

proposed to build procedural models for problem-solving pro-

cesses [CA94]. It assumed fixed and independent concepts and

modeled learners’ latent knowledge as binary variables that repre-

sent the understanding/non-understanding of a single concept. Ow-

ing to the unrealistic assumption that learning concepts are inde-

pendent of one another, other dynamic probabilistic models have

been proposed. For example, Learning Factor Analysis [CKJ06]

modeled learner knowledge states via logistic regression to deal

with learning concepts at different levels, and Performance Fac-

tor Analysis [PJCK09] further considers learners’ responses to the

learning concepts. However, all these models require accurate con-

cept labeling, which is usually difficult to obtain. There are also

other models such as deep knowledge tracing that uses Recurrent

Neural Networks to model and predict learner performance in solv-

ing problems [PBH∗15]. However, it lacks interpretation, which

limits instructors to turn it into actionable instructions [LK17]. In

addition, the long-term learning attributes related with noncogni-

tive traits and behaviors are not well addressed in the context of

online problem-solving behaviors.



Figure 2: System overview. It contains four modules: data prepro-
cessing, analysis, visualization, and interaction.

lasted about one hour. E1 is a coach and recruiter for a competi-

tive programming team in a local university, who has rich domain

knowledge in competitive programming. E2, a coach and recruiter,

is a founder of an online judge platform with a comprehensive un-

derstanding of the dataset adopted by our system context. I1 and I2

are professors who are teaching programming courses. We list the

following primary design requirements (R1-R4) derived from the

interviews that guided the system designs.

R1: Shows a clear overview of overall students’ performance
Experts need a comprehensive score and rank of students at the

beginning for reference. Based on that, they can have a rough idea

of all students’ performance and pinpoint a group of students of

interest for further evaluation.

R2: Understand problem-solving dynamics from different
perspectives over time. The system needs to incorporate useful

visual designs to help instructors understand the major problem-

solving features in terms of cognitive skills and noncognitive traits.

Since some learning characteristics can only be reflected over a rel-

atively long period of time, visualizations should be designed to

reveal the students’ learning characteristics over time.

R3: Compare/Combine the problem-solving performance on
different scales. The system should support the comparison of can-

didates on different scales. For example, by observing the overall

performance, instructors can set some basic rules to filter a group

of candidates. According to the students’ synoptic problem-solving

features (e.g, number of problems solved, the fraction of hard prob-

lems, etc.), they can further narrow down the searching range. For

candidates that have similar overall performance and major fea-

tures, instructors need to check detailed problem-solving sequences

to better select the best of the best. Experts also hope to see the

combination results of learners for grouping potential teams.

R4: Support an interactive and customized exploration of
the evaluation. The system enables instructors to customize their

own preferences on different learning attributes and filtering rules

to generate the exploration results accordingly. In addition, high-

lighting and updating users’ selections simultaneously in multiple

coordinated views to achieve consistency are also needed.

Based on these requirements, we have designed SeqDynamics
to visually represent problem-solving dynamics and yield an im-

proved evaluation of problem-solving behaviors. Fig. 2 illustrates

the system architecture, which contains four modules: (1) data col-

lection and preprocessing module collects and preprocesses the

raw data to problem-solving sequences indexed by learner ID; (2)

analysis module calculates problem-solving attributes and learners’

2.2. Visual Analytics of Learning Sequences

Visual analytics has been widely and effectively applied in learn-

ing sequences analysis as MOOCs (Massive Open Online Courses) 
become more prevalent. Some of the studies were designed 
for instructors to better understand students’ learning sequences. 
DropoutSeer [CCZ∗16] visualized the clickstream behavior and 
the assignment performance of different learner groups along the 
timeline for instructors to better understand the prediction of the 
dropout in MOOCs learning. ViSeq [CYP∗18] visualized students 
learning sequences of MOOCs learning, such as watching videos, 
checking problems, and attending forum discussions. They found 
some general patterns such as students with high scores usually 
started to review previous lectures two weeks before an exam. 
MOOCad [MXC∗19] focused particularly on the visual analysis 
of anomalous learning activities. Based on the unsupervised event 
sequence clustering algorithm, their visual system could assist in-

structors to find u nexpected a nomaly l earning a ctivities. Other 
works focus on visualizing the individual learning progress for self-

regulation [PÁMMPS18, WLS∗14].

However, the data and tasks of those systems are different from 
our scenarios. We focus on problem-solving dynamics, the stu-

dents’ performance and timestamp for each question along the way. 
PeerLens [XSW∗19] visualized the same type of data for personal-
ized learning path design, but no evaluation tasks (e.g., comparison, 
ranking) of different problem-solving sequences were supported.

2.3. Time-series Data Visualization and Comparison

Numerous visual techniques on analyzing time-series data have 
been summarized in the surveys [AMST11, BDA∗14]. A straight-
forward way to visualize time-series events is to place events along 
a horizontal time axis. This technique has been adopted by many 
systems such as Lifelines [PMR∗96], CloudLines [KBK11] and 
TimqueSlice [ZCCB13]. Each attribute of the time-series can be 
further illustrated using a stacked graph layout [HHWN02]. An-

other way to show a time event sequence is by using a circular 
graph [FFM12] or a spiral layout to represent periodical temporal 
data [DH02].

These encoding methods work well for individual-level explo-

ration on presenting the exact sequence of events, however, some-

times it is necessary to show multiple records at the same time for 
comparison. EventAction [DPSS16] used a calendar view to show 
time-event sequences and placed them in a ranking list to compare 
different sequences. MatrixWave [ZLD∗15] was designed to com-
pare two event sequences using a matrix view with explicit encod-

ing. We are inspired by these works and propose our novel designs 
in this paper from the cognitive and noncognitive perspectives.

3. System Overview

Our system was designed to meet the real-world requirements for 
instructors or recruiters to evaluate learners’ problem-solving dy-

namics (e.g., elite selection). We interviewed two domain experts 
(E1, E2) in programmer recruiting and two university instructors 
(I1, I2) to survey their detailed requirements from their practices 
on recruiting programmers and evaluating students. Each interview



ranking (R1); (3) visualization module uses multiple coordinated

views to support interpretation, comparison , and composition of

different problem-solving dynamics in context (R2, R3); and (4)

interaction provides responsive feedback to users’ interaction and

facilitates exploration (R4).

In our application scenario, the system models the context of re-

cruiting and training programmers to prepare for an International

Collegiate Programming Contest (ICPC). We make use of the pro-

gram problem-solving records in a popular online judge [hdu19],

with the owner’s consent. We focus on the recent problem-solving

records of learners who registered after 2017, which consist of

2,538,647 records from 53,535 learners and 5,166 programming

questions. Each record includes learner ID, problem ID, judge sta-

tus, and submission time. To enrich the context information and

better evaluate students’ learning, we search other online judges

and blogs to collect problem types for each problem (e.g., dynamic

programming, graph, etc.). During the process, 102 abnormal ac-

counts (too many submissions within one second) are eliminated.

4. Problem-Solving Dynamics Analysis

4.1. Establishing Problem-Solving Attributes

We establish problem-solving attributes from both the cog-

nitive and non-cognitive perspectives. Based on previous re-

search [ANH∗68] and domain experts’ suggestions, we consider

three learning attributes to evaluate individual’s cognitive skills:

the number of problems solved (l1), the percentage of hard prob-

lems solved (l2), and the diversity of problems solved (l3). In ad-

dition, we consider three learning attributes related to noncognitive

traits and behaviors: diligence, willingness to take on challenges,

and perseverance. Previous research [Far03] summarized a series

of non-cognitive skills from two aspects, conscientious work habits

(e.g., perseverance, discipline) and other personality traits (e.g.,

opening to new experience, aggressive, etc). The roles of those

skills in schooling and employment outcomes had been examined.

We discussed these attributes one by one with domain experts to

check how they are valued and measured in our scenario. We con-

cluded that the total number of submissions (l4) can reveal whether

a student has expended effort on the programming platform, which

we recognize as diligence. The time starting to solve hard problems

(l5) shows when a student has adapted to the learning process and

is confident enough to try new problems. This indicates one’s will-

ingness to take on challenges and is highly emphasized by the ex-

perts when selecting the best candidates. l6, calculated by #(active

days)/ #(days after registration), uncovers a student’s ability from

the time perspective, which we called perseverance, to differentiate

good candidates from other students who attempt many problems

with enthusiasm only over a short period.

4.2. Problem Difficulty and Learner Ranking

According to domain experts (E1, E2), problem difficulty is a key

feature in our context when evaluating and selecting learners, based

on which the students’ ranking is defined. The current method of

determining the rank of a learner is purely based on the number of

problems he/she solves [RML08]. However, a student who solves

ten easy questions is different from a student who solves ten dif-

ficult ones. Inspired by the ELO ranking algorithm used in areas

(e.g., chess, education, work allocation) to define the relative rank-

ing dynamically [GTY, MHB19, Goo17], we modify it to calculate

the learner ranking.

The basic idea is to assign ratings based on the expected winning

probability of two objects’ competing after a match. In our case,

we define a match as a learner’s attempt(s) of solving a question, in

which the learner and the problem are treated as opponents. First,

before each match, we obtain the expected win probability of an

individual pi and a problem pp:

pi =
1

1+a(ri−rp)/b
pp =

1

1+a(rp−ri)/b

where ri,rp are the ratings of a learner and a problem before the

match, initialized as 0. The choice of a and b can be chosen freely

according to the intended scale of score difference and we follow

the original setting as in [Elo78] to use 10, 400 respectively.

We then define the actual competing result of an individual si
based on the number of submissions he or she has attempted. If

attempts == 0, si = 0; if attempts <= 2, si = 1; if attempts > 2, si =
0.5. Accordingly, the score of the problem sp after is sp = 1− si. A

score 1, 0, and 0.5 means victory, loss, and draw, respectively.

After a match, the ratings of the author and the problem are up-

dated through the following:

ri = ri + k(si − pi) rp = rp + k(sp − pp)

where k is set to 0.5, a fairly small number that suggests no signifi-

cant changes in ranking would be made by one learner. The above

equations are reiterated based on all the data.

However, the equation above suggests that questions that have

never been answered would obtain high ratings. This result is fair

when the question is extremely hard and no one has attempted it,

yet becomes unreasonable when the question is new and no learner

has attempted it. To balance these anomalies, we refine the final

updated difficulty scoreDp that guarantees the score to remain 0

for problems never been attempted: Dp = 0.5rp +0.5Dh, where rp
is already converged after the iteration and Dh is computed through

Dh =
∑ Interaction Score
Number of Learners .

In the equation, Interaction Score is calculated based on the pro-

ficiency and interactions with the questions of the learner. If a more

proficient learner cannot solve a problem, this behavior contributes

more to the conclusion that the problem is hard than a less profi-

cient learner in the same situation. All the learners are put into a

histogram based on the number of problems solved. We then use

the distribution to split users into five sectors and give learners a

proficiency score al from 5 to 1 (5 being the highest). According

to domain experts, the difference in the difficulty of a question is

very dramatic, and thus we differentiate the problem with differ-

ent orders of magnitude ap: a question that has never been solved

was given a score 10, solved within two tries was given 1, and

solved but with more attempts were given 5. Based on these, then

Interaction Score = alap. Finally, we have difficulty score Dp for

each student and problem.

Validation: Since there is no ground truth for the problem dif-

ficulty and the learner ranking, we asked two experienced students



ELO 8 11 14 17 20 37 46 48 70 101 156

Baseline 10 24 50 33 51 30 132 115 175 400 210
sualization should support the user to inspect the changes of each

problem-solving attribute over time to infer the learning curve as

well as the work ethic of each candidate (R2). For example, some

learners solve problems during a long period regularly while the

other solve problems intensively over a short period.

T5 Facilitate the detailed comparison and complementar-
ity of problem-solving dynamics. When evaluating students with

similar synoptic learning attributes, instructors need to further com-

pare their problem-solving dynamics in detail to make the final

choice. When considering teamwork or group learning, instruc-

tors hope to group learners with complementary skills. Thus, the

visualization should show the differences or combined results of

problem-solving dynamics (R3).

T6 Inspect candidates from different perspectives by adjust-
ing the attribute weights. Since different instructors value differ-

ent learning attributes of students, the visual designs should pro-

vide a way to adjust the weights of different learning attributes and

update the results accordingly. For example, one emphasizes a cre-

ative mindset while others value more about perseverance (R4).

6. Visual Design

To address the aforementioned tasks, we present a novel visual an-

alytics system for instructors to evaluate the problem-solving dy-

namics and select the best candidates from the candidate pool. The

visual analysis module of SeqDynamics includes: 1) Ranking View
(Fig. 1a) that displays an overall distribution of the learners’ scores

and ELO ranking in an ascending order (macro); 2) Projection
View (Fig. 1b) and Correlation Panel (Fig. 1d) that facilitate in-

structors to customize their own evaluation criteria and compare

the synoptic problem-solving features of a subset candidates on a

2D canvas. 3) Evolution View (Fig. 1c) that expands the selected

learners’ problem-solving features over time for detailed inspection

(micro); 4) Comparison/Cooperation View (Fig. 1e) that facili-

tates explicit comparisons of two problem-solving sequences and

demonstrates the complementarity of two learners. A collection of

interactions, such as querying, highlighting, tooltips, and brushing,

is also available for users to explore the dataset freely.

6.1. Ranking View

The Ranking View (Fig. 1a) aims to provide a macro-level view

of all learners’ performance distributions to facilitate instructors

in evaluating the overall performance distribution at a glance and

easily distinguish the threshold of promising and unpromising can-

didates (T1). The left side is a vertical distribution graph of the

ELO ranking of all learners. Each learner is encoded by a horizon-

tal bar and the y-axis represents the ELO score, descending from

the top to the bottom. From the example dataset, the distribution

graph starts with the highest-ranking learner (rank 1, score 1207) at

the top all the way down to the lowest-ranking learner (rank 1,000,

score 162). The vertical gaps between bars imply the absolute score

differences between learners. This design effectively encodes both

the rankings of learners and their score gaps so users may acknowl-

edge that some learners have similar rankings but large score dif-

ferences. When users assign a ranking range, a blue mask from the

first to the last learner of the queried range is highlighted in the

Table 1: The medalists’ rankings of ELO algorithm and Baseline 
using the number of problems finished.

who solved more than 500 problems to label their presumed diffi-

culty of 100 random questions (easy, medium, and hard). The initial 
labelling was performed independently, then the two students were 
asked to sit together and discuss the difficulty. Final labels of the 
problems were set after the discussion, and we retrieved an overall 
of 18 questions labelled as "easy", 54 questions as "medium", and 
28 as "hard". Our algorithm can differentiate easy problems and 
hard problems accurately with all 18 questions labelled as “easy” 
getting a score lower than 0.5 and 83% of 28 questions labelled 
as “difficult” obtaining a  score higher than 0.65. For the 54 prob-

lems labelled “medium”, 90% got a score between 0.5 and 0.65. 
The reason that the medium and the high is not perfectly matched 
may be that some problems are difficult to judge whether the level 
is medium or hard according to the experts.

As for the learner ranking, we compared our algorithm with the 
original ranking using the number of problems solved to see how 
the rankings of medalists in the international coding competitions 
rank differently in the two schemes. Since our modified ELO aims 
to highlight the top-performing candidates (a higher chance to win), 
an algorithm that ranks candidates higher is preferred. We used the 
data of 2013 in which the username of 11 ACM medalists were 
known (not listed here for confidentiality). As shown in Tab. 1, for 
most of the medalists, ELO gave a higher and more focused range 
of the ranking than the baseline. In summary, the ELO algorithm 
can give a plausible problem difficulty and learner ranking.

5. Design Tasks

Based on the problem-solving dynamics analysis, we have derived 
design tasks (T1-T6) to meet the design requirements (R1-R4).

T1 Show the overall problem-solving performance distribu-
tion of learners. The visual design should clearly show the over-

all performance distribution of all the learners calculated by the 
ELO algorithm to facilitate instructors evaluate the overall perfor-

mance distribution at a glance and easily distinguish the threshold 
of promising and unpromising candidates (R1).

T2 Interpret the major learning attributes of a student from 
cognitive and noncognitive aspects intuitively. The visualization 
should form a clear representation of each student’s major problem-

solving attributes (e.g. number of problems solved, when starting 
to try hard problems, etc.). The instructor can then understand a 
student’s talents and efforts (R2).

T3 Facilitate the comparison of students based on their ma-
jor problem-solving attributes. The visualization designs should 
support the comparison among different students in the major 
learning attributes, demonstrating their differences and highlight 
the outstanding students from the group (R3).

T4 Analyze time-series problem-solving dynamics of stu-
dents in detail. To evaluate problem-solving behaviors further, vi-



distribution graph. The right side of the distribution graph is a ver-

tical list of all the learners’ ELO scores sorted in ascending order

of the rank. Each rectangular box labeled with the learner’s ID and

an absolute score represents one learner. When a rectangle is se-

lected, the rectangle along with the bar on the distribution graph

and the glyph in Projection View corresponding to the learner are

also highlighted.

6.2. Projection View and Correlation Panel

The Projection View (Fig. 1b) aims at providing a meso-level view

of a subset of queried learners to allow instructors to observe their

similarities and differences in problem-solving attributes (T2, T3).

As summarized in R4, instructors have different preferences on

those attributes. Thus we design the projection view with a 2D

layout to place queried learners. The y-dimension represents the

ranking based on students’ performances and the x-dimension in-

dicates the customized ranking based on the weights of cognitive

and non-cognitive attributes as tuned by the instructor. In addition,

we design a novel glyph to encode each learner’s problem-solving

attributes and plot them to a 2D canvas for easy comparison. The

layout is generated by the adjustable weights of learner attributes

in the Correlation Panel.

Correlation Panel. The Correlation Panel (Fig. 1d) has two

functions: 1) showing the correlation between the ELO ranking

and different problem-solving attributes; 2) providing a way for in-

structors to customize the weights assigned to different attributes.

As shown in Fig. 1, we use six squares to represent six problem-

solving attributes calculated in Section 4.1. The percentage of the

colored area to the whole area of the square indicates the correla-

tion between ELO ranking and the ranking based on that particular

attribute. We use the Spearman correlation since it is a nonparamet-

ric measure of correlation [Zar05]. For example, we can see that the

ranking based on “accept” (i.e., number of problems solved) has

the highest correlation with the ELO ranking. The bars on top of

the six squares are used to adjust the weights of different problem-

solving attributes to calculate a composite rank, which determines

the x position of each learner in the projection view (Fig. 1b). Users

may drag the bars to assign different weights to different problem-

solving attributes.

Projection Layout. The learners’ glyphs are projected onto a

two-dimensional space of x and y (Fig. 1b). The y-axis maps the

ELO ranking of each learner where a higher position means a

higher ranking. The x-axis ranks each learner based on a compos-

ite rank of weighted attributes where the further right the higher

the composite rank. For example, if the user gives a large weight

to the submission attribute and relatively small weights to the other

attributes, learners with numerous submissions will generally align

toward the right. We implemented the aforementioned two axes for

glyph projection instead of performing clustering, since in cluster-

ing such as MDS [BG03], the contribution degree of each attribute

(dimension) is obscured, making the mapping from the results of

MDS too much of a black box to be useful.

Learner Glyph. After the learners are projected onto Projection

View, we further facilitate comparison at a glance through intuitive

glyphs encoded by six attributes (the number of problems solved,

8

1

va
rie

ty

15

Figure 3: Learner glyphs: (a) A learner who has many submissions
but solves a few problems; (b) A learner who has relatively fewer
submissions and solves more problems.

Figure 4: Two design alternatives for learner glyph.

the percentage of hard problems solved, the variety of problems

solved, the number of submissions, the time to try hard problems,

the percentage of active days). We encode learners’ glyphs based on

the principle of expressiveness and effectiveness. Expressiveness

means it can express the major cognitive and noncognitive features;

effectiveness represents that the visual patterns of similarities and

differences are easily identifiable (T2).

Accordingly, our glyph design is constructed from six elements

(Fig. 3). (1) The area of the outer circle denotes the absolute num-

ber of submissions, where a large circle denotes a larger number

of submissions. (2) The area of the inner circle, which is a semi-

transparent white overlay, denotes the absolute number of problems

solved. The number of problems solved is encoded as a circular

subset of the number of submissions because it is mathematically

sensible and intuitive for comparison. For example, a learner with a

large number of submissions and a small number of accepted ques-

tions will have a large outer circle and a small inner circle (Fig. 3a),

which can be interpreted as a studious student. In contrast, a learner

with a few submissions and a relatively large number of accepted

questions will have a small outer circle with an inner circle almost

as large as the outer circle (Fig. 3b), which can be interpreted as a

potential talent student. (3) The angle of the sector denotes the per-

centage of submissions to hard problems out of all the submissions,

which can reflect the quality of the problems the student solved.

(4) The color shading of the outer circle denotes variety. Variety

is scaled from 1 to 8, where a value closer to 1 means is shaded a

lighter blue, while a value closer to 8 is shaded a darker blue. The

values are mapped to the number of problem types that the learner

has completed. Therefore, a semi-transparent overlay instead of a

solid color fill is used for the encoding of the inner circle so that va-

riety may be encoded across the entire glyph for clarity instead of

only in the outer circle, which is inspired by Scheepens et al. [Svd-

WvW14]. (5) The north direction represents the first day that the

learner submits a problem and the first side clockwise represents

the first day the learner submits a hard problem. The angle between

denotes the days taken by the learner to try the first hard prob-

lem. (6) The outer radial bar chart drawn from the north represents

the percentage of active days of a learner or the degree to which a

learner persists in practicing on the platform.



Figure 6: Comparison/Cooperation view. (a) Problem type bar
showing deduction/addition result of problem types. (b) Stacked bar
chart demonstrating monthly deduction/addition result of submis-
sion and problems tried. (c) Learners’ pass rate lines representing
each day’s pass rate.

team selection dates. Two design alternatives were considered for

the bilateral stacked graph: bar charts and connected scatter plots.

Nonetheless, bar charts were abandoned as they do not effectively

convey the sequential nature of time-series data and connected scat-

ter plots were also left as they do not effectively carry a sense of

aggregation (e.g., a total area consisting of hard, medium, and eas-

ily accepted problems). Overlaying the bilateral stacked graph is a

line plot of the learner’s performance (ranking) over time.

Furthermore, above the bilateral stacked graph is a horizontal bar

(Fig. 5a) representing the percentages of each problem type that a

learner correctly solves, requested by domain experts. The ordering

(left to right) of the problem-type pieces corresponds to the order

in which the learner correctly solves each problem type for the first

time. Hovering over each piece displays a tooltip of the number of

problems correctly solved of its corresponding problem type.

Submission Details Panel. The submission details panel

(Fig. 5c) displays the raw submission record for each learner (T4).

The grid layout is interpreted by column, from left to right, and

each column is interpreted by row, from top to bottom. Each tile re-

sembles one submission and correct submissions are encoded with

green while incorrect submissions are encoded with red. In addi-

tion, submissions to more difficult questions are encoded with a

darker shade and vice versa. Hovering over a tile displays a tooltip

of the problem ID of the corresponding problem and also high-

lights all tiles (submissions) that map to the same problem ID. For

example, in Fig. 5c, the learners made four submissions to problem

1008 and the first seven submissions are unsuccessful. Users may

brush over the bilateral stacked graph to adjust the time range of

the submissions detail panel. If the number of submissions exceeds

the fixed number of tiles defined by the panel, the next and previous

buttons are available to sift through multiple “pages”.

6.4. Comparison/Cooperation View.

Comparison/Cooperation View aims at providing explicit and de-

tailed comparison/cooperation results of two learners’ problem-

solving dynamics as well as the potential cooperation results. On

the one hand, when evaluating students with similar synoptic learn-

ing attributes, instructors need to further compare their detailed

problem-solving dynamics to make their final choice (T5). On the

Figure 5: Evolution view. (a) Problem type bar. (b) Bilateral
stacked graph. The upstream has four layers (unsolved, easy,
medium, hard problems); the downstream has two layers (unsuc-
cessful and successful submissions). (c) Submission details panel.
Each tile represents a submission.

Glyph Alternatives. The learner glyph is designed through

many iterations of feedback and refinement with the four experts,

involved in our design process. Over the process, two main alterna-

tive designs were seriously considered yet abandoned for various

reasons. The first alternative design is a radar chart which encodes

the six problem-solving attributes on six different axes (Fig. 4a).

However, it is not intuitive enough to compare the number of sub-

missions and the number of problems solved.

In the second alternative design (Fig. 4b), we attempted to en-

hance the pattern recognition capability and endow meaning to en-

coding. The encoding is similar to the final design except that the

inner and outer circles were each condensed to semi-circles, with

the left half representing solved problems and the right half rep-

resenting submissions. However, this design was also rejected, for

two main reasons. First, a comparison of the left and right sides

shows both radius and area, which is confusing. Second, the inner

sections (# of hard problems solved and # of hard problems) are not

aligned in any dimension, which is also hard to compare.

6.3. Evolution View

The Evolution View (Fig. 1c) aims at providing a micro-level view

of unfolded problem-solving dynamics of focused learners (T4).

Bilateral Stacked Graph. The evolution View (Fig. 5b) uses a

bilateral stacked graph for users to further inspect time-series infor-

mation of synoptic features (T4), with an accuracy of per day/per

month over a total time span of 20 months (dataset length). To echo

the glyph design, the upstream area is represented as the inner cir-

cle of the learner glyph and the downstream area is represented as

the outer circle. The upstream area represents cognitive capabil-

ity, is mapped to the number of all attempted problems, and seg-

mented by four levels of problem difficulty (from the up to the

down): unsolved, easy, medium, and hard. The downstream repre-

sents the non-cognitive capabilities, which are mapped to the num-

ber of submissions and segmented by two types of submissions:

successful and unsuccessful. Green-colored submissions represent

the correct answer and red-colored submissions mean the wrong

answers. Hovering over each segment highlights it and displays a

tooltip of the number of problems or submissions accordingly.

The time-series nature of the bilateral stacked graph enables new

levels of insight such as learners increasingly attempting (and cor-

rectly answering) a higher proportion of difficult questions and

submission frequency peaking during summer vacation or before



Figure 7: Comparison/Cooperation view. (a) The comparison re-
sult of two learners’ hexagons. (b) The cooperation result of two
learners’ hexagons.

other hand, apart from individual competition, candidates are re-

quired to compete in teams. When considering teamwork or group

learning, it is recommended to group learners with complementary

skills together(T5).

Time-series Comparison/Cooperation. The time-series level

comparison consists of three parts: the problem type sequence com-

parison, the bilateral stacked graph comparison, and the submission

detail comparison.

As for the problem type sequence comparison (Fig. 6a), the key

information the instructor cares about is which learner has com-

pleted more types of problems. Thus, we show the difference be-

tween the number of each problem type. The learner ranked 1 is

encoded in purple and the one ranked 17 is encoded in orange. The

color of each problem type is decided upon by which learner solves

more problems on it. The length encodes how many problems one

exceeds another. From the red circle in Fig. 6a, we can see 17 does

more problems than 1 on “Intr” (Introduction) and “SSor” (Search

and Sort). When hovering on each type, the absolute number is

shown by the tooltip.

As for the bilateral stacked graph (Fig. 6b), we use explicit

encoding instead of juxtaposition or superposition. This is be-

cause if we use juxtaposition, it is not easy to compare the

height of the stacked graph (the absolute number of solved prob-

lems/submissions). The difference in the quantity of each month is

explicitly encoded using the stacked bar. The negative part of both

upper lateral and lower lateral are encoded in the middle shadow

area, the positive part is encoded in the outer sides. Based on this,

we can easily judge which learner is more diligent in each period.

The detailed submissions comparison (Fig. 6c) is encoded with a

line chart, with the x-axis denoting each day and the y-axis the pass

rate. In particular, we use line width to encode the average difficulty

of problems tried each day, since a low pass rate may be caused

by the problems of high difficulty levels. For example, 17 solved

mostly easy questions with a low pass rate around day 25 as shown

in (Fig. 6c). Two dots in the x-axis are used to emphasize when

learners starts to try hard problems. The cooperation mode has a

similar visual encoding by adding values together. In addition, our

system supports the combination of more than two sequences.

Key Attributes’ Comparison/Cooperation. A conclusive re-

sult is provided with the radar chart (Fig. 7), which is widely used

in the game to represent a player’s skill sets. We use each axis of the

hexagon to represent one of the six problem-solving attributes and

the value on each axis is the rank of the learner on their problem-

solving attribute, represented by a dot. The six dots of one learner

are linked and the area is filled with a transparent color. The two ar-

eas of two learners are overlaid (Fig. 7a) in comparison mode. Two

or more learners can be added in the cooperation mode (Fig. 7b).

7. Evaluation

We evaluate the usefulness and usability of our system through case

studies on a real-world dataset and expert interviews.

7.1. Case Studies

Case 1: Elite Selection. In this scenario, we describe Oliver, the

coach for a competitive programming team who wanted to enlist

three highly skilled individuals into his team’s training camp from

a pool of 1000 applicants. In the past, Oliver usually selects people

by holding an examination. Nonetheless, he worries that individ-

uals who perform poorly in the examination may still have great

potential. Thus, he decides to use SeqDynamics to better examine

individual students by evaluating their problem-solving history on

the online judge.

Figure 8: Enlarged subgraphs of Fig. 1. (a) Correlation Panel. (b)
Enlarged section of the projection view in Fig. 1b.

Oliver first loaded all 1000 applicants into the system and

found the ranking distribution sorted by their relative ELO scores

(Fig. 1a). He then narrowed down to the top 20 applicants, since the

other candidates had relatively lower scores, and then checked the

Correlation Panel to see which attributes were positively correlated

to the ELO ranking. He discovered that the accept, the submissions,

and the variety have larger portions of the inner squares (Fig. 8a).

By equally distributing the weights of the three features to one third

each, the new customized ranking was generated, based on which

he selected candidates with high potential. He then inspected the

Projection View (Fig. 1b) for more detailed information and en-

larged the top right-hand corner to get Fig. 8b, to see the students

who topped both the ELO ranking and his customized ranking.

Oliver noticed the upmost three candidates, 1, 2, and 3, who were

the top scorers calculated by ELO ranking and the rightmost three

candidates, 6, 9, 17, who ranked top in the customized ranking (T3).

From the first glance at the six candidate glyphs (Fig. 8b), 9 were

much bigger (both inner and outer circle) than the others, indicating

9 had tried and solved more questions. Therefore 9 is selected. Then

Oliver discovered 3 were more brightly colored and there was a

relatively smaller yellow sector, implying that 3 had attempted less



problem types and overall simpler questions compared to the rest

of the candidates, and therefore could be eliminated (T2, T3).

Figure 10: Information on the learner ranked 20. (a) Glyphs sur-
rounding 20. (b) 20’s bilateral stacked graph. (c) 20’s detailed sub-
mission tiles.

to the question after one or two days to resubmit a new attempt.

This was shown by the highlighted tiles representing the same ques-

tion being submitted on different days (Fig. 10c). Through the co-

ordination of SeqDynamics, Mary believed that 20 is talented and

has the potential to succeed in competitive programming. She then

encouraged him to attempt a greater number of questions of a wider

of variety as he lacked practice in a few problem types. If a question

was unsolvable at that time, she advised him to record the question

and continue making different attempts until the problem is solved.

Mary also created a high-intensity problem set to push 20 to in-

crease his frequency of problem-solving. Overall, she designed a

well-rounded training plan based on the personality of 20 which

was clearly presented via the interaction of multiple views.

Case 3: Team Formation. In this example, the candidate who

ranked 5 approached John, his programming teacher, for help

on finding a teammate for the programming competition training

camp. With many years of experience, John believed that a great

team should consist of teammates with similar working routines

while complementing the deficiencies of one another. He turned to

SeqDynamics to make this job easier and more exhaustive.

From the glyph of 5 (Fig. 12a), John saw that 5 was a risk-taker

who began attempting difficult questions early on and had persever-

ance when tackling challenging problems (T2). Thus, he increased

the weights of challenge and perseverance for Projection View and

discovered that 8, 9, 10, and 11 clustered near 5. Since they all had

similar habits to 5, John began to consider the level of program-

ming ability among the four other candidates. He used the Cooper-

ation View (Fig. 12b) to simulate their cooperation outcome. Con-

sequently, 8 and 9 were excluded from consideration because they

both tried relatively few difficult problems, which can be identified

from the short slabs in their cooperation hexagons.

With 10 and 11 remaining, John looked further into the problem

variety (Fig. 11) and found that both 10 and 5 had not solved a

single question involving Dynamic Programming or Big Number,

which was shown on the cooperation hexagon by the areas corre-

sponding to the problem type being much smaller than the other

areas (Fig. 12b). However, when John added 11 and 5, a nearly

perfect hexagon was formed in the cooperation hexagon (Fig. 12b)

and they had attempted all 8 types of problems of similar difficul-

ties. Thus, John recommended 11 as a suitable teammate (T6).

7.2. Expert Interview

Our system was introduced to five domain experts from three dif-

Figure 9: The bilateral stacked graphs of learners ranked 1, 2, 6.

Afterwards, Oliver inserted 1, 2, 6, 17 into the Evolution View

(Fig. 9) to facilitate greater in-depth understanding and compari-

son. This view specifically allowed him to vividly visualize each

candidate’s progressive performance and behaviors (T4). He found

that 1, 2, 6 were fast learners and performed outstandingly within

a short span. However, among them, 6 had an excessive amount

of unfinished questions and was thus eliminated. By inspecting the

downstream of the bilateral stacked graphs of 1 and 2, he found that

2 had no red branch while 1 had a distinct red branch, implying that

2 solved problems with a comparatively higher passing rate. Thus,

Oliver selected 2 into the team.

With 2 and 9 chosen, Oliver needed to compare 1 and 17 to de-

termine the allocation of the final position in his team of 3. Through

the Comparison View of 1 and 17 (Fig. 5a), 1 tried more types of

problems than 17. Also, he discovered that 17 started to attempt

difficult problems 28 days later than 1 when aligning by start time

as seen by the dots near the bottom of Fig. 5c. He then concluded

that 17 was less unwilling to step out of his comfort zone and hence

selected 1 as the final candidate to enlist. Overall, Oliver success-

fully selected three candidates, 1, 2, 9, through comprehensive user-

driven evaluations.

Case 2: Personal Training. In this case, the student ranked 20

asked his programming coach, Mary, to design a training plan for

him so that he could perform well in the upcoming competitive

programming contest in three-months time.

At first glance at the Projections View (Fig. 10a), Mary observed

that 20 did not excel in terms of glyph size, implying the need

for high-intensity programming practice. For a better perspective

of 20’s learning attributes for customized training, she elected him

into the Evolution View for further examination.

From the problem bar in Fig. 10b, Mary identified that 20

tackled more problems on “intro" and “math", but never tried

“sorts”, “sim-ulation", and “bigNumber". Thus, she concluded that

20 lacked di-versity in problem types tackled. Moreover, she also

discovered that 20 had some unfinished questions as shown in Fig.

10b. Through the darker tone of the submissions detail panel (Fig.

10c), she con-cluded that 20 had a relatively high ranking because

the problems he finished were of high difficulty levels. She also

found that when-ever 20 could not solve a problem in one try, he

would often return



Figure 11: The addition result of problems types for 5 and 10.

Figure 12: Case 3: Team Formation. (a) Candidates that are simi-
lar to 5. (b) The cooperation hexagons of 5 vs. 8, 9, 10, and 11.

ferent universities (who are not the authors of this paper), including

three coaches of competitive programming teams (E1, E2, E3) and

two instructors (C1, C2) teaching programming courses. E1 and E2

have been working with us throughout the design process while the

other three have just explored our system for the first time. We con-

ducted semi-structured interview with each expert to evaluate four

aspects of the proposed system: system usability, system effective-

ness, visual designs, and interactions.

Procedure. Each interview had three sections and lasted for at

least 60 minutes in total. First, we introduced the purpose of our

project, the dataset, and the original programming platform. We ex-

plained the workflow and visual encoding of SeqDynamics through

an example of elite selection as described in Section 7.1 (20 mins).

Second, we invited experts to explore the system and use the origi-

nal online learning platform as the baseline to complete three tasks

following a think-aloud protocol: (1) select the top three candidates

who can represent the university for a programming competition

(10 mins); (2) make a training plan for a given student (10 mins)

and: (3) find a teammate for a given student (10 mins). The reason

that we assign a limited time for each task is to test the effective-

ness of the system. Finally, we collected their feedback on usability,

visual design, and interactions, and solicited suggestions for po-

tential improvements (10 mins). We summarized our observations

together with experts’ feedback from the following aspects.

System Usability Overall, all five experts commented that Se-
qDynamics was useful and easy to use after carefully exploring its

detailed features when completing the tasks. For example, in Task 1

(elite analysis), E1, E2, and E3 said that they usually held an exam

to select the candidates, sometimes taking the number of problems

solved in the online programming system into consideration if such

data were available. With our system, they could evaluate students

from a more dynamic and comprehensive view of detailed learning

behaviors, compared with selecting merely through an exam. Dur-

ing the task, they often set their own criteria and selected the can-

didates. E1 put more weights on the time to try the hard problems

and the percentage of hard problems. “These can reflect a student
is creative and I would not value the number of submissions”(E1).

He explained that in the real competition, wrong submissions are

punished. “The customized function and the ranking in both dimen-
sions (Projection View) are really useful for me to narrow down the

range”. E2 and E3 found the evolution view depicted a candidate

in an accurate and multi-faceted way, which helped make the train-

ing plan (Task 2). “From the submission details (Evolution View),
I found the student’s problem-solving ability is improving since he
needs fewer submissions for the easy questions gradually (dark to
light color). I would advise him to try harder problems on the simi-
lar question type”(E3). As for Task 3, E3 said that in team compe-

tition, each student can focus on certain types of question and stu-

dents have expertise on different types of questions are suggested

to be grouped. C1 and C2 echoed this point. C1 first screen can-

didates using certain criteria (e.g., the number of problems solved

and the time to try hard problems) and then he focused on whether

the two candidates compensate each other on the question types in

the Comparison View. Also, C2 used the glyphs to find a teammate

who was good at solving hard problems but not necessarily the easy

ones for a student who was good at solving easy questions. They

also pointed out some other issues related to our system. For exam-

ple, C1 mentioned that he wanted to customize his own evaluation

metric based on the time students spent on each problem. E3 said

that, “It is difficult to guarantee the authenticity of the data, since
some students may copy and paste the answer from elsewhere.” We

summarize and discuss these points in Discussion.

System Effectiveness Since the evaluation criteria for candi-

dates are different among the experts, we assume the system is

effective as long as experts can finish experimental tasks (T1-

T3) within the given time and give their justification of their an-

swers [XSW∗19]. During the interviews, all the experts completed

the three tasks within the given time and they provided the ratio-

nales behind their answers, e.g., about selecting specific candidates

or making a particular training plan. For example, C2 gave concrete

training plan for a candidate, “ reduce the practice of questions type
’Introduction’ and put more emphasis on other types of questions,
since from the question type bar, this student has already solved
many ’introduction’ of various difficulty levels”. E3 mentioned that

some tasks may be difficult to achieve without this system, e.g.,

quickly forming a team with complementary capabilities.

Visual Designs After the experts completed the tasks, we col-

lected their feedback on the visual designs of the system. Four ex-

perts (E1,E2,E3,C1) felt that the visual designs was intuitive and

easy to understand, except for C2 who said it took a while for

her to fully grasp different percentages (e.g., hard problems, ac-

tive days) of the glyph. According to our observation, when they

conducted the tasks, the experts rarely encountered difficulty in

interpreting the visual designs or the color encoding. They were

good at making use of the visual cues to support their decisions.

For example, the inner circle and outer circle of the glyph were

used by all five experts to judge whether a student has the talent

to be the candidate for competitions. Fewer submissions and more

problems solved meant higher proficiency. “The encoding (glyph)
is very intuitive and I can tell a learner’s talent and assiduousness
at a glance”(E1). E2 mentioned that he took the dynamic change

of the submission number evolving with time and the transparency

of the submission tails in the Evaluation view into consideration

when making his decisions. As for the visual designs of the compar-

ison/cooperation view, “The hexagon can clearly show the strength
and weakness of two candidates”(C2). In addition, E1 stressed that

the number of glyphs plotted on the 2D canvas was limited. C2 sug-



spectives and tasks such as elite selection, planning of training, and

team composition can be generalized to other application scenarios.

9. Conclusion and Future Work

In this paper, we propose SeqDynamics, a visual analytics sys-

tem that assists instructors in exploring and evaluating learners’

problem-solving dynamics from both the cognitive and noncog-

nitive perspectives. The system facilitates the evaluation at mul-

tiple scales with multiple views: 1) the Ranking View displays an

overall distribution of the learner ranking; 2) the Projection View

with Correlation Panel enables users to select a subset of can-

didates and compare them using glyphs; 3) the Evolution View

expands the problem-solving details over time, and: 4) the Com-

parison/Cooperation View shows explicit comparison between two

problem-solving sequences and demonstrates the complementari-

ness of selected learners for a team. It also provides a rich set of

interactions for evaluating problem-solving dynamics interactively.

In the future, we plan to explore more ways to reduce the glyph

overlap, extend our system to domains that involve competitions

(e.g., e-sports, sports), and enhance it with more tasks (e.g., perfor-

mance prediction).
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