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Abstract
We present a method that detects boundaries of parts in 3D shapes represented as point clouds. Our method is based on a
graph convolutional network architecture that outputs a probability for a point to lie in an area that separates two or more
parts in a 3D shape. Our boundary detector is quite generic: it can be trained to localize boundaries of semantic parts or
geometric primitives commonly used in 3D modeling. Our experiments demonstrate that our method can extract more accurate
boundaries that are closer to ground-truth ones compared to alternatives. We also demonstrate an application of our network
to fine-grained semantic shape segmentation, where we also show improvements in terms of part labeling performance.

CCS Concepts
• Computing methodologies → Neural networks; Point-based models; Shape analysis;

1. Introduction

Segmenting 3D objects into their constituent parts with accu-
rate boundaries is a fundamental problem in computer graphics
and vision. Although there has been significant amount of re-
search in detecting contours and object boundaries in natural im-
ages with neural networks [BST15a, BST15b, BST16, CKUF17,
HLC∗18, Kok15, LLD19, LKV∗18, LCF∗18, LCH∗17, MPTAG17,
SWW∗15, WZLH18, XT17], detecting boundaries in 3D point
clouds is largely an unexplored area. Despite the significant ad-
vances in the area of 3D deep learning for processing unstructured
point clouds, most research has focused so far on assigning part
tags to individual points. The resulting segmentations often suffer
from artifacts at areas that lie near the boundaries of parts, since the
point assignments become highly uncertain at these areas (see also
Figure 1).

In this paper, we present a neural network approach that learns to
detect part boundaries in point clouds of 3D shapes. There is a num-
ber of technical challenges to overcome in developing an approach
that addresses this problem. First, the notion of an object part is of-
ten ambiguous and usually depends on the task. For example, in se-
mantic segmentation, parts follow label definitions (e.g., leg, back,
seat for chairs), while for 3D modeling tasks, shapes are often mod-
eled as collections of geometric primitives (e.g., spheres, cylinders,
surfaces of extrusion, NURBS, and so on). We show that an effec-
tive boundary detector can be trained from semantic segmentation
datasets to accurately localize boundaries of labeled parts, and also
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from shape datasets with segmented geometric patches. Second,
boundaries are usually sparse; only a small percentage of points in a
point cloud lie near boundaries. During training, we employ a sam-
pling procedure to gather a sufficient amount of boundary points for
training, and use a classification loss function robust to the imbal-
ance of the number of boundary versus non-boundary points. Fur-
thermore, in contrast to semantic segmentation networks that often
rely on points expressed in global coordinate frames, we found that
learning features from points expressed in local frames aligned with
surface normals are better suited for boundary extraction. The out-
put of our method is probabilistic: it assigns a probability for each
point belonging to a part boundary or not. We demonstrate pair-
wise terms that can easily adopt these probabilities within graph
cuts formulations.

We conducted a number of experiments to validate our method.
First, we compare our extracted boundaries with annotated ones
in geometric and semantic segmentation tasks. We found that the
boundaries produced by our architecture are much closer to ground-
truth ones compared to alternatives. For example, we observed that
the error was reduced by 61.2% compared to the best alternative
edge detector we adapted for our task (EC-Net, [YLF∗18]), mea-
sured based on Chamfer distance between detected and ground-
truth boundaries in the ABC dataset [KMJ∗19]. We also show that
our boundary detector, when combined with graph cuts, offers a
small, but noticeable boost in terms the semantic segmentation per-
formance: an increase of +2.6% in shape Intersection over Union
(IoU), and +0.5% in part IoU on average in PartNet [MZC∗19]
compared to using a neural network (DGCNN [WSL∗19]) that as-
signs tags to points without explicitly considering boundaries. Our
contributions can be summarized as follows:

• a neural network module, called LocalEdgeConv (inspired by
DGCNN), that operates on point cloud neighborhoods expressed
in local frames (in constrast to global frames used in [WSL∗19]).
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Figure 1: Our method predicts part boundaries in 3D point clouds using a graph convolutional network which outputs a probability per point
to lie on a boundary between parts in a 3D shape. The output probability per point can be used in pairwise terms to improve graph-based
semantic segmentation methods (left) by localizing boundaries between semantic parts. It can also be used in the geometric decomposition
of point clouds into regions enclosed by sharp boundaries detected by our method (right).

We found that this adaptation is more suitable for the task of 3D
part boundary detection.
• a network training procedure that robustly samples and weights

boundary data of either semantic parts or geometric primitives.
• a graph cuts formulation that uses our probabilistic boundary de-

tector to improve semantic shape segmentation, especially near
part boundaries.

2. Related Work

Below we briefly overview prior work on 3D point cloud segmen-
tation as well as contour detection in 2D natural images and 3D
shapes.

3D point cloud segmentation. A large number of works have
been proposed to segment point clouds by assigning a part
label for each point. Most recent semantic segmentation ap-
proaches train deep neural networks that learn representations
from point clouds based on point set abstraction and aggregation
functions [QYSG17, LCL18, SGS19, KZH19, LKM19, SKM19],
point convolution operators [LBS∗18, HTY18, LFM∗19, GWL18,
AML18, HRV∗18, XFX∗18, WQL19, TQD∗19], graph convolu-
tion [WSL∗19, LFXP19, LMTG19, JZL∗19, XSyW∗19, WHH∗19,
PK20], convolution on hierarchical grids [RUG17,KL17,WLG∗17,
WSLT18, SJS∗18], point-to-voxel mappings [RWS∗18, SWL19,
LTLH19], view-based projections [KAMC17,HKC∗17], and spec-
tral approaches [YSGG17, BBL∗17]. Apart from semantic seg-
mentation, a number of approaches have also been proposed
to perform geometric decompositions of point clouds based on
convexity analysis [vKFK∗14, SWS∗14, DGY∗19], primitive fit-
ting [LSD∗19, SWK07, LWC∗11, ZYY∗17, SLK∗20], graph cuts
[GF09, KMFF13, KT18], and clustering [RBM∗07, BS16, ZZ19].
In both semantic segmentation and geometric decomposition sce-
narios, part boundaries often tend to become fuzzy and noisy (Fig-
ure 1 - left). To improve the quality of segmentation and align
boundaries with underlying surface feature curves, such as creases,
some methods employ simple geometric criteria, most commonly
normal differences [PNH∗19, KMFF13, SWS∗14], within pairwise
terms modeling the probability of boundaries between points. Sim-
ilar pairwise terms have also been used in mesh segmentation ap-
proaches [KT03, GF08, KHS10, vKFK∗14].

In contrast, our method learns a pairwise term indicating the ex-
istence of part boundaries directly on 3D point clouds. As we show
in our experiments, our learned boundaries are more accurate and
are able to improve the quality of semantic segmentation and geo-
metric decomposition to a larger degree compared to other alterna-
tives.

Feature curve and edge detection on 3D shapes. Our work is
also related to learning methods for detecting edges, or feature
curves on 3D shapes. This is because part boundaries often coin-
cide with surface feature curves, such as creases, ridges and valleys.
Detecting such feature curves relies on geometric features, such as
curvature extrema or normal discontinuities that can be detected on
meshes, RGB-D data or point clouds [OBS04, BAM∗05, CTC13,
CJXH17,KST09,KNS∗09,SJW∗11,HWG∗13], however, their ex-
traction often depends on hand-tuned procedures. Most similar to
our approach, EC-Net [YLF∗18] attempts to learn edges on point
clouds using a deep architecture operating on isolated point cloud
regions (patches). Our method instead trains a neural network that
operates directly on the whole point cloud encoding both local and
global structure without any patch extraction or pre-processing. In
our experiments, we show that our approach is much more accu-
rate for part boundary detection compared to EC-Net even when
the latter is trained on the same dataset as our method.

Contour detection for natural images. Our approach is in-
spired by contour detection methods for object segmentation
in natural images. Most recent approaches achieve state-of-the-
art performance on contour detection by training deep convo-
lutional or recurrent neural networks [Kok15, BST15a, BST15b,
BST16,SWW∗15,LCH∗17,MPTAG17,CKUF17,XT17,WZLH18,
HLC∗18, LCF∗18, LKV∗18, LLD19]. In contrast to the regular 2D
grid structure of images, point clouds are unorganized and non-
uniformly sampled. Our method adapts neural networks for point
cloud processing and is trained on datasets for 3D semantic or ge-
ometric segmentation of shapes.

3. Method

Our architecture takes as input a point cloud P = {pi,ni}N
i=1, where

pi are 3D point coordinates and ni are 3D normals, and outputs a
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Figure 2: Architecture of our network (PB-DGCNN) for probabilistic boundary detection. It consists of three main blocks: the LocalEdge-
Conv layer, EdgeConv layers [WSL∗19], and a Global Spatial Transformer. The LocalEdgeConv layer constructs a K-NN graph for each
input point i in Euclidean space and expresses the coordinates of its K nearest neighbors in the local coordinate frame at point i. Then a
feature transformation is applied to the edge features of the graph through a 2-layer MLP, and output representations are aggregated through
max-pooling. These representations are further processed by the two EdgeConv layers that operate on the K-nn graphs constructed in the
feature space of the previous layer. Finally, a global descriptor is aggregated and concatenated with the point-wise descriptors of the three
previous layers, which are transformed through a 4-layer MLP, and the boundary probability is produced by a sigmoid function. The Global
Spatial Transformer [WSL∗19] operates on the Euclidean space of the input points and helps to align the point cloud to a canonical space.

scalar bi ∈ [0,1] for each point. The output bi represents the prob-
ability for a part boundary to lie on the point i. Our architecture is
shown in Figure 2. We first describe it at test time (Section 3.1),
then we discuss the datasets used for training it, along with the
training procedure (Sections 3.2 and 3.3). We present an applica-
tion of our probabilistic boundary detector to semantic shape seg-
mentation in Section 4.3.

3.1. Architecture

Our architecture, called PB-DGCNN, follows the concept of graph
edge convolution (EdgeConv) introduced in the DGCNN network
[WSL∗19]. To implement edge convolution, a graph first needs to
be formed over the point cloud. In the first EdgeConv layer, each
point i is connected to its K neighbors in Euclidean space, where
K is a hyper-parameter of the network. In the original DGCNN
formulation, the first EdgeConv layer processes the input point co-
ordinates pi of each point i along with the coordinates of its neigh-
bors {p j} j∈Ne(i), where Ne(i) is the Euclidean neighborhood of
the point i. The output representation for each point is computed as
follows:

yi = max
j∈Ne(i)

MLP(pi,p j−pi) (1)

where MLP represents a learned Multi-Layer Perceptron operating
on the above input feature vector of point coordinates and differ-
ences (concatenated and flattened). In this manner, each edge en-
codes the input coordinates at a point i along with the coordinates
of its neighbors expressed relative to it. The max operator (max
pooling) is used to aggregate all edge representations per point and
guarantees invariance to point and edge permutations.

LocalEdgeConv layer. The relative point coordinate differences
(p j − pi) help capturing local neighborhood structure in the orig-
inal DGCNN. However, these differences are still expressed with
respect to the global coordinate frame axes. As a result, if the local
neighborhood is rotated, the input edge features to the MLP will
change. In turn, the output of the MLP may also change. This ef-
fect might be desirable in the case of semantic segmentation, since

changing the orientation of a part in a shape may change its func-
tionality and its semantic label, especially for man-made objects
(e.g. rotating a horizontal tailplane 90 degrees in an airplane would
make it look like a vertical stabilizer). However, the part boundaries
are more likely to remain unaffected by such local rotations e.g.,
one would still want to label points between the fuselage and the
tailplane, or the stabilizer, as boundaries. Thus, in our architecture,
we make the following modification to the first edge convolution
layer:

yi = max
j∈Ne(i)

MLP
(

pi,RT
i (p j−pi)

)
(2)

where Ri is a rotation matrix responsible for expressing the relative
point coordinate differences in a local coordinate frame at point i
(instead of a global one). Note that the transpose of the rotation is
used to perform the coordinate transformation. The local frame is
formed from the point normal ni and two tangent vectors u,v ran-
domly selected on the tangent plane of the point i: Ri = [ui vi ni].
Since the tangent vectors are chosen randomly, rotational invari-
ance is not guaranteed, however, the use of the point normal de-
creases the variance of inputs that the network needs to handle.
We call the above edge convolution of Eq. 2 as LocalEdgeConv in
the rest of the paper. Experimentally, we observed a significant im-
provement in boundary detection due to LocalEdgeConv (see our
evaluation in Section 4). We note that we also experimented with
using principal curvature directions as tangent directions, and also
treating their sign ambiguity through max pooling, yet the gain was
still smaller than LocalEdgeConv (see results section).

LocalEdgeConv layer with normals as features. Another vari-
ant of LocalEdgeConv we experimented with was to include point
normals as additional input features to this layer. Specifically, we
horizontally concatenate point positions and normals per point
(xi = [pi,ni]), then transform them through a MLP in a local co-
ordinate system:

yi = max
j∈Ne(i)

MLP
(

xi,RT
i (x j−xi)

)
(3)

In this manner, the network also considers differences of normal
coordinates in a neighborhood around each point transformed in a



local coordinate frame. We note that we also experimented with
processing points together with normals as input to the original
EdgeConv as first layer (instead of LocalEdgeConv). However, the
gain was smaller compared to using LocalEdgeConv with normals
as input features.

Architecture. After using a LocalEdgeConv layer (with or with-
out normals as additional features), our architecture stacks two
EdgeConv layers (Figure 2) that sequentially process the repre-
sentations extracted based on our local coordinate frames. At each
EdgeConv layer, each point is connected its K nearest neighbors
dynamically updated from the input feature space of the layer, as
done in DGCNN [WSL∗19]. The point-wise representations ex-
tracted from the LocalEdgeConv and the two EdgeConv layers are
concatenated, then processed through a max pooling layer, which
produces a global shape descriptor. The global descriptor is tiled
and horizontally concatenated with the point-wise representations
(Figure 2), so that the resulting point representations encode both
local and global shape information. These are passed into a MLP,
followed by a sigmoid transformation that outputs a boundary prob-
ability bi for each point i.

3.2. Datasets

To train our network, we make use of datasets that provide shape
segmentations. We made use of two datasets for training and eval-
uation: a geometric segmentation dataset and a semantic segmen-
tation one, described below. We train and test our architecture on
each dataset separately.

Geometric segmentation dataset. The ABC dataset [KMJ∗19]
recently introduced a large repository of 3D geometric models,
each defined by parametric surfaces and ground truth information
on their decomposition into individual patches. This dataset is a
good source to learn segmentation boundaries between geometric
primitives and patches. Another advantage of this dataset is that the
patch boundaries are provided in parametric curve format, which
allows us to extract very accurate boundaries for training and eval-
uation.

Since our goal is to detect boundaries for input point clouds, we
first convert the geometric models into point-sampled surfaces for
training. Specifically, we first sample the surface of 3D models with
10K points based on Poisson-Disk sampling [EDP∗11], to create an
initial point cloud. Since it is rather unlikely to sample points lying
exactly on boundary curves with this sampling procedure, we per-
form a second pass where we randomly sample another 10K points
along boundary curves, specifically based on their underlying para-
metric representation. Concatenating the surface point samples of
the first pass with the boundary point samples of the second pass
tends to create higher point cloud density near the boundary re-
gions. To avoid this higher density bias during training, we per-
form a third pass where for each boundary point, we remove any
surface samples within a distance equal to ε, which is computed
by measuring the distance of each point sample of the first pass to
its nearest neighbor, then setting it to the maximum distance over
the point cloud. Finally, we observed that some ABC shapes some-
times contain adjacent patches of same local geometry (e.g., two

adjacent planes forming a flat boundary), where the boundary be-
tween them can be ignored. We filtered out such boundaries. All
shapes are centered in the origin and scaled so they lie inside the
unit sphere.

The result of this procedure is the generation of a point cloud
for each ABC shape with surface points carrying a binary label:
boundary or non-boundary point. Figure 3 shows examples of such
point clouds colored according to the binary label. We created a
training set of 16,291 labeled point clouds from ABC based on the
above procedure.

To monitor the training procedure, we also need a hold-out vali-
dation set. In addition, for evaluation, we need a test set. We gath-
ered an additional set of 2,327 shapes for hold-out validation and
4,655 shapes for testing i.e., in total we had 23,273 point clouds
from ABC, and a 70%-10%-20% proportion for training, validation
and testing respectively. It is also important to note that the hold-
out validation and testing point clouds are generated with Poisson
point sampling from the original surfaces without adding bound-
ary points (i.e., without the second and third pass used in train-
ing shapes). In this manner, we avoid biasing our testing procedure
with point samples that are exactly at the geometric boundaries, and
which may exhibit particular regular patterns due to their sampling
from the underlying parametric representation of boundary curves.
As discussed in our results section, the goal of our evaluation met-
rics is to detect boundaries up to a certain distance tolerance i.e.,
find points whose distance to the ground-truth parametric curve
boundaries is up to distance equal to the maximum point sampling
distance ε. Finally, to simulate noisy point clouds for validation and
testing, we add isotropic Gaussian noise to point coordinates with
µ= 0 and σ= 0.005. Normals are also perturbed from their original
direction, by an angle sampled from a normal distribution trimmed
within an interval [−3,3] degrees.

Semantic segmentation dataset. To learn boundaries for seman-
tic segmentation, we use the recent PartNet dataset [MZC∗19]. The
dataset provides hierarchical segmentations of 26,671 shapes into
labeled parts in 24 categories. The shapes are provided in the form
of polygon meshes split into parts according to their label. We use
the segmentations from the last hierarchy level in each category
(i.e., the “fine-grained” segmentations). To generate the training
point clouds with boundaries, we follow the following procedure.
First, we sample 10K points based on Poisson-Disk sampling. Part-
net does not provide boundary curves. Furthermore, neighboring
parts in PartNet meshes are topologically disconnected from each
other in their mesh representation, often inter-penetrate each other,
or even do not touch each other. We instead mark as boundaries all
points of triangles that have neighboring points labeled with a dif-
ferent part label within a radius equal to ε set to the largest distance
between all-pairs of nearest neighboring point samples. We add the
same noise profile in the validation and test shapes, as in our ABC
dataset. Figure 4 shows examples of the resulting point clouds, col-
ored according to the binary label. The boundaries are more fuzzy
and spread compared to the ABC dataset, yet are still clearly indi-
cating zones separating semantic parts. PartNet provides training,
hold-out validation, and test splits, thus we follow the same splits
in our case.



Figure 3: Marked (with red) boundaries on ABC point clouds for training.

Figure 4: Marked boundaries on PartNet point clouds for training.

3.3. Training procedure

To train our architecture, we use the marked boundary and non-
boundary points from either of the above training datasets as su-
pervisory signal. We treat the problem as binary classification, and
we use binary cross-entropy as our loss function. However, since
the number of boundary points is extremely small compared to the
number of non-boundary ones (i.e., they represent less than 1% of
the total points on average), we use a weighted cross entropy loss
that emphasizes the error on boundary points more:

L = ∑
s∈D

Ns

∑
i=1

wb · t̂i · log(bi)+(1− t̂i) · log(1−bi) (4)

where t̂i = 1 for marked boundary points and t̂i = 0 for non-
boundary points, and wb weights the cross-entropy terms for
boundary points. Specifically, we set the weight according to the ra-
tio of the number of non-boundary points and the number of bound-
ary points: wb = (∑i [t̂i == 0])/(∑i [t̂i == 1]). In this manner, we
penalize more misclassifications of boundary points. During train-
ing, as a form of data augmentation, and to also increase robustness,

we add random noise in the points and normals (same noise distri-
butions used in the validation and test sets of our datasets).

Implementation details. Training is done through the Adam op-
timizer [KB14] with learning rate 0.001, beta coefficients set to
(0.9,0.999), batch normalization with momentum set to 0.5 and
batch normalization decay set to 0.5 every 10 epochs. The batch
size is set to 8 point clouds. Our implementation is in Ten-
sorflow and is publicly available at: https://github.com/
marios2019/learning_part_boundaries.

4. Evaluation

We now discuss experimental evaluation of our method. First,
we introduce evaluation metrics for part boundary detection, and
present results on the ABC dataset for geometric boundary detec-
tion. Then we present an application of our method to semantic
segmentation, and present evaluation on the PartNet dataset.

https://github.com/marios2019/learning_part_boundaries
https://github.com/marios2019/learning_part_boundaries
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Figure 5: Visual comparison of the boundaries detected by our method PB-DGCNN, and EC-Net on some example ABC point clouds. The
first column on the left shows the ground truth boundaries. The second column shows boundary probabilities produced by PB-DGCNN, and
the third column shows boundaries predicted by PB-DGCNN after thresholding. The last column shows the boundaries predicted by EC-Net.



Model Input Features Metrics

position normal CD bIoU F1 P R

EC-Net
X 4.9 52.7 64.6 88.5 50.9
X X 7.5 56.9 67.2 85.7 55.3

PB-DGCNN w/ EdgeConv
X 3.0 81.6 85.2 89.8 81.1
X X 2.1 89.8 90.3 90.9 89.7

PB-DGCNN w/ LocalEdgeConv-curv
X 2.6 85.2 88.0 91.3 85.8
X X 2.0 89.2 90.5 91.8 89.1

PB-DGCNN w/ LocalEdgeConv
X 2.4 90.0 89.7 89.2 90.1
X X 1.9 92.0 91.9 91.8 92.1

Table 1: Boundary classification results on the ABC dataset (CD: Chamfer Distance - %, bIoU: Boundary IoU - %, F1: F1 score - %, P:
Precision - %, R: Recall - %)

4.1. Evaluation metrics

Our evaluation metrics are inspired by the literature on line drawing
and segmentation for 3D meshes. Cole et al. [CGL∗08] introduced
metrics that evaluate similarity of human-annotated line drawings
with computer-generated ones based on precision and recall. Liu
et al. [LNHK20] extended these metrics to include Intersection
over Union (IoU). Our part boundaries can be thought of as point-
sampled lines in 3D, thus we also use precision, recall, and IoU
inspired by these works. Chen et al [CGF09] introduced various
metrics for evaluating segmentation for 3D meshes. In the case of
boundaries, they propose cut discrepancy that measures distances
of annotated and predicted boundaries on the surface. Following
the above works, we introduce the following metrics for evaluation
boundaries:

Precision is defined as the fraction of predicted boundary points
in a point cloud that are “near” any annotated boundary. The prox-
imity is computed by measuring Euclidean distance of points to
boundary curves in ABC dataset, or boundary point samples in
PartNet. The definition of “near” requires a distance threshold in-
dicating tolerance to small errors. We define this tolerance as the
maximum point sampling distance ε (largest distance between all-
pairs of nearest neighboring point samples per point cloud). We
also examine performance under varying levels of tolerance (mul-
tiples of ε).
Recall is defined as the fraction of annotated boundary points that
are “near” any predicted boundary point. We follow the same defi-
nition of nearness as above. In the ABC dataset, we densely sample
the parametric boundary curves to evaluate recall.
F1-score is the harmonic mean of precision and recall, often used
to combine them both in one metric.
Boundary IoU (bIoU) is the Intersection over Union that mea-
sures “overlap” between annotated boundaries and predicted ones.
A boundary and predicted point “overlap” if they are near to each
other, based on the same definition of nearness as above.
Chamfer distance (CD) measures Euclidean distance from
annotated boundary samples to nearest predicted boundary points,
and vice versa (i.e., we use the symmetric Chamfer distance).

It is important to note that in order to evaluate the above metrics, the

probabilistic boundaries must be binarized first. In the ABC dataset,
we use thresholding (i.e., a point becomes boundary if its probabil-
ity is above a threshold). To select the threshold, we perform dense
grid search in our hold-out validation dataset, and select the value
that minimizes the Chamfer Distance. In the PartNet dataset, the
probabilistic boundaries are used in a pairwise term in graph cuts -
the points crossed by the cut are marked as boundaries. Finally, we
note that the metrics are computed for each test point cloud shape,
then averaged over the test shapes.

4.2. Geometric part boundary detection

We now discuss evaluation for detection of part boundaries be-
tween geometric primitives on ABC [KMJ∗19] based on the dataset
described in Section 3.2. The primitives in ABC include plane,
cone, cylinder, sphere, torus, surface of revolution or extrusion or
NURBS patch. We compare our method with the edge detection
network called EC-Net from [YLF∗18]. The method was intro-
duced for detecting edges on point clouds for 3D reconstruction.
It upsamples the original point cloud, while we also producing a
value per point corresponding to its distance to the nearest edge. By
thresholding the value, the method detects edges. We adapted their
method for our task. We trained their method on our dataset, tuned
their hyper-parameters (weights of losses) in our hold-out valida-
tion set, tuned the threshold for edge detection using hold-out val-
idation to optimize Chamfer distance, and used the same augmen-
tation as in our method. Since their method is based on sampling
individual patches from the point cloud, we experimentally veri-
fied that the sampled patches fully cover the ABC shapes by setting
their number to 50.

Table 1 reports our five evaluation metrics for EC-Net and our
method. We evaluated two version of EC-Net: one with points only
as input features (EC-Net w/o normals), and another with points
and normals as input features (EC-Net w/ normals). As indicated by
all metrics, our method produces boundaries that are much closer to
the annotated ones compared to EC-Net. For example, the EC-Net
without normals has 2.04 times higher error than our method with-
out normals (see PB-DGCNN w/ LocalEdgeConv w/o normals) in
terms of Chamfer Distance, and 2.58 times higher error than our
method with normals (see PB-DGCNN w/ LocalEdgeConv w/ nor-
mals). The EC-Net with normals seems to have even higher error
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Figure 6: Examples of watershed (flood-filling) segmentation. In these cases well-defined predicted boundaries between geometric parts,
enable their decomposition to individual segments through simple BFS-based flood-filling.
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Figure 7: Boundary detection evaluation wrt. precision and recall
for different tolerance levels.

in Chamfer Distance, yet better Recall and IoU profile than EC-
net without normals. It seems that the EC-Net with normals makes
better predictions near ground-truth boundaries, but also produces
additional boundaries away from ground-truth ones, which results
in higher Chamfer Distance. In any case, our PB-DGCNN with
LocalEdgeConv offers much better performance compared to both
versions of EC-Net according to all our evaluation metrics.

Ablation study. In Table 1, we also report the performance of our
method under the following variants: (a) “PB-DGCNN w/ Edge-
Conv” where we use the original EdgeConv layer of DGCNN
[WSL∗19] as first layer instead of LocalEdgeConv. We include
the performance of this variant with and without using normals as
input features (b) “PB-DGCNN w/ LocalEdgeConv-curv” where
we use the principal curvature directions as tangent vectors ui and
vi to define the local coordinate frame Ri per point (we note that
since the curvature directions are defined up to a sign, the max
operator in Eq. 3 is applied to MLPs that also include coordinate
transformations based on the opposite principal directions). Curva-
ture is estimated based on the method proposed in [KSNS07]. Fi-
nally, we include the performance of of our method “PB-DGCNN
w/LocalEdgeConv” with and without normals as input features.
Based on the numerical results, we observe that “PB-DGCNN
w/LocalEdgeConv w/ normals” has the best performance on av-
erage. Its achieved Chamfer Distance is lowest compared to all
variants, and the bIoU and F1 score are the highest. Using princi-
pal directions did not seem to help the performance of LocalEdge-
Conv. The LocalEdgeConv w/ normals has consistently better per-
formance compared to using EdgeConv w/ normals according to
all metrics. Similarly LocalEdgeConv w/o normals is better than
using EdgeConv w/o normals on average. The precision of Edge-
Conv w/o normals is a bit higher than LocalEdgeConv w/o normals,
yet note that its recall is much lower.

Figure 7 shows precision and recall for LocalEdgeConv, Edge-
Conv and EC-Net (here, we use points and normals as input to all
methods). Increasing the tolerance results in increasing the preci-
sion for all methods, since more predicted boundaries are classified
as correct by increasing the boundary distance tolerance threshold,
as expected. Similarly, recall is also increased. Most importantly,
our method based on LocalEdgeConv has better behavior than the
rest, since it demonstrates both higher precision and recall for all
tolerance levels we examined.

Figure 5 provides a visual demonstration for some example point
clouds from ABC. We find that the EC-Net boundaries are highly
noisy and inconsistent, while ours tend to agree with the ground-
truth more.

Application to geometric decomposition. We found that our
boundaries can be used for segmentation of several ABC shapes us-
ing a simple flood-filling, watershed segmentation approach (Fig-
ure 1 and 6). We first construct a K-NN graph (K = 4) over the
point cloud, then we perform a BFS starting from a random seed
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Figure 8: Visual comparison of semantic segmentation for example PartNet point clouds, using DGCNN alone (unary), a graph-cut formula-
tion with normal angles in the pairwise term, and a graph-cut formulation with a combination of normal angles and boundary probabilities
produced by PB-DGCNN in the pairwise term. Boundary confidence can help to diminish small semantic segments, which are falsely pre-
dicted from the semantic segmentation model (unary). These are the cases of Bag (top row, left) and Lamp (bottom row, right), where wrong
annotated parts are present even after applying the graph cuts method with normal angles as a pairwise term. Moreover, it can further
smooth out semantic parts as it is been illustrated in the case of Chair (top row, right) and Knife (bottom row, left).

point and stopping at predicted boundary points. All visited points
result in a segment. Then we start the same procedure by using a
random seed point from the rest of the non-visited points. We note,
however, that this simple flood-filling approach can fail in cases
where small gaps exist in boundaries (Figure 9).

4.3. Semantic shape segmentation

We now discuss evaluation on semantic shape segmentation based
on the PartNet dataset. Here, we train our network on the PartNet
training split for each of its categories, as described in Section 3.2.
To take advantage of semantic part labels, here we first use a net-
work that predicts a probability for each part per point. Specifically,
we use the DGCNN network for this task [WSL∗19], operating on
10K number of point samples per shape. We then incorporate a
graph cuts formulation, where the above per-point part probabil-
ity is used as a unary term, and the output boundary probabilities
from our method (“PB-DGCNN w/ LocalEdgeConv w/normals”)
are used as a pairwise term:

E(c) = ∑
i∈P

ψ(ci)+ ∑
i∈P

∑
j∈N (i)

φ(ci,c j) (5)

where c = {ci} are the label assignments we wish to compute by
minimizing the above energy, P is the set of points in a test point
cloud, and N (i) is the neighborhood of each point i formed by its
K = 4 nearest Euclidean neighbors. The unary term is expressed
as follows ψ(ci) =−logP(ci), where P(ci) is the probability distri-
bution over part labels associated with the point i produced by the
DGCNN point labeling network. The pairwise term uses the maxi-
mum of our PB-DGCNN boundary probabilities for the two points:
φ(ci,c j) = −λ · log(max(bi,b j)) for ci 6= c j, and 0 otherwise. The
weighting parameter λ is adjusted through grid search in the hold-

out validation set per shape category. To avoid infinite costs, we
add a small ε = 10−3 to the above log expressions.

We also experimented with another pairwise term variant as
baseline that considers angles between between point normals:
φ
′(ci,c j) = −λ

′ · log(min(ωi, j/90o,1)), for ci 6= c j, where ωi, j is
the angle between the point normals. The term results in zero cost
for right angles between normals indicating a strong edge. The
weighting parameter λ

′ is adjusted through grid search in the hold-
out validation set per shape category. We finally experimented with
a combination of using both the above pairwise terms in Eq. 5:
φ(ci,c j)+φ

′(ci,c j).

We first report point labeling performance in Table 2 based on
the standard part IoU and shape IoU metrics in PartNet [MZC∗19].
We examine the performance of using DGCNN alone as unary term
(“unary alone”), then using graph cuts based on the normal an-
gle baseline described above (“GC normal diff”), graph cuts based
on the predicted boundary probabilities of PB-DGCNN (“GC PB-
DGCNN”), and finally graph cuts using the summation of pairwise
terms from normal angles and PB-DGCNN (“GC both”). We ob-
serve small but noticeable average performance increases for both
shape IoU and part IoU when using all variants of graph cuts. The
best performance is achieved on average (see last row, last column)
when combining both pairwise terms. Specifically, we observe an
increase of average shape IoU by 2.6% and part IoU 0.5% com-
pared to using the unary term alone. We believe that using both
pairwise terms offers the best performance because our boundary
probabilities are more fuzzy in PartNet - we note that the training
boundary data were also slightly fuzzy in PartNet (see Figure 4)
in the first place. Using normal angles further sharpens our proba-
bilistic boundaries. Nevertheless, the metrics seem improved with
the use of our probabilistic boundaries in the pairwise term alone.
We note that graph cuts is executed in a deterministic manner (i.e.,



Category Bag Bed Bott Bowl Chai Cloc Dish Disp Door Ear Fauc Hat Key Knif Lamp Lap Micr Mug Frid Scis Stor Tabl Tras Vase Avg

Shape IoU

Unary only 75.9 25.7 59.1 75.5 50.8 43.9 53.9 84.0 44.0 52.9 55.8 64.3 62.4 43.3 43.5 95.9 59.9 88.4 51.6 76.8 52.1 52.9 52.4 80.8 60.2
GC normal diff 76.1 25.9 60.6 81.3 55.0 44.1 54.1 85.2 45.4 53.0 58.0 65.2 62.4 45.6 47.2 96.0 60.7 89.5 52.9 76.9 55.2 55.7 54.0 82.5 61.8

GC PB-DGCNN 76.1 26.1 61.4 83.2 54.6 43.7 54.0 86.1 48.9 52.9 57.5 70.3 62.4 47.4 48.5 94.6 60.9 90.4 51.6 77.2 54.1 56.3 55.0 83.5 62.4
GC both 76.2 26.2 61.6 84.6 56.3 43.7 54.4 85.9 49.3 52.9 58.4 72.2 62.4 48.0 49.9 94.6 60.8 88.7 52.6 78.0 55.3 57.0 54.7 83.8 62.8

Part IoU

Unary only 49.9 26.8 39.9 64 40.6 24.6 46.2 84.3 32.2 42.4 46.1 62.7 61.1 39.5 24.1 95.6 54.4 81.5 37.7 76.5 43.1 33.4 45.5 55.9 50.3
GC normal diff 50.0 27.0 39.9 64.2 41.5 24.6 46.5 84.6 32.7 42.4 47.1 63.0 61.1 38.5 24.3 95.7 52.3 80.4 38.1 76.6 43.3 33.6 42.8 56.8 50.3

GC PB-DGCNN 50.2 27.0 44.3 66.7 41.2 24.0 46.7 84.6 32.6 42.4 46.7 63.6 61.1 39.7 24.4 93.8 53.9 82.7 37.7 76.8 43.2 33.4 43.8 56.6 50.7
GC both 50.2 27.0 45.0 69.4 41.6 24.0 47.0 84.4 33.1 42.4 47.3 65.7 61.1 38.4 24.4 93.9 52.2 80.2 38.1 77.6 43.2 33.4 42.0 56.7 50.8

Table 2: Point labeling evaluation of fine-grained semantic segmentation on the PartNet dataset (Part IoU, Shape IoU - %). “Unary alone”
represents using the per point part probabilities produced by DGCNN, “GC normal diff” represents graph cuts using normal angles as pair-
wise term, “GC PB-DGCNN” represents graph cuts using our predicted boundary confidences as pairwise term, and “GC both“ represents
graph cuts using the weighted combination of pairwise terms based on both normal angles and PB-DGCNN.

there is no variance in the above increases given a fixed unary term).
The performance increase is not dramatic: this is not surprising,
since refining boundaries changes relatively few point labels near
boundaries.

Table 3 reports our evaluation metrics in terms of boundary qual-
ity. We note that compared to the ABC dataset, the evaluation of
boundaries here is less reliable. In contrast to ABC, where the
ground-truth boundaries were parametric curves and were highly
accurate, the ground-truth boundaries in PartNet are marked ap-
proximately using the heuristic search described in Section 3.2. We
report the performance of our best variant of graph cuts (using both
terms), and also the unary term alone. We observe that graph cuts
result in boundaries that are more consistent with ground-truth. In
particular, we observe an improvement of 2.8% for bIoU, and 2.9%
for F1-score on average. We note that although the recall is lower,
the precision is significantly much higher. Figures 1 and 8 show
semantic segmentation results for a few examples from PartNet.

5. Limitations and Conclusion

We presented a method for detecting probabilistic boundaries in
point clouds based on a neural network. Our evaluation showed
that our boundaries are closer to ground-truth in geometric decom-
position tasks, and also improve the quality of cuts in semantic
segmentation tasks. Our method also has limitations that could in-
spire future research. First, our method currently extracts proba-
bilities of part boundaries over points. Sometimes these probabili-
ties seem too low (Figure 10), resulting in sparsely labeled bound-
ary points, which makes it harder to extract a continuous boundary
curve. It would be interesting to investigate robust fitting of para-
metric curves or lines to probabilistic boundaries to localize them
more accurately. This could in turn be combined with neural patch
fitting [SLK∗20], and also result in geometric decomposition of
point clouds to primitives with more accurately trimmed bound-
aries. For semantic segmentation, jointly optimizing the unary and
pairwise term with the rest of the network in an end-to-end manner
could further improve results. Finally, it would be interesting to ex-
tend our method to handle polygon mesh segmentations based on
our detected boundaries.
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739578 (RISE âĂŞ Call: H2020-WIDESPREAD-01-2016-2017-
TeamingPhase2), the Government of the Republic of Cyprus
through the Directorate General for European Programmes, Coor-
dination and Development, and NSF (CHS-1617333). Our experi-
ments were performed in the UMass GPU cluster obtained under
the Collaborative Fund managed by the Massachusetts Technology
Collaborative. We especially thank Gopal Sharma for assisting with
the filtering and preparation of the ABC training data. We thank the
anonymous reviewers for their feedback.

References
[AML18] ATZMON M., MARON H., LIPMAN Y.: Point convolutional

neural networks by extension operators. ACM Trans. Graph. 37, 4
(2018). 2

[BAM∗05] BELYAEV A., ANOSHKINA E., MARTIN R., BEZ H., SABIN
M.: Detection of surface creases in range data. Mathematics of sur-
faces XI : 11th IMA International Conference, Springer, 50-61 (2005)
(10 2005). 2

[BBL∗17] BRONSTEIN M. M., BRUNA J., LECUN Y., SZLAM A.,
VANDERGHEYNST P.: Geometric deep learning: going beyond eu-
clidean data. IEEE Signal Processing Magazine 34 (2017), 18–42. 2

[BS16] BOGOSLAVSKYI I., STACHNISS C.: Fast range image-based seg-
mentation of sparse 3d laser scans for online operation. In Proc. of
The International Conference on Intelligent Robots and Systems (IROS)
(2016). 2

[BST15a] BERTASIUS G., SHI J., TORRESANI L.: Deepedge: A multi-
scale bifurcated deep network for top-down contour detection. In CVPR
(2015). 1, 2

[BST15b] BERTASIUS G., SHI J., TORRESANI L.: High-for-low and
low-for-high: Efficient boundary detection from deep object features and
its applications to high-level vision. IEEE International Conference on
Computer Vision (ICCV) (2015), 504–512. 1, 2

[BST16] BERTASIUS G., SHI J., TORRESANI L.: Semantic segmenta-
tion with boundary neural fields. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016). 1, 2

[CGF09] CHEN X., GOLOVINSKIY A., FUNKHOUSER T.: A benchmark
for 3D mesh segmentation. ACM Transactions on Graphics (Proc. SIG-
GRAPH) 28, 3 (2009). 7

[CGL∗08] COLE F., GOLOVINSKIY A., LIMPAECHER A., BARROS
H. S., FINKELSTEIN A., FUNKHOUSER T., RUSINKIEWICZ S.: Where
do people draw lines? ACM Trans. Graph. 27, 3 (2008). 7



Category Bag Bed Bott Bowl Chai Cloc Dish Disp Door Ear Fauc Hat Key Knif Lamp Lap Micr Mug Frid Scis Stor Tabl Tras Vase Avg

Chamfer Distance

Unary alone 6.3 3.1 6.9 38.8 4.0 5.4 6.6 7.8 37.3 9.9 6.0 4.1 2.3 9.4 7.2 1.0 3.3 3.6 3.9 9.4 1.5 3.2 3.8 10.9 8.2
GC both 6.4 3.1 7.1 37.0 3.7 5.4 6.2 7.7 36.4 9.9 5.4 3.1 2.3 7.3 5.9 1.3 3.5 3.2 3.9 8.7 1.3 2.7 5.9 11.0 7.9

Boundary IoU

Unary alone 61.5 72.3 48.0 56.0 67.0 59.0 64.0 73.5 54.4 49.1 54.4 77.3 76.5 38.7 57.1 90.5 79.1 66.7 69.1 44.7 88.4 75.9 77.6 73.4 65.6
GC both 60.9 73.0 48.4 60.7 70.2 63.9 66.0 74.9 57.9 49.0 63.2 82.1 76.1 47.0 67.0 90.9 76.4 75.3 69.7 50.4 90.0 79.2 74.8 75.4 68.4

Precision

Unary alone 74.3 70.5 52.3 58.7 65.3 57.8 67.1 72.1 56.9 56.6 51.8 78.4 81.8 34.8 56.2 91.2 81.4 75.0 76.4 46.2 88.6 78.0 78.4 72.8 67.6
GC both 77.6 73.7 60.4 68.0 80.2 73.9 75.7 81.4 65.7 57.6 71.2 89.2 82.1 54.7 81.9 93.8 81.7 87.3 80.3 54.8 94.4 90.1 89.6 78.8 76.8

Recall

Unary alone 57.9 79.5 48.9 62.8 74.7 68.0 68.0 79.1 56.1 47.8 61.8 78.9 75.9 51.6 72.5 91.0 78.0 65.1 66.9 45.3 90.0 81.1 79.9 79.9 69.2
GC both 55.9 76.8 44.8 62.1 67.1 63.4 63.2 72.7 55.9 46.8 60.2 78.0 75.3 46.2 63.9 90.0 73.3 70.6 65.4 48.9 87.5 76.2 68.9 76.4 66.2

F1-score

Unary alone 65.1 74.7 50.5 60.7 69.7 62.5 67.5 75.4 56.5 51.8 56.4 78.7 78.8 41.5 63.3 91.1 79.7 69.7 71.3 45.7 89.3 79.5 79.1 76.2 68.1
GC both 65.0 75.2 51.4 64.9 73.1 68.3 68.9 76.8 60.4 51.6 65.2 83.2 78.5 50.1 71.8 91.9 77.2 78.0 72.1 51.7 90.8 82.5 77.9 77.6 71.0

Table 3: Evaluation of fine-grained semantic segmentation boundaries (Chamfer distance, Boundary IoU, Precision, Recall, F1 score - %) on
the PartNet dataset. “Unary alone” represents using the per point part probabilities produced by DGCNN, “GC both” represents a weighted
combination of pairwise terms based on normal angles and PB-DGCNN.

Ground Truth Boundaries Decomposed Parts Predicted Boundaries Decomposed Parts

Figure 9: The figure on the left depicts part decomposition of the point cloud from ground truth boundaries, with BFS flood-filling. It
successfully segments the point cloud into three parts. This is not the case on the right figure, where the predicted boundaries fail to enclose
points into separate segments, which results to only one part after the watershed segmentation procedure.
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Figure 10: Predicted boundary confidences (middle column) is
sometimes low resulting in sparsely labeled boundary points (right
column).
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